Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
874001.0000Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Sulphate-reducing bacteria (SRB) can be inhibited by nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB), despite the fact that these two groups are interdependent in many anaerobic environments. Practical applications of this inhibition include the reduction of sulphide concentrations in oil fields by nitrate injection. The NR-SOB Thiomicrospira sp. strain CVO was found to oxidize up to 15 mM sulphide, considerably more than three other NR-SOB strains that were tested. Sulphide oxidation increased the environmental redox potential (Eh) from -400 to +100 mV and gave 0.6 nitrite per nitrate reduced. Within the genus Desulfovibrio, strains Lac3 and Lac6 were inhibited by strain CVO and nitrate for the duration of the experiment, whereas inhibition of strains Lac15 and D. vulgaris Hildenborough was transient. The latter had very high nitrite reductase (Nrf) activity. Southern blotting with D. vulgaris nrf genes as a probe indicated the absence of homologous nrf genes from strains Lac3 and Lac6 and their presence in strain Lac15. With respect to SRB from other genera, inhibition of the known nitrite reducer Desulfobulbus propionicus by strain CVO and nitrate was transient, whereas inhibition of Desulfobacterium autotrophicum and Desulfobacter postgatei was long-lasting. The results indicate that inhibition of SRB by NR-SOB is caused by nitrite production. Nrf-containing SRB can overcome this inhibition by further reducing nitrite to ammonia, preventing a stalling of the favourable metabolic interactions between these two bacterial groups. Nrf, which is widely distributed in SRB, can thus be regarded as a resistance factor that prevents the inhibition of dissimilatory sulphate reduction by nitrite.200312823193
867410.9975Genetic basis for nitrate resistance in Desulfovibrio strains. Nitrate is an inhibitor of sulfate-reducing bacteria (SRB). In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes of nitrate application. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702), as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605) that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance.201424795702
868020.9974Environmental pH affects transcriptional responses to cadmium toxicity in Escherichia coli K-12 (MG1655). It has been widely reported that pH mediates cadmium toxicity to bacteria. We used a tripartite approach to investigate mechanisms by which pH affects cadmium toxicity that included analyses of: (1) growth kinetics, (2) global gene expression, and (3) cadmium speciation. Cadmium extended the lag phase at pH 7, but not at pH 5. DNA microarray analysis revealed that stress response genes including hdeA, otsA, and yjbJ were more highly expressed at pH 5 than at pH 7 after only 5 min of exposure to cadmium, suggesting that acidic pH more rapidly induced genes that confer cadmium resistance. In addition, genes involved in transport and many hypothetical genes were more highly expressed at pH 5 than at pH 7 in the presence of cadmium. Concentrations of two cadmium species, including one previously implicated in the mechanism by which pH mediates cadmium toxicity (CdOH+), increased with pH. Our data demonstrate that transcriptional responses of Escherichia coli to cadmium are substantially affected by pH and suggest that several stress response, transport, and hypothetical genes play roles in the mechanism by which pH mediates cadmium toxicity.200919220470
796730.9973Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: Mechanism and pathways. Ciprofloxacin (CIP), a fluoroquinolone antibiotic, removal was examined for the first time, in an anaerobic sulfate-reducing bacteria (SRB) sludge system. About 28.0% of CIP was biodegraded by SRB sludge when the influent CIP concentration was 5000 μg/L. Some SRB genera with high tolerance to CIP (i.e. Desulfobacter), were enriched at CIP concentration of 5000 μg/L. The changes in antibiotic resistance genes (ARGs) of SRB sludge coupled with CIP biodegradation intermediates were used to understand the mechanism of CIP biodegradation for the first time. The percentage of efflux pump genes associated with ARGs increased, while the percentage of fluoroquinolone resistance genes that inhibit the DNA copy of bacteria decreased during prolonged exposure to CIP. It implies that some intracellular CIP was extruded into extracellular environment of microbial cells via efflux pump genes to reduce fluoroquinolone resistance genes accumulation caused by exposure to CIP. Additionally, the degradation products and the possible pathways of CIP biodegradation were also examined using the new method developed in this study. The results suggest that CIP was biodegraded intracellularly via desethylation reaction in piperazinyl ring and hydroxylation reaction catalyzed by cytochrome P450 enzymes. This study provides an insight into the mechanism and pathways of CIP biodegradation by SRB sludge, and opens-up a new opportunity for the treatment of CIP-containing wastewater using sulfur-mediated biological process.201829494897
874140.9972Acclimation of electroactive biofilms under different operating conditions: comprehensive analysis from architecture, composition, and metabolic activity. Electroactive biofilms (EABs) have aroused wide concern in waste treatment due to their unique capability of extracellular electron transfer with solid materials. The combined effect of different operating conditions on the formation, microbial architecture, composition, and metabolic activity of EABs is still unknown. In this study, the impact of three different factors (anode electrode, substrate concentration, and resistance) on the acclimation and performance of EABs was investigated. The results showed that the shortest start-up time of 127.3 h and highest power density of 0.84 W m(-2) were obtained with carbon brush as electrode, low concentration of substrate (1.0 g L(-1)), and 1000 Ω external resistance (denoted as N1). The EABs under N1 condition also represented strongest redox capacity, lowest internal resistance, and close arrangement of bacteria. Moreover, the EABs cultured under different conditions both showed similar results, with direct electron transfer (DET) dominated from EABs to anode. Microbial community compositions indicated that EABs under N1 condition have lowest diversity and highest abundance of electroactive bacteria (46.68%). Higher substrate concentration (3.0 g L(-1)) promoted the proliferation of some other bacteria without electroactivity, which was adverse to EABs. The metabolic analysis showed the difference of genes related to electron transfer (cytochrome C and pili) and biofilm formation (xap) of EABs under different conditions, which further demonstrated the higher electroactivity of EABs under N1. These results provided a comprehensive understanding of the effect of different operating conditions on EABs including biofilm formation and electrochemical activity.202337749470
881950.9971Responses of Bacillus sp. under Cu(II) stress in relation to extracellular polymeric substances and functional gene expression level. The production and composition of extracellular polymeric substances (EPS), as well as the EPS-related functional resistance genes and metabolic levels of Bacillus sp. under Cu(II) stress, were investigated. EPS production increased by 2.73 ± 0.29 times compared to the control when the strain was treated with 30 mg L(-1) Cu(II). Specifically, the polysaccharide (PS) content in EPS increased by 2.26 ± 0.28 g CDW(-1) and the PN/PS (protein/polysaccharide) ratio value increased by 3.18 ± 0.33 times under 30 mg L(-1) Cu(II) compared to the control. The increased EPS secretion and higher PN/PS ratio in EPS strengthened the cells' ability to resist the toxic effect of Cu(II). Differential expression of functional genes under Cu(II) stress was revealed by Gene Ontology pathway enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The enriched genes were most obviously upregulated in the UMP biosynthesis pathway, the pyrimidine metabolism pathway, and the TCS metabolism pathway. This indicates an enhancement of EPS regulation-related metabolic levels and their role as a defense mechanism for cells to adapt to Cu(II) stress. Additionally, seven copper resistance genes were upregulated while three were downregulated. The upregulated genes were related to the heavy metal resistance, while downregulated genes were related to cell differentiation, indicating that the strain had initiated an obvious resistance to Cu(II) despite its severe cell toxicity. These results provided a basis for promoting EPS-regulated associated functional genes and the application of gene-regulated bacteria in heavy metal-containing wastewater treatment.202337195605
853160.9971Biotransformation mechanism of Vibrio diabolicus to sulfamethoxazole at transcriptional level. Sulfamethoxazole (SMX) has attracted much attention due to its high probability of detection in the environment. Marine bacteria Vibrio diabolicus strain L2-2 has been proven to be able to transform SMX. In this study, the potential resistance and biotransformation mechanism of strain L2-2 to SMX, and key genes responses to SMX at environmental concentrations were researched. KEGG pathways were enriched by down-regulated genes including degradation of L-Leucine, L-Isoleucine, and fatty acid metabolism. Resistance mechanism could be concluded as the enhancement of membrane transport, antioxidation, response regulator, repair proteins, and ribosome protection. Biotransformation genes might involve in arylamine N-acetyltransferases (nat), cytochrome c553 (cyc-553) and acyl-CoA synthetase (acs). At the environmental concentration of SMX (0.1-10 μg/L), nat was not be activated, which meant the acetylation of SMX might not occur in the environment; however, cyc-553 was up-regulated under SMX stress of 1 μg/L, which indicated the hydroxylation of SMX could occur in the environment. Besides, the membrane transport and antioxidation of strain L2-2 could be activated under SMX stress of 10 μg/L. The results provided a better understanding of resistance and biotransformation of bacteria to SMX and would support related researches about the impacts of environmental antibiotics.202133429311
814970.9971Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction. The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in bacterial colonization.201526238382
903280.9971Inducible boron resistance via active efflux in Lysinibacillus and Enterococcus isolates from boron-contaminated agricultural soil. Phylogenetically diverse bacteria tolerate high boron concentrations while others require it for metabolic purposes despite the metalloid being toxic beyond a threshold. Boron resistance and plant growth promoting attributes of two bacterial strains, Lysinibacillus sp. OL1 and a novel Enterococcus sp. OL5, isolated from boron-fertilizer-amended cauliflower fields were investigated in this study. OL1 and OL5 grew efficiently in the presence of 210-230 mM boron, and resistance was found to be inducible by small amounts of the element: 5 to 50 mM boron pre-exposure progressively shortened the lag phase of growth in the presence of 200 mM boron. Intracellular boron accumulation was also found to be regulated by the level of pre-exposure: no induction or induction by small amounts led to higher levels of intracellular accumulation, whereas induction by high concentrations led to lower accumulation. These data, in the context of the strains' overall resistance towards 200 mM boron, indicated that induction by higher boron concentrations turned potential efflux mechanisms on, while resistance was eventually achieved by continuous cellular entry and exit of the ions. Involvement of solute efflux in boron resistance was corroborated by the genome content of the isolates (genes encoding proteins of the ATP-binding cassette, major facilitator, small multidrug resistance, multi antimicrobial extrusion, and resistance-nodulation-cell division, family/superfamily). Bacteria such as OL1 and OL5, which resist boron via influx-efflux, potentially lower boron bioavailability, and therefore toxicity, for the soil microbiota at large. These bacteria, by virtue of their plant-growth-promoting attributes, can also be used as biofertilizers.202235037170
601890.9971Effect of Trehalose and Lactose Treatments on the Freeze-Drying Resistance of Lactic Acid Bacteria in High-Density Culture. Freeze-drying is a commonly used method in commercial preparations of lactic acid bacteria. However, some bacteria are killed during the freeze-drying process. To overcome this, trehalose and lactose are often used as protective agents. Moreover, high-density culture is an efficient way to grow bacterial strains but creates a hypertonic growth environment. We evaluated the effects of trehalose and lactose, as a primary carbon source or as an additive in fermentation, on the freeze-drying survival of Lactobacillus fermentum FXJCJ6-1, Lactobacillus brevis 173-1-2, and Lactobacillus reuteri CCFM1040. Our results showed that L. fermentum FXJCJ6-1 accumulated but did not use intracellular trehalose in a hypertonic environment, which enhanced its freeze-drying resistance. Furthermore, genes that could transport trehalose were identified in this bacterium. In addition, both the lactose addition and lactose culture improved the freeze-drying survival of the bacterium. Further studies revealed that the added lactose might exert its protective effect by attaching to the cell surface, whereas lactose culture acted by reducing extracellular polysaccharide production and promoting the binding of the protectant to the cell membrane. The different mechanisms of lactose and trehalose in enhancing the freeze-drying resistance of bacteria identified in this study will help to elucidate the anti-freeze-drying mechanisms of other sugars in subsequent investigations.202236677339
8742100.9971Effect of Bacteria and Bacterial Constituents on Recovery and Resistance of Tulane Virus. Noroviruses encounter numerous and diverse bacterial populations in the host and environment, but the impact of bacteria on norovirus transmission, infection, detection, and inactivation are not well understood. Tulane virus (TV), a human norovirus surrogate, was exposed to viable bacteria, bacterial metabolic products, and bacterial cell constituents and was evaluated for impact on viral recovery, propagation, and inactivation resistance, respectively. TV was incubated with common soil, intestinal, skin, and phyllosphere bacteria, and unbound viruses were recovered by centrifugation and filtration. TV recovery from various bacterial suspensions was not impeded, which suggests a lack of direct, stable binding between viruses and bacteria. The cell-free supernatant (CFS) of Bifidobacterium bifidum 35914, a bacterium that produces glycan-modifying enzymes, was evaluated for effect on the propagation of TV in LLC-MK2 cells. CFS did not limit TV propagation relative to TV absent of CFS. The impact of Escherichia coli O111:B4 lipopolysaccharide (LPS) and Bacillus subtilis peptidoglycan (PEP) on TV thermal and chlorine inactivation resistance was evaluated. PEP increased TV thermal and chlorine inactivation resistance compared with control TV in phosphate-buffered saline (PBS). TV suspended in PBS and LPS was reduced by more than 3.7 log at 60°C, whereas in PEP, TV reduction was approximately 2 log. Chlorine treatment (200 ppm) rendered TV undetectable (>3-log reduction) in PBS and LPS; however, TV was still detected in PEP, reduced by 2.9 log. Virus inactivation studies and food processing practices should account for potential impact of bacteria on viral resistance.202032221571
158110.9970Homology- and cross-resistance of Lactobacillus plantarum to acid and osmotic stress and the influence of induction conditions on its proliferation by RNA-Seq. In this study, homology- and cross-resistance of Lactobacillus plantarum L1 and Lactobacillus plantarum L2 to acid and osmotic stress were investigated. Meanwhile, its proliferation mechanism was demonstrated by transcriptomic analysis using RNA sequencing. We found that the homologous-resistance and cross-resistance of L. plantarum L1 and L. plantarum L2 increased after acid and osmotic induction treatment by lactic acid and sodium lactate solution in advance, and the survival rate of live bacteria was improved. In addition, the count of viable bacteria of L. plantarum L2 significantly increased cultivated at a pH 5.0 with a 15% sodium lactate sublethal treatment, compared with the control group. Further study revealed that genes related to membrane transport, amino acid metabolism, nucleotide metabolism, and cell growth were significantly upregulated. These findings will contribute to promote high-density cell culture of starter cultures production in the fermented food industry.202133945164
6782120.9970Ubiquitous nanocolloids suppress the conjugative transfer of plasmid-mediated antibiotic resistance in aqueous environment. Nanocolloids (Nc) are widespread in natural water environment, whereas the potential effects of Nc on dissemination of antibiotic resistance remain largely unknown. In this study, Nc collected from the Yellow River in Henan province was tested for its ability to influence the conjugative transfer of resistant plasmid in aqueous environment. The results revealed that the conjugative transfer of RP4 plasmid between Escherichia coli was down-regulated by 52%-91% upon exposure to 1-10 mg/L Nc and the reduction became constant when the dose became higher (20-200 mg/L). Despite the exposure of Nc activated the anti-oxidation and SOS response in bacteria through up-regulating genes involved in glutathione biosynthesis and DNA recombination, the inhibition on the synthesis and secretion of extracellular polysaccharide induced the prevention of cell-cell contact, leading to the reduction of plasmid transfer. This was evidenced by the decreased bacterial adhesion and lowered levels of genes and metabolites relevant to transmembrane transport and D-glucose phosphorylation, as clarified in phenotypic, transcriptomics and metabolomics analysis of E. coli. The significant down-regulation of glycolysis/gluconeogenesis and TCA cycle was associated with the shortage of ATP induced by Nc. The up-regulation of global regulatory genes (korA and trbA) and the reduction of plasmid genes (trfAp, trbBp, and traG) expression also contributed to the suppressed conjugation of RP4 plasmid. The obtained findings remind that the role of ubiquitous colloidal particles is nonnegligible when practically and comprehensively assessing the risk of antibiotic resistance in the environment.202438801878
8817130.9970Study on the estradiol degradation gene expression and resistance mechanism of Rhodococcus R-001 under low-temperature stress. Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17β-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.202438677604
7968140.9970Induced ciprofloxacin biotransformation and antibiotic-resistance genes control in sulfate-reducing microbial fuel cells: Strategy and mechanism. Ciprofloxacin-containing saline wastewater treatment gains increasing attentions, due to the problems of limited degradation and spreading risk of antibiotic-resistance genes (ARGs). Sulfate reduction is a cost-efficient technology for simultaneous sulfate and antibiotic removal. The microbial fuel cell enhances removal of antibiotics and reduces spreading risk of ARGs in effluents, however, the biotransformation of ciprofloxacin (CIP) in sulfate-reducing microbial fuel cell (SR-MFC) remains unclear. Thus, a SR-MFC is established in this study for treatment of CIP-containing saline wastewater, which achieves simultaneous removal of CIP (50.2%), sulfate (85.1%), and ARGs (17.0%). The Desulfovibrio sp. bacteria become dominant in free biomass (58.8%) and biofilm (73.6%) after CIP exposing, respectively. The CIP can be utilized in prior to lactate for sulfate reduction, while the energy production is initially contributed to sulfate reduction followed by sulfide oxidation. Notably, the expression of ARGs declines probably due to enhanced biotransformation and limited adsorption (2.6%) of CIP on biomass after CIP addition. Long-term exposure to CIP enriches the ARGs of antibiotic efflux pump, implying some CIP is pumped out from intracellular to extracellular. A novel degradation pathway attacking the N15 site in piperazine may be the major and environmental-friendly biotransformation reaction, where the enzyme of ammonia-lyase and acetyltransferase are involved in. To our best knowledge, this is the first report of the novel pathway in bacterial CIP degradation system, which is known as fungal CIP biotransformation pathway. This study provides insights for CIP biotransformation in SR-MFC, and the operational strategy for antibiotic-containing saline wastewater treatment with ARGs control.202540058044
6783150.9970Mechanism of earthworm coelomic fluid inhibits multidrug-resistant bacteria and blocks resistance transmission. Antibiotic resistance is a growing global health crisis, especially the spread of multi-drug resistance. In this study, the inhibitory effects of earthworm coelomic fluid (ECF) on multidrug-resistant bacteria (MRB) were investigated during employing vermicomposting to treat excess sludge generated from wastewater treatment. The results demonstrated that the ECF was able to inhibit, even completely decompose the MRB. Notably, when the ECF concentration reached 1.0 mg/mL, the intracellular reactive oxygen species (ROS) level increased by 46.7 %, while cell viability decreased by 55.2 % compared to the control, demonstrating that ECF exerts strong antibacterial activity by inducing oxidative stress and disrupting cellular homeostasis. Furthermore, ECF effectively degraded the DNA of MRB, with removal rates of aphA, KanR, and tetA reaching 51.8 %, 42.3 %, and 35.0 %, respectively, indicating its ability to eliminate resistance genes and hinder their potential transfer. Additionally, the upregulation of genes involved in signaling, DNA replication and repair, and energy metabolism pathways suggests a systemic stress response in MRB, further supporting the broad-spectrum inhibitory effects of ECF on bacterial viability and resistance maintenance. Taken together, these findings may open a door to naturally and ecologically combat antibiotic resistance in pollutants control in wastewater treatment.202540706790
6755160.9970Impact of lead (Pb(2+)) on the growth and biological activity of Serratia marcescens selected for wastewater treatment and identification of its zntR gene-a metal efflux regulator. Microorganisms isolated from contaminated areas play an important role in bioremediation processes. They promote heavy metal removal from the environment by adsorbing ions onto the cell wall surface, accumulating them inside the cells, or reducing, complexing, or precipitating these substances in the environment. Microorganism-based bioremediation processes can be highly efficient, low-cost and have low environmental impact. Thus, the present study aimed to select Pb(2+)-resistant bacteria and evaluate the growth rate, biological activity, and the presence of genes associated with metal resistance. Serratia marcescens CCMA 1010, that was previously isolated from coffee processing wastewater, was selected since was able to growth in Pb(2+) concentrations of up to 4.0 mM. The growth rate and generation time did not differ from those of the control (without Pb(2+)), although biological activity decreased in the first hour of exposure to these ions and stabilized after this period. The presence of the zntR, zntA and pbrA genes was analysed, and only zntR was detected. The zntR gene encodes a protein responsible for regulating the production of ZntA, a transmembrane protein that facilitates Pb(2+) extrusion out of the cell. S. marcescens CCMA 1010 demonstrated a potential for use as bioindicator that has potential to be used in bioremediation processes due to its resistance to high concentrations of Pb(2+), ability to grow until 24 h of exposure, and possession of a gene that indicates the existence of mechanisms associated with resistance to lead (Pb(2+)).202336752862
8522170.9970Electrochemical disinfection may increase the spread of antibiotic resistance genes by promoting conjugal plasmid transfer. Current in the milliampere range can be used for electrochemical inactivation of bacteria. Yet, bacteria-including antibiotic resistant bacteria (ARB) may be subjected to sublethal conditions due to imperfect mixing or energy savings measures during electrochemical disinfection. It is not known whether such sublethal current intensities have the potential to stimulate plasmid transfer from ARB. In this study, conjugal transfer of plasmid pKJK5 was investigated between Pseudomonas putida strains under conditions reflecting electrochemical disinfection. Although the abundance of culturable and membrane-intact donor and recipient cells decreased with applied current (0-60 mA), both transconjugant density and transconjugant frequency increased. Both active chlorine and superoxide radicals were generated electrolytically, and ROS generation was induced. In addition, we detected significant over expression of a core oxidative stress defense gene (ahpCF) with current. Expression of selected conjugation related genes (traE, traI, trbJ, and trbL) also significantly correlated with current intensity. ROS accumulation, SOS response and subsequent derepression of conjugation are therefore the plausible consequence of sublethal current exposure. These findings suggest that sublethal intensities of current can enhance conjugal plasmid transfer, and that it is essential that conditions of electrochemical disinfection (applied voltage, current density, time and mixing) are carefully controlled to avoid conjugal ARG transmission.202336328265
7960180.9970Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(II) stress. An activated sludge sequencing batch reactor (SBR) was used to treat divalent cadmium (Cd(II)) wastewater for 60 d to investigate the overall treatment performance, evolution of the bacterial community, and abundance of the Cd(II) resistance gene CzcA and shifts in its potential host bacteria. During stable operation with a Cd(II) concentration of 20 mg/L, the average removal efficiencies of Cd(II) and chemical oxygen demand (COD) were more than 85% and that of total phosphorus was greater than 70%, while the total nitrogen (TN) was only about 45%. The protein (PN) content in the extracellular polymeric substances (EPS) increased significantly after Cd(II) addition, while polysaccharides displayed a decreasing trend (p < 0.05), indicating that EPS prefer to release PN to adsorb Cd(II) and protect bacteria from damage. Three-dimensional fluorescence spectral analysis showed that fulvic acid-like substances were the most abundant chemical components of EPS. The addition of Cd(II) adversely affected most denitrifying bacteria (p < 0.05), which is consistent with the low TN removal. In addition, quantitative polymerase chain reaction analysis revealed that CzcA gene abundance decreased as the Cd(II) concentration increased, possibly because expression of the CzcA gene was inhibited by Cd(II) stress. The majority of CzcA gene sequences were carried by Pseudomonas, making it the dominant genus among Cd(II)-resistant bacteria.201931514000
8682190.9970Role of manganese superoxide dismutase (Mn-SOD) against Cr(III)-induced toxicity in bacteria. The toxicity of Cr(VI) was widely investigated, but the defense mechanism against Cr(III) in bacteria are seldom reported. Here, we found that Cr(III) inhibited bacterial growth and induced reactive oxygen species (ROS). After exposure to Cr(III), loss of sodA not only led to the excessive generation of ROS, but also enhanced the level of lipid peroxidation and reduced the GSH level, indicating that the deficiency of Mn-SOD decreased the bacterial resistance ability against Cr(III). The adverse effects of oxidative stress caused by Cr(III) could be recovered by the rescue of Mn-SOD in the sodA-deficient strain. Besides the oxidative stress, Cr(III) could cause the bacterial morphology variation, which was distinct between the wild-type and the sodA-deficient strains due to the differential expressions of Z-ring division genes. Moreover, Mn-SOD might prevent Cr(III) from oxidation on the bacterial surface by combining with Cr(III). Taken together, our results indicated that the Mn-SOD played a vital role in regulating the stress resistance, expression of cell division-related genes, bacterial morphology, and chemistry valence state of Cr. Our findings firstly provided a more in-depth understanding of Cr(III) toxicity and bacterial defense mechanism against Cr(III).202132781281