# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8748 | 0 | 1.0000 | Heterologous Expression of the Constitutive Disease Resistance 2 and 8 Genes from Poncirus trifoliata Restored the Hypersensitive Response and Resistance of Arabidopsis cdr1 Mutant to Bacterial Pathogen Pseudomonas syringae. Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of citrus worldwide. In the United States, this disease is associated with a phloem-restricted bacterium, Candidatus Liberibacter asiaticus. Commercial citrus cultivars are susceptible to HLB, but Poncirus trifoliata, a close relative of Citrus, is highly tolerant of HLB. Isolating P. trifoliata gene(s) controlling its HLB tolerance followed by expressing the gene(s) in citrus is considered a potential cisgenic approach to engineering citrus for tolerance to HLB. Previous gene expression studies indicated that the constitutive disease resistance (CDR) genes in P. trifoliata (PtCDRs) may play a vital role in its HLB tolerance. This study was designed to use Arabidopsis mutants as a model system to confirm the function of PtCDRs in plant disease resistance. PtCDR2 and PtCDR8 were amplified from P. trifoliata cDNA and transferred into the Arabidopsis cdr1 mutant, whose resident CDR1 gene was disrupted by T-DNA insertion. The PtCDR2 and PtCDR8 transgenic Arabidopsis cdr1 mutant restored its hypersensitive response to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) expressing avrRpt2. The defense marker gene PATHOGENESIS RELATED 1 (PR1) expressed at much higher levels in the PtCDR2 or PtCDR8 transgenic cdr1 mutant than in the non-transgenic cdr1 mutant with or without pathogen infection. Multiplication of Pst DC3000 bacteria in Arabidopsis was inhibited by the expression of PtCDR2 and PtCDR8. Our results showed that PtCDR2 and PtCDR8 were functional in Arabidopsis and played a positive role in disease resistance and demonstrated that Arabidopsis mutants can be a useful alternate system for screening Poncirus genes before making the time-consuming effort to transfer them into citrus, a perennial woody plant that is highly recalcitrant for Agrobacterium or biolistic-mediated transformation. | 2020 | 32629813 |
| 8764 | 1 | 0.9976 | Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Expression of synthesized cecropin B genes in the citrus phloem, where Candidatus Liberibacter asiaticus resides, significantly decreased host susceptibility to Huanglongbing. Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus bacteria, is the most destructive disease of citrus worldwide. All of the commercial sweet orange cultivars lack resistance to this disease. The cationic lytic peptide cecropin B, isolated from the Chinese tasar moth (Antheraea pernyi), has been shown to effectively eliminate bacteria. In this study, we demonstrated that transgenic citrus (Citrus sinensis Osbeck) expressing the cecropin B gene specifically in the phloem had a decreased susceptibility to HLB. Three plant codon-optimized synthetic cecropin B genes, which were designed to secrete the cecropin B peptide into three specific sites, the extracellular space, the cytoplasm, and the endoplasmic reticulum, were constructed. Under the control of the selected phloem-specific promoter GRP1.8, these constructs were transferred into the citrus genome. All of the cecropin B genes were efficiently expressed in the phloem of transgenic plants. Over more than a year of evaluation, the transgenic lines exhibited reduced disease severity. Bacterial populations in transgenic lines were significantly lower than in the controls. Two lines, in which bacterial populations were significantly lower than in others, showed no visible symptoms. Thus, we demonstrated the potential application of the phloem-specific expression of an antimicrobial peptide gene to protect citrus plants from HLB. | 2017 | 27866312 |
| 327 | 2 | 0.9974 | Natural variation in RPS2-mediated resistance among Arabidopsis accessions: correlation between gene expression profiles and phenotypic responses. Natural variation in gene expression (expression traits or e-traits) is increasingly used for the discovery of genes controlling traits. An important question is whether a particular e-trait is correlated with a phenotypic trait. Here, we examined the correlations between phenotypic traits and e-traits among 10 Arabidopsis thaliana accessions. We studied defense against Pseudomonas syringae pv tomato DC3000 (Pst), with a focus on resistance gene-mediated resistance triggered by the type III effector protein AvrRpt2. As phenotypic traits, we measured growth of the bacteria and extent of the hypersensitive response (HR) as measured by electrolyte leakage. Genetic variation among accessions affected growth of Pst both with (Pst avrRpt2) and without (Pst) the AvrRpt2 effector. Variation in HR was not correlated with variation in bacterial growth. We also collected gene expression profiles 6 h after mock and Pst avrRpt2 inoculation using a custom microarray. Clusters of genes whose expression levels are correlated with bacterial growth or electrolyte leakage were identified. Thus, we demonstrated that variation in gene expression profiles of Arabidopsis accessions collected at one time point under one experimental condition has the power to explain variation in phenotypic responses to pathogen attack. | 2007 | 18083910 |
| 63 | 3 | 0.9973 | RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. A molecular genetic approach was used to identify and characterize plant genes that control bacterial disease resistance in Arabidopsis. A screen for mutants with altered resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) expressing the avirulence gene avrRpt2 resulted in the isolation of four susceptible rps (resistance to P. syringae) mutants. The rps mutants lost resistance specifically to bacterial strains expressing avrRpt2 as they retained resistance to Pst strains expressing the avirulence genes avrB or avrRpm1. Genetic analysis indicated that in each of the four rps mutants, susceptibility was due to a single mutation mapping to the same locus on chromosome 4. Identification of a resistance locus with specificity for a single bacterial avirulence gene suggests that this locus, designated RPS2, controls specific recognition of bacteria expressing the avirulence gene avrRpt2. Ecotype Wü-0, a naturally occurring line that is susceptible to Pst strains expressing avrRpt2, appears to lack a functional allele at RPS2, demonstrating that there is natural variation at the RPS2 locus among wild populations of Arabidopsis. | 1993 | 8400869 |
| 253 | 4 | 0.9972 | The Rxo1/ Rba1 locus of maize controls resistance reactions to pathogenic and non-host bacteria. Infiltration of different maize lines with a variety of bacterial pathogens of maize, rice and sorghum identified qualitative differences in resistant reactions. Isolates from two bacterial species induced rapid hypersensitive reactions (HR) in some maize lines, but not others. All isolates of the non-host pathogen Xanthomonas oryzae pv. oryzicola (bacterial leaf streak disease of rice) and some isolates of the pathogenic bacterium Burkholderia andropogonis induced HR when infiltrated into maize line B73, but not Mo17. Genetic control of the HR to both bacteria segregated as a single dominant gene. Surprisingly, both phenotypes mapped to the same locus, indicating they are either tightly linked or controlled by the same gene. The locus maps on the short arm of maize chromosome six near several other disease-resistance genes. Results indicate the same type of genes may contribute to both non-host resistance and resistance to pathogens. | 2004 | 15114472 |
| 8762 | 5 | 0.9972 | Resistance Genes and their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.)-an Updated Review. Rice (Oryza sativa L.) is a staple food crop, feeding more than 50% of the world's population. Diseases caused by bacterial, fungal, and viral pathogens constantly threaten the rice production and lead to enormous yield losses. Bacterial blight (BB) and bacterial leaf streak (BLS), caused respectively by gram-negative bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), are two important diseases affecting rice production worldwide. Due to the economic importance, extensive genetic and genomic studies have been conducted to elucidate the molecular mechanism of rice response to Xoo and Xoc in the last two decades. A series of resistance (R) genes and their cognate avirulence and virulence effector genes have been characterized. Here, we summarize the recent advances in studies on interactions between rice and the two pathogens through these R genes or their products and effectors. Breeding strategies to develop varieties with durable and broad-spectrum resistance to Xanthomonas oryzae based on the published studies are also discussed. | 2020 | 31915945 |
| 81 | 6 | 0.9972 | Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. Means to control bacterial wilt caused by the phytopathogenic root bacteria Ralstonia solanacearum are limited. Mutants in a large cluster of genes (hrp) involved in the pathogenicity of R. solanacearum were successfully used in a previous study as endophytic biocontrol agents in challenge inoculation experiments on tomato. However, the molecular mechanisms controlling this resistance remained unknown. We developed a protection assay using Arabidopsis thaliana as a model plant and analyzed the events underlying the biological control by genetic, transcriptomic and molecular approaches. High protection rates associated with a significant decrease in the multiplication of R. solanacearum were observed in plants pre-inoculated with a ΔhrpB mutant strain. Neither salicylic acid, nor jasmonic acid/ethylene played a role in the establishment of this resistance. Microarray analysis showed that 26% of the up-regulated genes in protected plants are involved in the biosynthesis and signalling of abscissic acid (ABA). In addition 21% of these genes are constitutively expressed in the irregular xylem cellulose synthase mutants (irx), which present a high level of resistance to R. solanacearum. We propose that inoculation with the ΔhrpB mutant strain generates a hostile environment for subsequent plant colonization by a virulent strain of R. solanacearum. | 2012 | 22432714 |
| 325 | 7 | 0.9971 | Use of Arabidopsis thaliana and Pseudomonas syringae in the Study of Plant Disease Resistance and Tolerance. The interaction between Arabidopsis thaliana and the bacterium Pseudomonas syringae is being developed as a model experimental system for plant pathology research. Race-specific ("gene-for-gene") resistance has been demonstrated for this interaction, and pathogen genes that determine avirulence have been isolated and characterized. Because certain lines of both Arabidopsis and soybean are resistant to bacteria carrying the avirulence genes avrRpt2 and avrB, extremely similar pathogen recognition mechanisms are apparently present in these two plant species. Isogenic bacterial strains that differ by the presence of single avirulence genes are being used to analyze plant resistance. Plant resistance genes have been identified in crosses between resistant and susceptible lines. The extensive map-based cloning tools available in Arabidopsis are being used to isolate these resistance genes. In a related project, ethylene-insensitive Arabidopsis mutants are being used to examine the role of ethylene in disease development. Ethylene apparently mediates symptom formation in susceptible plants and is not required for resistance, suggesting possible strategies for enhancement of disease tolerance in crops. | 1993 | 19279805 |
| 8763 | 8 | 0.9971 | Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Disease resistance in transgenic plants has been improved, for the first time, by the insertion of a gene from a biocontrol fungus. The gene encoding a strongly antifungal endochitinase from the mycoparasitic fungus Trichoderma harzianum was transferred to tobacco and potato. High expression levels of the fungal gene were obtained in different plant tissues, which had no visible effect on plant growth and development. Substantial differences in endochitinase activity were detected among transformants. Selected transgenic lines were highly tolerant or completely resistant to the foliar pathogens Alternaria alternata, A. solani, Botrytis cinerea, and the soilborne pathogen Rhizoctonia solani. The high level and the broad spectrum of resistance obtained with a single chitinase gene from Trichoderma overcome the limited efficacy of transgenic expression in plants of chitinase genes from plants and bacteria. These results demonstrate a rich source of genes from biocontrol fungi that can be used to control diseases in plants. | 1998 | 9653105 |
| 22 | 9 | 0.9971 | A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H(2)O(2)) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future. | 2022 | 36438094 |
| 79 | 10 | 0.9971 | A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. SUMMARY Members of the GRAS family of transcriptional regulators have been implicated in the control of plant growth and development, and in the interaction of plants with symbiotic bacteria. Here we examine the complexity of the GRAS gene family in tomato (Solanum lycopersicum) and investigate its role in disease resistance and mechanical stress. A large number of tomato ESTs corresponding to GRAS transcripts were retrieved from the public database and assembled in 17 contigs of putative genes. Expression analysis of these genes by real-time RT-PCR revealed that six SlGRAS transcripts accumulate during the onset of disease resistance to Pseudomonas syringae pv. tomato. Further analysis of two selected family members showed that their transcripts preferentially accumulate in tomato plants in response to different avirulent bacteria or to the fungal elicitor EIX, and their expression kinetics correlate with the appearance of the hypersensitive response. In addition, transcript levels of eight SlGRAS genes, including all the Pseudomonas-inducible family members, increased in response to mechanical stress much earlier than upon pathogen attack. Accumulation of SlGRAS transcripts following mechanical stress was in part dependent on the signalling molecule jasmonic acid. Remarkably, suppression of SlGRAS6 gene expression by virus-induced gene silencing impaired tomato resistance to P. syringae pv. tomato. These results support a function for GRAS transcriptional regulators in the plant response to biotic and abiotic stress. | 2006 | 20507472 |
| 8728 | 11 | 0.9970 | Identification of the defense-related gene VdWRKY53 from the wild grapevine Vitis davidii using RNA sequencing and ectopic expression analysis in Arabidopsis. BACKGROUND: Grapevine is an important fruit crop grown worldwide, and its cultivars are mostly derived from the European species Vitis vinifera, which has genes for high fruit quality and adaptation to a wide variety of climatic conditions. Disease resistance varies substantially across grapevine species; however, the molecular mechanisms underlying such variation remain uncharacterized. RESULTS: The anatomical structure and disease symptoms of grapevine leaves were analyzed for two grapevine species, and the critical period of resistance of grapevine to pathogenic bacteria was determined to be 12 h post inoculation (hpi). Differentially expressed genes (DEGs) were identified from transcriptome analysis of leaf samples obtained at 12 and 36 hpi, and the transcripts in four pathways (cell wall genes, LRR receptor-like genes, WRKY genes, and pathogenesis-related (PR) genes) were classified into four co-expression groups by using weighted correlation network analysis (WGCNA). The gene VdWRKY53, showing the highest transcript level, was introduced into Arabidopsis plants by using a vector containing the CaMV35S promoter. These procedures allowed identifying the key genes contributing to differences in disease resistance between a strongly resistant accession of a wild grapevine species Vitis davidii (VID) and a susceptible cultivar of V. vinifera, 'Manicure Finger' (VIV). Vitis davidii, but not VIV, showed a typical hypersensitive response after infection with a fungal pathogen (Coniella diplodiella) causing white rot disease. Further, 20 defense-related genes were identified, and their differential expression between the two grapevine species was confirmed using quantitative real-time PCR analysis. VdWRKY53, showing the highest transcript level, was selected for functional analysis and therefore over-expressed in Arabidopsis under the control of the CaMV35S promoter. The transgenic plants showed enhanced resistance to C. diplodiella and to two other pathogens, Pseudomonas syringae pv. tomato DC3000 and Golovinomyces cichoracearum. CONCLUSION: The consistency of the results in VID and transgenic Arabidopsis indicated that VdWRKY53 might be involved in the activation of defense-related genes that enhance the resistance of these plants to pathogens. Thus, the over-expression of VdWRKY53 in transgenic grapevines might improve their resistance to pathogens. | 2019 | 31057347 |
| 90 | 12 | 0.9970 | Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem. Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology. | 2012 | 22299054 |
| 66 | 13 | 0.9970 | Isolation of new Arabidopsis mutants with enhanced disease susceptibility to Pseudomonas syringae by direct screening. To identify plant defense components that are important in restricting the growth of virulent pathogens, we screened for Arabidopsis mutants in the accession Columbia (carrying the transgene BGL2-GUS) that display enhanced disease susceptibility to the virulent bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326. Among six (out of a total of 11 isolated) enhanced disease susceptibility (eds) mutants that were studied in detail, we identified one allele of the previously described npr1/nim1/sai1 mutation, which is affected in mounting a systemic acquired resistance response, one allele of the previously identified EDS5 gene, and four EDS genes that have not been previously described. The six eds mutants studied in detail (npr1-4, eds5-2, eds10-1, eds11-1, eds12-1, and eds13-1) displayed different patterns of enhanced susceptibility to a variety of phytopathogenic bacteria and to the obligate biotrophic fungal pathogen Erysiphe orontii, suggesting that particular EDS genes have pathogen-specific roles in conferring resistance. All six eds mutants retained the ability to mount a hypersensitive response and to restrict the growth of the avirulent strain Psm ES4326/avrRpt2. With the exception of npr1-4, the mutants were able to initiate a systemic acquired resistance (SAR) response, although enhanced growth of Psm ES4326 was still detectable in leaves of SAR-induced plants. The data presented here indicate that eds genes define a variety of components involved in limiting pathogen growth, that many additional EDS genes remain to be discovered, and that direct screens for mutants with altered susceptibility to pathogens are helpful in the dissection of complex pathogen response pathways in plants. | 1998 | 9611172 |
| 30 | 14 | 0.9970 | RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response. BACKGROUND: Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. RESULTS: Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. CONCLUSIONS: This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen. | 2013 | 24090429 |
| 8749 | 15 | 0.9970 | Analysis of Defense-Related Gene Expression in Citrus Hybrids Infected by Xylella fastidiosa. Resistance to Xylella fastidiosa was evaluated in 264 hybrids of crosses between Murcott tangor (Citrus reticulata × Citrus sinensis) and Pera sweet orange (C. sinensis) under field conditions. Uninfected hybrids were grafted with buds collected from Pera sweet orange plants infected with X. fastidiosa, forming a plant with two scions (i.e., hybrid branches and Pera sweet orange branches). From these plants, we chose 10 genotypes with three biological replicates. We evaluated gene expression, bacterial multiplication, and citrus variegated chlorosis (CVC) symptom development in both scions. X. fastidiosa was not detected in most hybrid scions and none showed disease symptoms. In contrast, all Pera sweet orange scions were infected with X. fastidiosa and expressed symptoms of CVC. We quantified the expression of 12 defense-related genes by qPCR comparing resistant to susceptible scions. We suggest that some of these genes are involved in resistance of the hybrids to X. fastidiosa, since their expression was significantly higher in the resistant hybrid scions than in tolerant hybrids and scions originated from CVC symptomatic Pera sweet orange buds. However, we note that these data should be interpreted carefully, as the plant genotypes tested are related but necessarily distinct (hybrids of C. reticulata and C. sinensis, in relation to a C. sinensis control). A principal component analysis revealed a relationship between the expression of these genes and hybrid scions, and between scions that originated from infected buds and the presence of the bacteria and plant symptoms. Multiyear field trials are necessary to develop plant resistance to X. fastidiosa. While the experimental design used here had limitations, it allowed us to identify a set of genes potentially involved in Citrus sp. resistance to this pathogen. Future work on the role of these genes in plant defenses to X. fastidiosa infection is necessary to confirm their importance in the displayed resistance phenotype. | 2019 | 30480473 |
| 8755 | 16 | 0.9970 | Improved Phytophthora resistance in commercial chickpea (Cicer arietinum) varieties negatively impacts symbiotic gene signalling and symbiotic potential in some varieties. Breeding disease-resistant varieties is one of the most effective and economical means to combat soilborne diseases in pulse crops. Commonalities between pathogenic and mutualistic microbe colonization strategies, however, raises the concern that reduced susceptibility to pathogens may simultaneously reduce colonization by beneficial microbes. We investigate here the degree of overlap in the transcriptional response of the Phytophthora medicaginis susceptible chickpea variety 'Sonali' to the early colonization stages of either Phytophthora, rhizobial bacteria or arbuscular mycorrhizal fungi. From a total of 6476 genes differentially expressed in Sonali roots during colonization by any of the microbes tested, 10.2% were regulated in a similar manner regardless of whether it was the pathogenic oomycete or a mutualistic microbe colonizing the roots. Of these genes, 49.7% were oppositely regulated under the same conditions in the moderately Phytophthora resistant chickpea variety 'PBA HatTrick'. Chickpea varieties with improved resistance to Phytophthora also displayed lower colonization by rhizobial bacteria and mycorrhizal fungi leading to an increased reliance on N and P from soil. Together, our results suggest that marker-based breeding in crops such as chickpea should be further investigated such that plant disease resistance can be tailored to a specific pathogen without affecting mutualistic plant:microbe interactions. | 2016 | 27103212 |
| 8777 | 17 | 0.9969 | Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Systemic acquired resistance is a pathogen-inducible defense mechanism in plants. The resistant state is dependent on endogenous accumulation of salicylic acid (SA) and is characterized by the activation of genes encoding pathogenesis-related (PR) proteins. Recently, selected nonpathogenic, root-colonizing biocontrol bacteria have been shown to trigger a systemic resistance response as well. To study the molecular basis underlying this type of systemic resistance, we developed an Arabidopsis-based model system using Fusarium oxysporum f sp raphani and Pseudomonas syringae pv tomato as challenging pathogens. Colonization of the rhizosphere by the biological control strain WCS417r of P. fluorescens resulted in a plant-mediated resistance response that significantly reduced symptoms elicited by both challenging pathogens. Moreover, growth of P. syringae in infected leaves was strongly inhibited in P. fluorescens WCS417r-treated plants. Transgenic Arabidopsis NahG plants, unable to accumulate SA, and wild-type plants were equally responsive to P. fluorescens WCS417r-mediated induction of resistance. Furthermore, P. fluorescens WCS417r-mediated systemic resistance did not coincide with the accumulation of PR mRNAs before challenge inoculation. These results indicate that P. fluorescens WCS417r induces a pathway different from the one that controls classic systemic acquired resistance and that this pathway leads to a form of systemic resistance independent of SA accumulation and PR gene expression. | 1996 | 8776893 |
| 8788 | 18 | 0.9969 | Plant nitrate supply regulates Erwinia amylovora virulence gene expression in Arabidopsis. We showed previously that nitrogen (N) limitation decreases Arabidopsis resistance to Erwinia amylovora (Ea). We show that decreased resistance to bacteria in low N is correlated with lower apoplastic reactive oxygen species (ROS) accumulation and lower jasmonic acid (JA) pathway expression. Consistently, pretreatment with methyl jasmonate (Me-JA) increased the resistance of plants grown under low N. In parallel, we show that in planta titres of a nonvirulent type III secretion system (T3SS)-deficient Ea mutant were lower than those of wildtype Ea in low N, as expected, but surprisingly not in high N. This lack of difference in high N was consistent with the low expression of the T3SS-encoding hrp virulence genes by wildtype Ea in plants grown in high N compared to plants grown in low N. This suggests that expressing its virulence factors in planta could be a major limiting factor for Ea in the nonhost Arabidopsis. To test this hypothesis, we preincubated Ea in an inducing medium that triggers expression of hrp genes in vitro, prior to inoculation. This preincubation strongly enhanced Ea titres in planta, independently of the plant N status, and was correlated to a significant repression of JA-dependent genes. Finally, we identify two clusters of metabolites associated with resistance or with susceptibility to Ea. Altogether, our data showed that high susceptibility of Arabidopsis to Ea, under low N or following preincubation in hrp-inducing medium, is correlated with high expression of the Ea hrp genes in planta and low expression of the JA signalling pathway, and is correlated with the accumulation of specific metabolites. | 2021 | 34382308 |
| 51 | 19 | 0.9969 | A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Although allelic diversity of genes has been reported to play important roles in different physiological processes, information on allelic diversity of defense-responsive genes in host-pathogen interactions is limited. Here, we report that a pair of allelic genes, OsWRKY45-1 and OsWRKY45-2, which encode proteins with a 10-amino acid difference, play opposite roles in rice (Oryza sativa) resistance against bacterial pathogens. Bacterial blight caused by Xanthomonas oryzae pv oryzae (Xoo), bacterial streak caused by Xanthomonas oryzae pv oryzicola (Xoc), and fungal blast caused by Magnaporthe grisea are devastating diseases of rice worldwide. OsWRKY45-1-overexpressing plants showed increased susceptibility and OsWRKY45-1-knockout plants showed enhanced resistance to Xoo and Xoc. In contrast, OsWRKY45-2-overexpressing plants showed enhanced resistance and OsWRKY45-2-suppressing plants showed increased susceptibility to Xoo and Xoc. Interestingly, both OsWRKY45-1- and OsWRKY45-2-overexpressing plants showed enhanced resistance to M. grisea. OsWRKY45-1-regulated Xoo resistance was accompanied by increased accumulation of salicylic acid and jasmonic acid and induced expression of a subset of defense-responsive genes, while OsWRKY45-2-regulated Xoo resistance was accompanied by increased accumulation of jasmonic acid but not salicylic acid and induced expression of another subset of defense-responsive genes. These results suggest that both OsWRKY45-1 and OsWRKY45-2 are positive regulators in rice resistance against M. grisea, but the former is a negative regulator and the latter is a positive regulator in rice resistance against Xoo and Xoc. The opposite roles of the two allelic genes in rice-Xoo interaction appear to be due to their mediation of different defense signaling pathways. | 2009 | 19700558 |