Housefly (Musca domestica) and Blow Fly (Protophormia terraenovae) as Vectors of Bacteria Carrying Colistin Resistance Genes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
87301.0000Housefly (Musca domestica) and Blow Fly (Protophormia terraenovae) as Vectors of Bacteria Carrying Colistin Resistance Genes. Flies have the capacity to transfer pathogens between different environments, acting as one of the most important vectors of human diseases worldwide. In this study, we trapped flies on a university campus and tested them for mobile resistance genes against colistin, a last-resort antibiotic in human medicine for treating clinical infections caused by multidrug-resistant Gram-negative bacteria. Quantitative PCR assays we developed showed that 34.1% of Musca domestica (86/252) and 51.1% of Protophormia terraenovae (23/45) isolates were positive for the mcr-1 gene, 1.2% of M. domestica (3/252) and 2.2% of P. terraenovae (2.2%, 1/45) isolates were positive for mcr-2, and 5.2% of M. domestica (13/252) and 44.4% of P. terraenovae (20/45) isolates were positive for mcr-3 Overall, 4.8% (9/189) of bacteria isolated from the flies were positive for the mcr-1 gene (Escherichia coli: 8.3%, 4/48; Enterobacter cloacae: 12.5%, 1/8; Providencia alcalifaciens: 11.8%, 2/17; Providencia stuartii: 4.9%, 2/41), while none were positive for mcr-2 and mcr-3 Four mcr-1-positive isolates (two P. stuartii and two P. alcalifaciens) from blow flies trapped near a dumpster had a MIC for colistin above 4 mg/ml. This study reports mcr-1 carriage in Providencia spp. and detection of mcr-2 and mcr-3 after their initial identification in Belgium and China, respectively. This study suggests that flies might contribute significantly to the dissemination of bacteria, carrying these genes into a large variety of ecological niches. Further studies are warranted to explore the roles that flies might play in the spread of colistin resistance genes.IMPORTANCE Antimicrobial resistance is recognized as one of the most serious global threats to human health. An option for treatment of the Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) bacteria with multiple drug resistance was the reintroduction of the older antibiotic colistin. However, a mobile colistin resistance gene (mcr-1) has recently been found to occur widely; very recently, two other colistin resistance genes (mcr-2 and mcr-3) have been identified in Belgium and China, respectively. In this study, we report the presence of colistin resistance genes in flies. This study also reports the carriage of colistin resistance genes in the genus Providencia and detection of mcr-2 and mcr-3 after their initial identification. This study will stimulate more in-depth studies to fully elucidate the transmission mechanisms of the colistin resistance genes and their interaction.201829030447
87710.9999Drug resistance analysis of three types of avian-origin carbapenem-resistant Enterobacteriaceae in Shandong Province, China. Animal-derived Enterobacteriaceae bacteria such as Escherichia coli (E. coli), Proteus mirabilis (P. mirabilis), and Klebsiella pneumoniae (K. pneumoniae) are important food-borne zoonotic bacilli that exist widely in the broiler-breeding industry. Although carbapenem antibiotics are considered to be the last line of defense against multidrug-resistant bacteria, carbapenem-resistant Enterobacteriaceae (CRE) break through them. In our study, we therefore, examined the prevalence of CRE and characteristics of antimicrobial resistance in 6 conventional broiler-fattening farms in Shandong Province, China. Our study revealed isolation rates of 3.57% (6/168) for carbapenem-resistant E. coli, 10% (5/50) for carbapenem-resistant P. mirabilis, and 3.03% (1/33) for carbapenem-resistant K. pneumoniae. All 12 CRE bacterial strains showed varying degrees of resistance to 27 antibiotics in 8 classes and were multidrug-resistant. The rate of the strains containing bla(NDM) genes, at 91.67% (11/12), was especially high. Among other results, the carrying rate of integrons in CRE bacteria was 91.67% (11/12), and 2 strains carried both class I and class II integrons, which accelerated the lateral transmission of resistant bacteria. Our first-ever finding of the 3 CRE bacteria E. coli, P. mirabilis, and K. pneumoniae on the same broiler farm suggests that poultry-derived CRE strains may pose a risk to humans. Moreover, our findings from surveillance can inform current understandings of the prevalence and characteristics of multidrug-resistant CRE in Shandong Province and, in turn, help to curb threats to food safety and public health and better prevent and control infectious zoonotic diseases.202336682131
89620.9998Retrospective Screening and Analysis of mcr-1 and bla (NDM) in Gram-Negative Bacteria in China, 2010-2019. Currently, Gram-negative bacteria have developed multidrug and broad-spectrum drug resistance, and the numbers of species and strains carrying mcr or bla (NDM) genes are increasing. In this study, mcr-1 and bla (NDM) distribution of 12,858 Gram-negative bacteria isolated from wildlife, patients, livestock, poultry and environment in 14 provinces of China from 2010 to 2019 and the antibiotics resistance in regard to polymyxins (polymyxin B and colistin) and carbapenems of positive strains were investigated. A total of 70 strains of 10 species carried the mcr-1 gene, positive rates of patients, livestock and poultry, and environmental strains were 0.62% (36/5,828), 4.07% (29/712), 5.43% (5/92), respectively. Six strains of 3 species carrying the bla (NDM) gene all came from patients 0.10% (6/5,828). Two new mcr-1 gene variants (GenBank: MK965883, MK965884) were identified, one of which contains premature stop codon. The drug susceptibility results showed that all mcr-1 carriers were sensitive to carbapenems, among which, 66 strains were resistant and 4 were sensitive to polymyxins. The strains with the bla (NDM) gene had different degrees of resistance to carbapenems and were sensitive to polymyxins. The findings that species carrying mcr-1 or bla (NDM) genes were limited and mostly normal flora of opportunistic or low pathogenic organisms indicated that transfer of mcr-1 and bla (NDM) genes between bacteria was relatively limited in China. The none detection among wildlife compared with other sources supports the speculation that the emergence of and increase in polymyxins and carbapenem-resistant strains was mainly related to the selective pressure of antibiotics.202032117144
86930.9998The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain. The heterogenicity of antimicrobial resistance genes described in clinically significant bacterial isolates and their potential role in reducing the efficacy of classically effective antibiotics pose a major challenge for global healthcare, especially in infections caused by Gram-negative bacteria. We analyzed 112 multidrug-resistant (MDR) isolates from clinical samples in order to detect high resistance profiles, both phenotypically and genotypically, among four Gram-negative genera (Acinetobacter, Escherichia, Klebsiella, and Pseudomonas). We found that 9.8% of the total selected isolates were classified as extensively drug-resistant (XDR) (six isolates identified as A. baumannii and five among P. pneumoniae isolates). All other isolates were classified as MDR. Almost 100% of the isolates showed positive results for bla(OXA-23) and bla(NDM-1) genes among the A. baumannii samples, one resistance gene (bla(CTX-M)) among E. coli, and two genetic determinants (bla(CTX-M) and aac(6')-Ib) among Klebsiella. In contrast, P. aeruginosa showed just one high-frequency antibiotic resistance gene (dfrA), which was present in 68.42% of the isolates studied. We also describe positive associations between ampicillin and cefotaxime resistance in A. baumannii and the presence of bla(VEB) and bla(GES) genes, as well as between the aztreonam resistance phenotype and the presence of bla(GES) gene in E. coli. These data may be useful in achieving a better control of infection strategies and antibiotic management in clinical scenarios where these multidrug-resistant Gram-negative pathogens cause higher morbidity and mortality.202438786157
87440.9998Prevalence of Carbapenem Resistance Genes among Acinetobacter baumannii Isolated from a Teaching Hospital in Taiwan. The problem of antibiotic-resistant strains has become a global public issue; antibiotic resistance not only limits the choice of treatments but also increases morbidity, mortality and treatment costs. The multi-drug resistant Acinetobacter baumannii is occurring simultaneously in hospitals and has become a major public health issue worldwide. Although many medical units have begun to control the use of antibiotics and paid attention to the issue of drug resistance, understanding the transmission pathways of clinical drug-resistant bacteria and drug-resistant mechanisms can be effective in real-time control and prevent the outbreak of antibiotic-resistant pathogens. In this study, a total of 154 isolates of Acinetobacter baumannii obtained from Chia-Yi Christian Hospital in Taiwan were collected for specific resistance genotyping analysis. Ten genes related to drug resistance, including blaOXA-51-like, blaOXA-23-like, blaOXA-58-like, blaOXA-24-like, blaOXA-143-like, tnpA, ISAba1, blaPER-1, blaNDM and blaADC, and the repetitive element (ERIC2) were selected for genotyping analysis. The results revealed that 135 A. baumannii isolates (87.6%) carried the blaOXA-51-like gene, 4.5% of the isolates harbored the blaOXA-23-like gene, and 3.2% of the isolates carried the blaOXA-58-like gene. However, neither the blaOXA-24-like nor blaOXA-143-like genes were detected in the isolates. Analysis of ESBL-producing strains revealed that blaNDM was not found in the test strains, but 38.3% of the test isolates carried blaPER-1. In addition, blaADC, tnpA and ISAba1genes were found in 64.9%, 74% and 93% of the isolates, respectively. Among the carbapenem-resistant strains of A. baumannii, 68% of the isolates presenting a higher antibiotic resistance carried both tnpA and ISAba1 genes. Analysis of the relationship between their phenotypes (antibiotic resistant and biofilm formation) and genotypes (antibiotic-resistant genes and biofilm-related genes) studied indicated that the bap, ompA, ISAba1and blaOXA-51 genes influenced biofilm formation and antibiotic resistance patterns based on the statistical results of a hierarchical clustering dendrogram. The analysis of the antibiotic-resistant mechanism provides valuable information for the screening, identification, diagnosis, treatment and control of clinical antibiotic-resistant pathogens, and is an important reference pointer to prevent strains from producing resistance.202337760654
167950.9998Analysis of ESKAPE pathogens in clinical isolates in a tertiary care hospital in China from 2018 to 2023. The widespread use of antimicrobial agents correlated with the increasing incidence of nosocomial infections and bacterial antibiotic resistance. These have become major challenges in the prevention and control of hospital-acquired infections worldwide. The aims of this study were to analyze the distribution and characteristics of ESKAPE pathogenic bacteria and their antibiotic resistance profile among clinical isolates from a tertiary hospital in China from 2018 to 2023. The results showed that a total of 20,472 non-duplicated pathogenic bacteria were isolated from clinical specimens in this hospital between 2018 and 2023, of which the top five pathogenic bacteria were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii. In case of E. coli the main detected resistance genes were blaCTX-M, blaTEM and blaOXA. K. pneumoniae mainly carried blaOXA, blaKPC and blaNDM genes. P. aeruginosa was mainly positive for blaOXA, AmpC type beta-lactamases and blaVIM genes. A. baumannii mainly carried ArmA, blaTEM and cas3 genes. S. aureus was mainly positive for mecA, erm(C) and erm(A) genes. In this study, we have found that the antibiotic resistance of common pathogens from clinical isolates in a tertiary hospital in China in the past 6 years is severe, and A. baumannii was particularly a prominent pathogen. There is an urgent need to strengthen the prevention and control of nosocomial infections and antimicrobial drug management in order to curb the spread of multidrug-resistant bacteria.202540522743
162860.9998Low Level of Colistin Resistance and mcr Genes Presence in Salmonella spp.: Evaluation of Isolates Collected between 2000 and 2020 from Animals and Environment. Salmonellosis is one of the most important zoonoses in Europe and the world. Human infection may evolve in severe clinical diseases, with the need for hospitalization and antimicrobial treatment. Colistin is now considered an important antimicrobial to treat infections from multidrug- resistant Gram-negative bacteria, but the spreading of mobile colistin-resistance (mcr) genes has limited this option. We aimed to evaluate colistin minimum inhibitory concentration and the presence of mcr (mcr-1 to mcr-9) genes in 236 Salmonella isolates previously collected from different animals and the environment between 2000 and 2020. Overall, 17.79% of isolates were resistant to colistin; no differences were observed in relation to years of isolation (2000-2005, 2009-2014, and 2015-2020), Salmonella enterica subspecies (enterica, salamae, diarizonae, and houtenae), origin of samples (domestic animals, wildlife, and environment), or animal category (birds, mammals, and reptiles); only recently isolated strains from houseflies showed the most resistance. Few isolates (5.93%) scored positive for mcr genes, in particular for mcr-1, mcr-2, mcr-4, mcr-6, and mcr-8; furthermore, only 2.54% of isolates were mcr-positive and colistin-resistant. Detected resistance to colistin was equally distributed among all examined Salmonella isolates and not always related to the presence of mcr genes.202235203874
170970.9998High prevalence of bla(VIM-1) gene in bacteria from Brazilian soil. This study investigated bacteria from soil samples to (i) determine the main bacterial genera and species having resistance to carbapenem and other β-lactams and (ii) establish if the mechanism of resistance was due to the production of metallo-β-lactamases. The isolates were characterized by PCR for metallo-β-lactamases and integrons, by antimicrobial susceptibility testing, and by sequencing. The antimicrobial profile of 40 imipenem-resistant Gram-positive soil isolates from all Brazilian regions demonstrated that 31 (77.5%) of them were multidrug resistant. Among the 40 isolates, 19 presented the bla(VIM) gene and class 1 integrons by PCR. Six of the 19 isolates were identified as Paenibacillus sp., 12 as Bacillus sp., and just 1 was classified as Staphylococcus sp., by sequencing of the 16S rRNA gene. These results suggest that bacteria from soil can act as a source of bla(VIM-1) genes, representing a threat to public health.201627392282
189980.9998Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq. BACKGROUND: Gram-negative multidrug-resistant (MDR) bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38) and randomly selected non-MDR counterparts (n = 41) isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3) plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01). Various large plasmids (~52 to 100 kb) from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA), β-lactam (bla(TEM1), bla(AMPC), bla(CTX-M-15), bla(OXA-1), bla(VIM-2) and bla(SHV)), sulfamethoxazole/trimethoprim (sul/dfr), tetracycline (tet) and chloramphenicol (cat) resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N) were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary relationship with other parts of world. The large plasmids, carrying resistance genes and transfer-associated genes, may be potential factors for regional dissemination of antibiotic resistance.201222808141
87990.9998Detection of New Delhi metallo-beta-lactamase enzyme gene bla (NDM-1) associated with the Int-1 gene in Gram-negative bacteria collected from the effluent treatment plant of a tuberculosis care hospital in Delhi, India. BACKGROUND: Organisms possessing the bla (NDM-1) gene (responsible for carbapenem resistance) with a class-1 integron can acquire many other antibiotic resistance genes from the community sewage pool and become multidrug-resistant superbugs. In this regard, hospital sewage, which contains a large quantity of residual antibiotics, metals and disinfectants, is being recognized as a significant cause of antimicrobial resistance (AMR) origination and spread across the major centres of the world and is thus routinely investigated as a marker for tracing the origin of drug resistance. Therefore, in this study, an attempt has been made to identify and characterize the carbapenem-resistant microbes associated with integron genes amongst the organisms isolated from the effluent treatment plant (ETP) installed in a tertiary respiratory care hospital in Delhi, India. METHODS: One hundred and thirty-eight organisms belonging to Escherichia , Klebsiella , Pseudomonas and Acinetobacter spp. were collected from the incoming and outgoing sewage lines of the ETP. Carbapenem sensitivity and characterization was performed by the imipenem and imipenem-EDTA disc diffusion method. Later DNA extraction and PCR steps were performed for the Int-1 and bla (NDM-1) genes. RESULTS: Of the 138 organisms, 86 (62.3 %) were imipenem-resistant (P<0.05). One hundred and twenty-four (89.9 %) organisms had one or both of the genes. Overall, the bla (NDM-1) gene (genotypic resistance) was present in 71 % (98/138) of organisms. 53.6 % (74/138) organisms were double gene-positive (bla (NDM-1) + Int-1), of which 40 were producing the metallo-beta-lactamase enzyme, making up almost 28.9 % (40/138) of the collected organisms. CONCLUSION: The current study strengthens the hypothesis that Carbapenem resistant organisms are in a high-circulation burden through the human gut and hospital ETPs are providing an environment for resistance origination and amplification.202032974589
1702100.9998Molecular Epidemiology and Antimicrobial Resistance of Outbreaks of Klebsiella pneumoniae Clinical Mastitis in Chinese Dairy Farms. Klebsiella pneumoniae is an opportunistic pathogen that causes serious infections in humans and animals. However, the availability of epidemiological information on clinical mastitis due to K. pneumoniae is limited. To acquire new information regarding K. pneumoniae mastitis, data were mined about K. pneumoniae strains on dairy cattle farms (farms A to H) in 7 Chinese provinces in 2021. Hypermucoviscous strains of K. pneumoniae were obtained by the string test. MICs of antimicrobial agents were determined via the broth microdilution method. Ten antimicrobial resistance genes and virulence genes were identified by PCR. The prevalence of K. pneumoniae was 35.91% (65/181), and 100% of the bacteria were sensitive to enrofloxacin. Nine antimicrobial resistance genes and virulence genes were identified and compared among farms. The hypermucoviscous phenotype was present in 94.44% of isolates from farm B, which may be a function of the rmpA virulence gene. Based on these data, the multidrug-resistant strains SD-14 and HB-21 were chosen and sequenced. Genotypes were assayed for K. pneumoniae isolates from different countries and different hosts using multilocus sequence typing (MLST). Ninety-four sequence types (STs) were found, and 6 STs present a risk for spreading in specific regions. Interestingly, ST43 was observed in bovine isolates for the first time. Our study partially reveals the current distribution characteristics of bovine K. pneumoniae in China and may provide a theoretical basis for the prevention and treatment of bovine K. pneumoniae mastitis. IMPORTANCE K. pneumonia is ubiquitous in nature and infects a wide range of hosts, including animals, and humans. It is one of the leading inducements of clinical mastitis (CM) in dairy cows, a prevalent and costly disease that is predominantly associated with bacterial infection. In general, CM caused by Gram-negative bacteria is more difficult to cure than that associated with Gram-positive pathogens, with an average cost per case of 211.03 U.S. dollars (USD) for Gram-negative bacterial infections compared with 133.73 USD for Gram-positive bacterial CM cases. After Escherichia coli, K. pneumoniae is the second most common Gram-negative cause of bovine CM, but it is the most detrimental in terms of decreased milk yield, discarded milk, treatment costs, death, and culling. In view of the economic implications of K. pneumoniae infection in dairy farming, research into population structure and antibiotic resistance is particularly important.202236374018
1629110.9998Molecular detection of colistin resistance genes (mcr-1 to mcr-5) in human vaginal swabs. OBJECTIVE: Colistin resistance has emerged worldwide and has been threatening the efficacy of one of the last-resort antimicrobials used for treatment of multidrug resistant Gram-negative bacteria. While five colistin resistance genes (mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5) have been described, few data are available on the prevalence of mcr-genes other than mcr-1 in human samples. RESULTS: In this study, the presence of five currently described colistin resistance genes (mcr 1-5) in vaginal swabs of women undergoing infertility evaluation was reported. Most samples were found to be positive for the mcr-4 (12.7%), followed by two for the mcr-2 (1.5%), two for the mcr-3 (1.5%), one for the mcr-1 (0.7%), and one for the mcr-5 (0.7%). Phylogenetic comparison demonstrated identical (mcr-1, mcr-2, mcr-3, mcr-5) or similar (mcr-4) nucleotide sequences of human samples and those of animal origins from the same city, suggesting the potential transmission of mcr genes from animals to humans. This is the first detection of mcr-2, mcr-4 and mcr-5 genes in human samples, and warrants further research to determine the spread of the mcr genes and elucidate the full epidemiology of colistin resistance genes in humans.201829463301
1685120.9998Molecular epidemiology and mechanisms of carbapenem and colistin resistance in Klebsiella and other Enterobacterales from treated wastewater in Croatia. Among the most problematic bacteria with clinical relevance are the carbapenem-resistant Enterobacterales (CRE), as there are very limited options for their treatment. Treated wastewater can be a route for the release of these bacteria into the environment and the population. The aim of this study was to isolate CRE from treated wastewater from the Zagreb wastewater treatment plant and to determine their phenotypic and genomic characteristics. A total of 200 suspected CRE were isolated, 148 of which were confirmed as Enterobacterales by MALDI-TOF MS. The predominant species was Klebsiella spp. (n = 47), followed by Citrobacter spp. (n = 40) and Enterobacter cloacae complex (cplx.) (n = 35). All 148 isolates were carbapenemase producers with a multidrug-resistant phenotype. Using multi-locus sequence typing and whole-genome sequencing (WGS), 18 different sequence types were identified among these isolates, 14 of which were associated with human-associated clones. The virulence gene analysis of the sequenced Klebsiella isolates (n = 7) revealed their potential pathogenicity. PCR and WGS showed that the most frequent carbapenemase genes in K. pneumoniae were bla(OXA-48) and bla(NDM-1), which frequently occurred together, while bla(KPC-2) together with bla(NDM-1) was mainly detected in K. oxytoca, E. cloacae cplx. and Citrobacter spp. Colistin resistance was observed in 40% of Klebsiella and 57% of Enterobacter isolates. Underlying mechanisms identified by WGS include known and potentially novel intrinsic mechanisms (point mutations in the pmrA/B, phoP/Q, mgrB and crrB genes) and acquired mechanisms (mcr-4.3 gene). The mcr-4.3 gene was identified for the first time in K. pneumoniae and is probably located on the conjugative IncHI1B plasmid. In addition, WGS analysis of 13 isolates revealed various virulence genes and resistance genes to other clinically relevant antibiotics as well as different plasmids possibly associated with carbapenemase genes. Our study demonstrates the important role that treated municipal wastewater plays in harboring and spreading enterobacterial pathogens that are resistant to last-resort antibiotics.202438479059
1630130.9998One Health study of mobile colistin resistance (mcr) in Salmonella enterica in Canada, 2017-2022. Colistin is a last-resort treatment for highly drug-resistant bacterial infections. Of 47,184 Salmonella isolates collected from 2017 to 2022 in Canada from human and animal/food sources, mobile colistin resistance (mcr) variants conferring colistin resistance were detected exclusively in humans (n = 15). These variants were mcr-1.1 (n = 7), mcr-3.1 (n = 5), mcr-3.2 (n = 2), and mcr-1.2 (n = 1). The most common mcr-containing serotypes were I 4,[5],12:i:- (n = 8) and Typhimurium (n = 3). The proportion of Salmonella carrying mcr genes remains low in Canada (0.03%). IMPORTANCE: Colistin can be used in combination with other drugs as salvage therapy for extensively drug-resistant infections. If mobile colistin resistance (mcr) becomes widely disseminated in Enterobacterales, colistin will no longer be an option for salvage therapy in otherwise untreatable infections. While colistin is not commonly used to treat human Salmonella infections, Salmonella represents an important reservoir of mcr genes that may be transmitted to other gram-negative bacteria. Our aim was to determine the occurrence of mcr genes in Salmonella isolates collected from humans, food animals, and retail meats in Canada.202540387317
878140.9998Environmental Spread of New Delhi Metallo-β-Lactamase-1-Producing Multidrug-Resistant Bacteria in Dhaka, Bangladesh. Resistance to carbapenem antibiotics through the production of New Delhi metallo-β-lactamase-1 (NDM-1) constitutes an emerging challenge in the treatment of bacterial infections. To monitor the possible source of the spread of these organisms in Dhaka, Bangladesh, we conducted a comparative analysis of wastewater samples from hospital-adjacent areas (HAR) and from community areas (COM), as well as public tap water samples, for the occurrence and characteristics of NDM-1-producing bacteria. Of 72 HAR samples tested, 51 (71%) samples were positive for NDM-1-producing bacteria, as evidenced by phenotypic tests and the presence of the bla(NDM-1) gene, compared to 5 of 41 (12.1%) samples from COM samples (P < 0.001). All tap water samples were negative for NDM-1-producing bacteria. Klebsiella pneumoniae (44%) was the predominant bacterial species among bla(NDM-1)-positive isolates, followed by Escherichia coli (29%), Acinetobacter spp. (15%), and Enterobacter spp. (9%). These bacteria were also positive for one or more other antibiotic resistance genes, including bla(CTX-M-1) (80%), bla(CTX-M-15) (63%), bla(TEM) (76%), bla(SHV) (33%), bla(CMY-2) (16%), bla(OXA-48-like) (2%), bla(OXA-1) (53%), and bla(OXA-47-like) (60%) genes. Around 40% of the isolates contained a qnr gene, while 50% had 16S rRNA methylase genes. The majority of isolates hosted multiple plasmids, and plasmids of 30 to 50 MDa carrying bla(NDM-1) were self-transmissible. Our results highlight a number of issues related to the characteristics and source of spread of multidrug-resistant bacteria as a potential public health threat. In view of the existing practice of discharging untreated liquid waste into the environment, hospitals in Dhaka city contribute to the potential dissemination of NDM-1-producing bacteria into the community.IMPORTANCE Infections caused by carbapenemase-producing Enterobacteriaceae are extremely difficult to manage due to their marked resistance to a wide range of antibiotics. NDM-1 is the most recently described carbapenemase, and the bla(NDM-1) gene, which encodes NDM-1, is located on self-transmissible plasmids that also carry a considerable number of other antibiotic resistance genes. The present study shows a high prevalence of NDM-1-producing organisms in the wastewater samples from hospital-adjacent areas as a potential source for the spread of these organisms to community areas in Dhaka, Bangladesh. The study also examines the characteristics of the isolates and their potential to horizontally transmit the resistance determinants. The significance of our research is in identifying the mode of spread of multiple-antibiotic-resistant organisms, which will allow the development of containment measures, leading to broader impacts in reducing their spread to the community.201728526792
1965150.9998Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Florfenicol is a promising antibiotic for use in companion animals, especially as an alternative agent for infections caused by MDR bacteria. However, the emergence of resistant strains could hinder this potential. In this study, florfenicol resistance was investigated in a total of 246 MDR Enterobacterales obtained from canine and feline clinical samples in Greece over a two-year period (October 2020 to December 2022); a total of 44 (17,9%) florfenicol-resistant strains were recognized and further investigated. Most of these isolates originated from urine (41.9%) and soft tissue (37.2%) samples; E. coli (n = 14) and Enterobacter cloacae (n = 12) were the predominant species. The strains were examined for the presence of specific florfenicol-related resistance genes floR and cfr. In the majority of the isolates (31/44, 70.5%), the floR gene was detected, whereas none carried cfr. This finding creates concerns of co-acquisition of plasmid-mediated florfenicol-specific ARGs through horizontal transfer, along with several other resistance genes. The florfenicol resistance rates in MDR isolates seem relatively low but considerable for a second-line antibiotic; thus, in order to evaluate the potential of florfenicol to constitute an alternative antibiotic in companion animals, continuous monitoring of antibiotic resistance profiles is needed in order to investigate the distribution of florfenicol resistance under pressure of administration of commonly used agents.202438393089
2303160.9998Patterns of Drug-Resistant Bacteria in a General Hospital, China, 2011-2016. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential.201931250593
1964170.9998Antimicrobial resistance of pet-derived bacteria in China, 2000-2020. With the rapid growth of the pet industry in China, bacterial infectious diseases in pets have increased, highlighting the need to monitor antimicrobial resistance (AMR) in pet-derived bacteria to improve the diagnosis and treatment. Before the establishment of the China Antimicrobial Resistance Surveillance Network for Pets (CARPet) in 2021, a comprehensive analysis of such data in China was lacking. Our review of 38 point-prevalence surveys conducted between 2000 and 2020 revealed increasing trends in AMR among pet-derived Escherichia coli, Klebsiella pneumoniae, Staphylococcus spp., Enterococcus spp., and other bacterial pathogens in China. Notable resistance to β-lactams and fluoroquinolones, which are largely used in both pets and livestock animals, was observed. For example, resistance rates for ampicillin and ciprofloxacin in E. coli frequently exceeded 50.0%, with up to 41.3% of the isolates producing extended-spectrum β-lactamases. The emergence of carbapenem-resistant K. pneumoniae and E. coli, carrying bla(NDM) and bla(OXA) genes, highlighted the need for vigilant monitoring. The detection rate of SCCmec (Staphylococcal Cassette Chromosome mec), a genetic element associated with methicillin resistance, in Staphylococcus pseudintermedius isolated from pets in China was found to be over 40.0%. The resistance rate of E. faecalis to vancomycin was 2.1% (5/223) in East China, which was higher than the detection rate of human-derived vancomycin-resistant Enterococcus (0.1%, 12/11,215). Establishing the national AMR surveillance network CARPet was crucial, focusing on representative cities, diverse clinical samples, and including both commonly used antimicrobial agents in veterinary practice and critically important antimicrobial agents for human medicine, such as carbapenems, tigecycline, and vancomycin.202540135877
1619180.9998Evidence of colistin resistance genes (mcr-1 and mcr-2) in wild birds and its public health implication in Egypt. BACKGROUND: Antimicrobial resistance has become one of the most severe global threats to human and veterinary Medicine. colistin is an effective therapeutic agent against multi-drug-resistant pathogens. However, the discovery of transferable plasmids that confer resistance to colistin (mcr-1) has led to challenges in medical science. This study describes the role of wild birds in the harbouring and environmental spread of colistin-resistant bacteria, which could pose a potential hazard to human and animal health. METHODS: In total, 140 faecal samples from wild birds (migratory and resident birds) were tested. Twenty surface water samples were collected from the area in which wild bird trapping was conducted, and 50 human stool samples were collected from individuals residing near the surface water sources and farm buildings. Isolation and identification of Enterobacteriaceae and Pseudomonas aeruginosa from the different samples were performed using conventional culture techniques and biochemical identification. PCR amplification of the mcr genes was performed in all positive isolates. Sequencing of mcr-1 genes from three randomly selected E. coli carrying mcr-1 isolates; wild birds, water and humans was performed. RESULT: The bacteriological examination of the samples showing isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and P. aeruginosa. The results of multiplex PCR of the mcr genes revealed that E. coli was the most prevalent gram-negative bacterium harbouring the mcr genes, whereas a low prevalence was observed for K. pneumoniae. The prevalence of mcr-1 in resident birds, migratory birds, water sources and humans were 10.4, 20,16.6 and 9.6% while the prevalence of mcr-2 were 1.4, 3.6, 11.1 and 9.6%, respectively. Sequencing of the mcr-1 gene from the three E. coli carrying mcr-1 isolates indicated a possible correlation between the wild bird and surface water isolates. CONCLUSION: The detection of mcr-1-positive bacteria in wild birds in Egypt indicates the possible environmental dissemination of this gene through bird activity. The impact of the interaction between domestic and wild animals on public health cannot be overlooked.201931827778
1686190.9998Resistome of carbapenem- and colistin-resistant Klebsiella pneumoniae clinical isolates. The emergence and dissemination of carbapenemases, bacterial enzymes able to inactivate most β-lactam antibiotics, in Enterobacteriaceae is of increasing concern. The concurrent spread of resistance against colistin, an antibiotic of last resort, further compounds this challenge further. Whole-genome sequencing (WGS) can play a significant role in the rapid and accurate detection/characterization of existing and emergent resistance determinants, an essential aspect of public health surveillance and response activities to combat the spread of antimicrobial resistant bacteria. In the current study, WGS data was used to characterize the genomic content of antimicrobial resistance genes, including those encoding carbapenemases, in 10 multidrug-resistant Klebsiella pneumoniae isolates from Pakistan. These clinical isolates represented five sequence types: ST11 (n = 3 isolates), ST14 (n = 3), ST15 (n = 1), ST101 (n = 2), and ST307 (n = 1). Resistance profiles against 25 clinically-relevant antimicrobials were determined by broth microdilution; resistant phenotypes were observed for at least 15 of the 25 antibiotics tested in all isolates except one. Specifically, 8/10 isolates were carbapenem-resistant and 7/10 isolates were colistin-resistant. The blaNDM-1 and blaOXA-48 carbapenemase genes were present in 7/10 and 5/10 isolates, respectively; including 2 isolates carrying both genes. No plasmid-mediated determinants for colistin resistance (e.g. mcr) were detected, but disruptions and mutations in chromosomal loci (i.e. mgrB and pmrB) previously reported to confer colistin resistance were observed. A blaOXA-48-carrying IncL/M-type plasmid was found in all blaOXA-48-positive isolates. The application of WGS to molecular epidemiology and surveillance studies, as exemplified here, will provide both a more complete understanding of the global distribution of MDR isolates and a robust surveillance tool useful for detecting emerging threats to public health.201829883490