Effects of Scutellaria baicalensis, Folium Artemisiae argyi, and Galla Chinensis on the protein expression and resistance genes of Exiguobacterium sp. in response to gentamicin. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
873401.0000Effects of Scutellaria baicalensis, Folium Artemisiae argyi, and Galla Chinensis on the protein expression and resistance genes of Exiguobacterium sp. in response to gentamicin. Currently, the issue of antibiotic resistance genes as emerging pollutants in the environment has attracted significant attention in the field of environmental pollution research. Moreover, plant-derived compounds has become a research hotspot due to its high efficiency and low toxicity in reversing microbial intracellular antibiotic resistance genes. However, there is little research on the impact of specific plant extracts on proteins and antibiotic resistance genes during the process of reversing antibiotic resistance genes. In this study, the phosphorus removal performance test, combined with protein Raman spectroscopy analysis and antibiotic resistance gene abundance detection methods, was employed to investigate the effects of Scutellaria baicalensis, Folium Artemisiae argyi, and Galla Chinensis on the phosphorus removal rate, intracellular protein binding sites, and antibiotic resistance gene abundance of Exiguobacterium sp. after exposure to gentamicin. The Raman spectroscopy test results revealed a shift in the protein peaks of Exiguobacterium sp., transitioning from the stable C = C = C = C, C = C, C = C = C structures found in drug-resistant Exiguobacterium sp. to unsaturated bonds of C, CH(2), olefinic unsaturation, and H bonds, similar to those of normal Exiguobacterium sp. Furthermore, the antibiotic resistance gene abundance test results indicated a significant reduction in the abundance of gentamicin resistance genes within the intracellular environment of Exiguobacterium sp. following treatment with these plant extracts. The potential roles of flavonoids in Scutellaria baicalensis and Folium Artemisiae argyi, and tannins in Galla Chinensis in reversing resistance were discussed.202540721471
789010.9979The control of red water occurrence and opportunistic pathogens risks in drinking water distribution systems: A review. Many problems in drinking water distribution systems (DWDSs) are caused by microbe, such as biofilm formation, biocorrosion and opportunistic pathogens growth. More iron release from corrosion scales may induce red water. Biofilm played great roles on the corrosion. The iron-oxidizing bacteria (IOB) promoted corrosion. However, when iron-reducing bacteria (IRB) and nitrate-reducing bacteria (NRB) became the main bacteria in biofilm, they could induce iron redox cycling in corrosion process. This process enhanced the precipitation of iron oxides and formation of more Fe(3)O(4) in corrosion scales, which inhibited corrosion effectively. Therefore, the IRB and NRB in the biofilm can reduce iron release and red water occurrence. Moreover, there are many opportunistic pathogens in biofilm of DWDSs. The opportunistic pathogens growth in DWDSs related to the bacterial community changes due to the effects of micropollutants. Micropollutants increased the number of bacteria with antibiotic resistance genes (ARGs). Furthermore, extracellular polymeric substances (EPS) production was increased by the antibiotic resistant bacteria, leading to greater bacterial aggregation and adsorption, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in DWDSs. Moreover, O(3)-biological activated carbon filtration-UV-Cl(2) treatment could be used to control the iron release, red water occurrence and opportunistic pathogens growth in DWDSs.202134593198
791420.9977Response of partial nitrification sludge to the single and combined stress of CuO nanoparticles and sulfamethoxazole antibiotic on microbial activity, community and resistance genes. Considering the inevitable release of antibiotics and nanoparticles (NPs) into the nitrogen containing wastewater, the combined impact of CuO NPs and sulfamethoxazole (SMX) antibiotic on partial nitrification (PN) process was investigated in four identical reactors. Results showed that the bioactivity of the aerobic ammonia-oxidizing bacteria (AOB) decreased by half after they were exposed to the combination of CuO NPs and SMX for short-term; however, there was no obvious variation in the bioactivity of AOB when they were exposed to either CuO NPs or SMX. During long-term exposure, the ammonia removal efficiency (ARE) of CuO NPs improved whereas that of SMX decreased, while the combination of CuO NPs and SMX significantly decreased ARE from 62.9% (in control) to 38.2% and had an unsatisfactory self-recovery performance. The combination of CuO NPs and SMX significantly changed the composition of microbial community, decreased the abundance of AOB, and significantly suppressed PN process. Reegarding the resistance genes, the CuO NPs-SMX combination did not improve the expression of copA, cusA, sul1 and sul2; however, it significantly induced the expression of sul3 and sulA.202032050397
852030.9977Antibiotics can alter the bacterial extracellular polymeric substances and surface properties affecting the cotransport of bacteria and antibiotics in porous media. Currently, studies on the environmental impact of antibiotics have focused on toxicity and resistance genes, and gaps exist in research on the effects of antibiotics entering the environment on bacterial surface properties and the synergistic transport of antibiotics and bacteria in porous media. To fill the gaps, we investigated the interactions between bacteria and antibiotics in synergistic transport in saturated porous media and the effects of media particle size, flow rate, and ionic concentration on this synergistic transport. This study revealed that although synergistic transport was complex, the mechanism of action was clear. Antibiotics could affect bacterial extracellular polymeric substances (EPS), thus altering their surface hydrophobicity and roughness, thereby affecting bacterial transport. The effects of antibiotics on bacterial transport were dominated by altering bacterial roughness. Antibiotics had a relatively high adsorption on bacteria, so bacterial transport directly affected antibiotic transport. The antibiotic concentrations below a certain threshold increased the bacterial EPS quality, and above the threshold decreased the bacterial EPS quality. This threshold was related to antibiotic toxicity and bacterial type. Bacterial surface hydrophobicity was determined by the combination of proteins and sugars in the EPS, and roughness was positively correlated with the EPS quality.202437748312
897340.9977Enhanced myco-synthesis of selenium and zinc oxide nanoparticles and evaluating their anticancer activities and role against antibiotic resistance genes in certain bacterial strains. BACKGROUND: In an array to check microbial resistance against generally used antibiotics, it is essential to create innovative and efficient antimicrobial agents. Therefore, nanoparticles (NPs) with their antimicrobial activities describe an effective solution. In this study, we synthesized Selenium nanoparticles (Se-NPs) and zinc oxide nanoparticles (ZnO-NPs) using Alternaria alternata fungus, then their characterization were evaluated using several techniques. RESULTS: We explored the potential of antimicrobial impact of Se-NPs and ZnO-NPs against negative and positive grams antibiotic resistance bacterial strains in combination with penicillin, Ceftriaxone and Cefipime. Moreover, antibiotic resistance gene expression was assessed after those treatments. The results demonstrated that Se-NPs and ZnO-NPs displayed antibacterial properties, while the expression of antibiotic resistance genes decreased when exposed to a combination of NPs and antibiotics. This suggests the presence of both synergistic and additive effects in these treatments. Furthermore, the cytotoxic effects of Se-NPs and ZnO-NPs were assessed, revealing their potent anticancer properties against MCF-7, A549, and HepG2 cancer cells and lower cytotoxic values for HFB-4 standard cell line. Ultimately, the production efficiency of both NPs was enhanced through gamma irradiation. CONCLUSIONS: According to the results, it seems that the green synthesis of Se-NPs and ZnO-NPs promotes environmental sustainability and cost-effective approach. This study provides insights into the development of new antibacterial and anticancer agents . The eco-friendly production of nanoparticles suggests also a sustainable approach to combating bacteria resistant to antibiotics.202541046259
761250.9977Sulfadiazine/ciprofloxacin promote opportunistic pathogens occurrence in bulk water of drinking water distribution systems. Effects of sulfadiazine and ciprofloxacin on the occurrence of free-living and particle-associated opportunistic pathogens in bulk water of simulated drinking water distribution systems (DWDSs) were investigated. It was found that sulfadiazine and ciprofloxacin greatly promoted the occurrence of opportunistic pathogens including Pseudomonas aeruginosa, Legionella pneumophila, Mycobacterium avium and its broader genus Mycobacterium spp., as well as the amoebae Acanthamoeba spp. and Hartmanella vermiformis, in bulk water of DWDSs. Moreover, sulfadiazine and ciprofloxacin exhibited much stronger combined effects on the increase of these opportunistic pathogens. Based on the analysis of the antibiotic resistance genes (ARGs) and extracellular polymeric substances (EPS), it was verified that EPS production was increased by the antibiotic resistant bacteria arising from the effects of sulfadiazine/ciprofloxacin. The combined effects of sulfadiazine and ciprofloxacin induced the greatest increase of EPS production in DWDSs. Furthermore, the increased EPS with higher contents of proteins and secondary structure β-sheet led to greater bacterial aggregation and adsorption. Meanwhile, large numbers of suspended particles were formed, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in bulk water of DWDSs with sulfadiazine/ciprofloxacin. Therefore, sulfadiazine and ciprofloxacin promoted the occurrence of particle-associated opportunistic pathogens in bulk water of DWDSs due to the role of EPS produced by the bacteria with ARGs.201829161575
678360.9977Mechanism of earthworm coelomic fluid inhibits multidrug-resistant bacteria and blocks resistance transmission. Antibiotic resistance is a growing global health crisis, especially the spread of multi-drug resistance. In this study, the inhibitory effects of earthworm coelomic fluid (ECF) on multidrug-resistant bacteria (MRB) were investigated during employing vermicomposting to treat excess sludge generated from wastewater treatment. The results demonstrated that the ECF was able to inhibit, even completely decompose the MRB. Notably, when the ECF concentration reached 1.0 mg/mL, the intracellular reactive oxygen species (ROS) level increased by 46.7 %, while cell viability decreased by 55.2 % compared to the control, demonstrating that ECF exerts strong antibacterial activity by inducing oxidative stress and disrupting cellular homeostasis. Furthermore, ECF effectively degraded the DNA of MRB, with removal rates of aphA, KanR, and tetA reaching 51.8 %, 42.3 %, and 35.0 %, respectively, indicating its ability to eliminate resistance genes and hinder their potential transfer. Additionally, the upregulation of genes involved in signaling, DNA replication and repair, and energy metabolism pathways suggests a systemic stress response in MRB, further supporting the broad-spectrum inhibitory effects of ECF on bacterial viability and resistance maintenance. Taken together, these findings may open a door to naturally and ecologically combat antibiotic resistance in pollutants control in wastewater treatment.202540706790
791270.9977Distinct effects of hypochlorite types on the reduction of antibiotic resistance genes during waste activated sludge fermentation: Insights of bacterial community, cellular activity, and genetic expression. The effectiveness of hypochlorites (NaClO and Ca(ClO)(2)) on the reduction of antibiotic resistance genes (ARGs) during waste activated sludge (WAS) fermentation was determined by the quantitative PCR. NaClO and Ca(ClO)(2) exhibited distinct effects on ARGs fates. Ca(ClO)(2) was effective in removing all investigated ARGs, and the efficiency was highly dose-dependent. Unexpectedly, the NaClO treatment attenuated ARGs with lower efficiency and even caused the propagation of certain ARGs (i.e., aadA1 and tetQ) at higher doses. The extracellular polymeric substances dissolution and membrane integrity suggested that unstable NaClO had acute effects on bacteria initially, while it was ineffective to further attenuate ARGs released from hosts due to the rapid consumption of oxidative ClO(-). Without lasting and strong oxidative stress, the microbial activities of tolerant ARGs hosts will partially recover and then contribute to the ARGs dissemination across genera. In contrast, solid-state Ca(ClO)(2) was slowly released and exhibited prolonged effects on bacteria by disrupting cell membranes and removing the susceptible ARGs released from hosts. Furthermore, bacterial taxa-ARG network analysis indicated that Ca(ClO)(2) reduced the abundance of potential hosts, and the metabolic pathway and gene expression related to ARGs propagation were significantly downregulated by Ca(ClO)(2), which contributed to efficient ARGs attenuation.202133265039
674580.9977Decreased Antibiotic Susceptibility in Pseudomonas aeruginosa Surviving UV Irradition. Given its excellent performance against the pathogens, UV disinfection has been applied broadly in different fields. However, only limited studies have comprehensively investigated the response of bacteria surviving UV irradiation to the environmental antibiotic stress. Here, we investigated the antibiotic susceptibility of Pseudomonas aeruginosa suffering from the UV irradiation. Our results revealed that UV exposure may decrease the susceptibility to tetracycline, ciprofloxacin, and polymyxin B in the survival P. aeruginosa. Mechanistically, UV exposure causes oxidative stress in P. aeruginosa and consequently induces dysregulation of genes contributed to the related antibiotic resistance genes. These results revealed that the insufficient ultraviolet radiation dose may result in the decreased antibiotic susceptibility in the pathogens, thus posing potential threats to the environment and human health.202133613479
758290.9977Anaerobic fermentation for hydrogen production and tetracycline degradation: Biodegradation mechanism and microbial community succession. The misuse and continues discharge of antibiotics can cause serious pollution, which is urgent to take steps to remit the environment pollution. In this study, anaerobic bacteria isolated from the aeration tank of a local sewage treatment plant were employed to investigate hydrogen production and tetracycline (TC) degradation during anaerobic fermentation. Results indicate that low concentrations of TC enhanced hydrogen production, increasing from 366 mL to a maximum of 480 mL. This increase is attributed to stimulated hydrolysis and acidogenesis, coupled with significant inhibition of homoacetogenesis. Furthermore, the removal of TC, facilitated by adsorption and biodegradation, exceeded 90 %. During the fermentation process, twenty-one by-products were identified, leading to the proposal of four potential degradation pathways. Analysis of the microbial community revealed shifts in diversity and a decrease in the abundance of hydrogen-producing bacteria, whereas bacteria harboring tetracycline resistance genes became more prevalent. This study provides a possibility to treat tetracycline-contaminated wastewater and to produce clean energy simultaneously by anaerobic fermentation.202439168318
8681100.9977The regulatory mechanism of Chryseobacterium sp. resistance mediated by montmorillonite upon cadmium stress. Cadmium (Cd) is a toxic heavy metal and its uptake by living organisms causes adverse effect, further resulting in cycle pollution of the biosphere. The specific regulatory mechanism between clays and microbes under Cd stress remains unclear. In this study, interface interactions among clays, microbes and Cd were confirmed. Comparative transcriptome was conducted to investigate how it regulated gene expression patterns of microbes (Chryseobacterium sp. WAL2), which exposed to a series of gradient concentrations of Cd (16, 32, 64 and 128 μg mL(-1)) for 12 d in the presence and absence of clay montmorillonite (Mt) (16 g L(-1)). Cd was highly enriched by the unique interface interactions between Mt and bacteria (67.6-82.1%), leading to a more hostile environment for bacterial cells. However, Mt ultimately enhanced bacterial resistance to Cd stress by stimulating the mechanism of bacterial resistance; namely: (i) Mt increased genes expression connected with ion transport, enhancing the uptake of Cd; (ii) Mt stimulated genes expression related to efflux pump and positively regulated cellular oxidative stress (e.g., glutathione) and Cd accumulation (e.g., cysteine) processes. Further, genes expression related to intracellular metabolic processes was enforced, which supplied a driving force and accelerated electron transfer; (iii) Mt improved genes expression involved in DNA replication and other biological processes (e.g., terpenoid backbone biosynthesis) to maintain bacterial vitality. Therefore, the study not only optimized a unique Cd resistance mechanism of Mt on Chryseobacterium sp., but also provided a novel insight for environmental mitigation of heavy metals from the perspective of molecular biology.202031546187
8508110.9977Phenolic compounds promote the horizontal transfer of antibiotic resistance genes in activated sludge. Phenolic compounds are common organic pollutants in wastewater. During the wastewater treatment process, these compounds may influence the microbial community structure and functions. However, the impact of the phenolic compounds in the wastewater treatment plants on the horizontal transfer of antibiotic resistance genes (ARGs) has not been well assessed. In this study, we investigated the horizontal transfer of ARGs under the stress of phenolic compounds. The results showed that in pure culture bacteria system, p-nitrophenol (PNP), p-aminophenol (PAP) and phenol (PhOH) (10-100 mg/L) can significantly increase the horizontal transfer frequency of ARGs by 2.2-4.6, 3.6-9.4 and 1.9-9.0 fold, respectively. And, the RP4 plasmid transfer from Escherichia coli HB101 (E. coli HB101) to the bacteria in activated sludge increased obviously under the stress of phenolic compounds. Further investigation revealed that the PNP and PhOH at the concentration of 10-100 mg/L increased the production of reactive oxygen species and the permeability of cell membrane in the donor and recipient, which could be the causes of horizontal transfer of RP4 plasmid. In addition, it was also found that PNP, PAP and PhOH stress inhibit the expression of the global regulatory genes korB and trbA in the RP4 plasmid, and increase the expression level of the traF gene, thereby promoting the conjugative transfer of the RP4 plasmid. Taken together, these results improved our understanding of the horizontal transfer of ARGs under the stress of phenolic compounds and provided basic information for management of the systems that treat wastewater containing phenolic compounds.202134392203
8563120.9977Overlooked role of extracellular polymeric substances in antibiotic-resistance gene transfer within microalgae-bacteria system. Controlling the spread of antibiotic-resistance genes (ARGs) under antibiotic stress has become an increasingly urgent issue. Microalgae possess the capability to remove antibiotics while concurrently inhibiting ARGs. Microalgae-bacteria systems can produce significant quantities of extracellular polymeric substances (EPS). However, the roles of EPS in the spread of ARGs have not been sufficiently explored, resulting in an insufficient understanding of the contribution of each EPS component and a lack of analysis on the complex interactions between EPS and ARGs. This study systematically explored the overlooked role of EPS in the transmission of ARGs within microalgae-bacteria systems. The current results showed that the potential of the microalgae-bacteria system for treating antibiotic wastewater. The tightly bound-EPS (TB-EPS) can acquire the higher absolute abundances of ARGs compared with the loosely bound-EPS (LB-EPS). The correlation coefficient between polysaccharides and TB-EPS ARGs was higher than that between polysaccharides and LB-EPS ARGs. The gene patterns of LB-EPS closely clustered with those of TB-EPS, while intracellular ARG gene patterns differed from both TB-EPS and LB-EPS. Metagenomic analyses indicated that the relative abundances of sul1 and sul2 were considerably higher at the beginning stage compared to the end stage. The abundance of Achromobacter, increased by the end stage, aligning with its potential to produce exopolysaccharide. Additionally, the absolute abundance of genes encoding exopolysaccharides (nagB and galE) and conjugative transfer transcription regulator (traF), increased over time. These findings enhanced our comprehension of the significance of EPS on the fate of ARGs in microalgae-bacteria systems during the treatment of antibiotic-contaminated wastewater.202539879767
8607130.9977Different paths, same destination: Bisphenol A and its substitute induce the conjugative transfer of antibiotic resistance genes. Antibiotic resistance genes are primarily spread through horizontal gene transfer in aquatic environments. Bisphenols, which are widely used in industry, are pervasive contaminants in such environments. This study investigated how environmentally relevant concentrations of bisphenol A and its substitute (bisphenol S, Bisphenol AP and Bisphenol AF) affect the spread of antibiotic resistance genes among Escherichia coli. As a result, bisphenol A and its three substitutes were found to promote the RP4 plasmid-mediated conjugative transfer of antibiotic resistance genes with different promotive efficiency. Particularly, bisphenol A and bisphenol S were found to induce more than double the incidence of conjugation at 0.1 nmol/L concentration. They therefore were selected as model compounds to investigate the involved mechanisms. Surprisingly, both slightly inhibited bacterial activity, but there was no significant increase in cell death. Bisphenols exposure changed the polymeric substances excreted by the bacteria, increased the permeability of their cell membranes, induced the secretion of antioxidant enzymes and generated reactive oxygen species. They also affected the expression of genes related to conjugative transfer by upregulating replication and DNA transfer genes and downregulating global regulatory genes. It should be noted that gene expression levels were higher in the BPS-exposed group than in the BPA-exposed group. The synthesis of bacterial metabolites and functional components was also significantly affected by bisphenols exposure. This research has helped to clarify the potential health risks of bisphenol contamination of aquatic environments.202439510271
6742140.9977Influence of epiphytic bacteria on arsenic metabolism in Hydrilla verticillata. Microbial assemblages such as biofilms around aquatic plants play a major role in arsenic (As) cycling, which has often been overlooked in previous studies. In this study, arsenite (As(III))-oxidizing, arsenate (As(V))-reducing and As(III)-methylating bacteria were found to coexist in the phyllosphere of Hydrilla verticillata, and their relative activities were shown to determine As speciation, accumulation and efflux. When exposed to As(III), As(III) oxidation was not observed in treatment H(III)-B, whereas treatment H(III)+B showed a significant As(III) oxidation ability, thereby indicating that epiphytic bacteria displayed a substantial As(III) oxidation ability. When exposed to As(V), the medium only contained 5.89% As(III) after 48 h of treatment H(V)-B, while an As(III) content of 86.72% was observed after treatment H(V)+B, thereby indicating that the elevated As(III) in the medium probably originated from As(V) reduction by epiphytic bacteria. Our data also indicated that oxidizing bacteria decreased the As accumulation (by approximately 64.44% compared with that of treatment H(III)-B) in plants, while reducing bacteria played a critical role in increasing As accumulation (by approximately 3.31-fold compared with that of treatment H(V)-B) in plants. Regardless of whether As(III) or As(V) was supplied, As(III) was dominant in the plant tissue (over 75%). Furthermore, the presence of epiphytic bacteria enhanced As efflux by approximately 9-fold. Metagenomic analysis revealed highly diverse As metabolism genes in epiphytic bacterial community, particularly those related to energetic metabolism (aioAB), and As resistance (arsABCR, acr3, arsM). Phylogenetic analysis of As metabolism genes revealed evidence of both vertical inheritance and horizontal gene transfer, which might have contributed to the evolution of the As metabolism genes. Taken together, our research suggested that the diversity of As metabolism genes in epiphytic bacterial community is associated with aquatic submerged macrophytes which may play an important role in As biogeochemistry in aquatic environments.202032114122
8524150.9977Tebuconazole exacerbates co-occurrence and horizontal transfer of antibiotic resistance genes. As one of the most widely used pesticides in the global fungicide market, tebuconazole has become heavily embedded in soil along with antibiotic resistance genes (ARGs). However, it remains unclear whether the selective pressure produced by tebuconazole affects ARGs and their horizontal transfer. In this experiment, we simulated a tebuconazole-contaminated soil ecosystem and observed changes in the abundance of ARGs and mobile genetic element (MGEs) due to tebuconazole exposure. We also established a plasmid RP4-mediated conjugative transfer system to investigate in depth the impact of tebuconazole on the horizontal transfer of ARGs and its mechanism of action. The results showed that under tebuconazole treatment at concentrations ranging from 0 to 10 mg/L, there was a gradual increase in the frequency of plasmid conjugative transfer, peaking at 10 mg/L which was 7.93 times higher than that of the control group, significantly promoting horizontal transfer of ARGs. Further analysis revealed that the conjugative transfer system under tebuconazole stress exhibited strong ability to form biofilm, and the conjugative transfer frequency ratio of biofilm to planktonic bacteria varied with the growth cycle of biofilm. Additionally, scanning electron microscopy and flow cytometry demonstrated increased cell membrane permeability in both donor and recipient bacteria under tebuconazole stress, accompanied by upregulation of ompA gene expression controlling cell membrane permeability. Furthermore, enzyme activity assays indicated significant increases in CAT, SOD activity, and GSH content in recipient bacteria under tebuconazole stress. Moreover, expression levels of transmembrane transporter gene trfAp as well as genes involved in oxidative stress and SOS response were found to be correlated with the frequency of plasmid conjugative transfer.202439277355
7611160.9977Response of microorganisms in biofilm to sulfadiazine and ciprofloxacin in drinking water distribution systems. Effects of sulfadiazine and ciprofloxacin on microorganisms in biofilm of drinking water distribution systems (DWDSs) were studied. The results verified that the increases of 16S rRNA for total bacteria and bacterial genus Hyphomicrobium were related to the promotion of antibiotic resistance genes (ARGs) and class 1 integrons (int1) in DWDSs with sulfadiazine and ciprofloxacin. Moreover, the bacteria showed higher enzymatic activities in DWDSs with sulfadiazine and ciprofloxacin, which resulted in more production of extracellular polymeric substances (EPS). The higher contents of EPS proteins and secondary structure β-sheet promoted bacterial aggregation and adsorption onto surface of pipelines to form biofilm. EPS can serve as a barrier for the microorganisms in biofilm. Therefore, the biofilm bacterial communities shifted and the 16S rRNA for total bacteria increased in DWDSs with antibiotics, which also drove the ARGs promotion. Furthermore, the two antibiotics exhibited stronger combined effects than that caused by sulfadiazine and ciprofloxacin alone.201930471500
7607170.9977Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. Ozone, a strong oxidant and disinfectant, seems ideal to cope with future challenges of water treatment, such as micropollutants, multiresistant bacteria (MRB) and even intracellular antibiotic resistance genes (ARG), but information on the latter is scarce. In ozonation experiments we simultaneously determined kinetics and dose-dependent inactivation of Escherichia coli and its plasmid-encoded sulfonamide resistance gene sul1 in different water matrixes. Effects in E. coli were compared to an autochthonous wastewater community. Furthermore, resistance elimination by ozonation and post-treatment were studied in full-scale at a wastewater treatment plant (WWTP). Bacterial inactivation (cultivability, membrane damage) and degradation of sul1 were investigated using plate counts, flow cytometry and quantitative real-time PCR. In experiments with E. coli and the more ozone tolerant wastewater community disruption of intracellular genes was observed at specific ozone doses feasible for full-scale application, but flocs seemed to interfere with this effect. At the WWTP, regrowth during postozonation treatment partly compensated inactivation of MRB, and intracellular sul1 seemed unaffected by ozonation. Our findings indicate that ozone doses relevant for micropollutant abatement from wastewater do not eliminate intracellular ARG.201627775322
7892180.9977Nitrite Production by Nitrifying Bacteria in Urban Groundwater Used in a Chlorinated Public Bath System in Japan. In contrast to pathogens, the effects of environmental microbes on the water quality in baths have not yet been examined in detail. We herein focused on a public bath in which groundwater was pumped up as bath water and disinfected by chlorination. Ammonia in groundwater is oxidized to nitrite, thereby reducing residual chlorine. A batch-culture test and bacterial community ana-lysis revealed that ammonia-oxidizing bacteria accumulated nitrite and had higher resistance to chlorination than nitrite-oxidizing bacteria. These results demonstrate that the difference in resistance to chlorination between ammonia-oxidizing and nitrite-oxidizing bacteria may lead to the accumulation of nitrite in baths using groundwater.202236198516
7581190.9977Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment. Antibiotic fermentation residues is a hazardous waste due to the existence of residual antibiotics and antibiotic resistance genes (ARGs), probably leading to the induction and spread of antibiotic resistant bacteria (ARB) in the environment, which could pose potential harm to the ecosystem and human health. It is urgent to develop an effective technology to remove the residual antibiotics and ARGs. In this study, the anaerobic digestion combined with gamma irradiation was applied for the disposal and utilization of cephalosporin C fermentation residues. The experimental results showed that the antibacterial activities of cephalosporin C against Staphylococcus aureus were significantly decreased after anaerobic digestion. The removal of tolC, a multidrug resistant gene, was improved up to 100% by the combination of gamma irradiation and anaerobic digestion compared to solely anaerobic digestion process, which may be due to the changes of microbial community structures induced by gamma irradiation.202031590081