# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8716 | 0 | 1.0000 | Organophosphorus mineralizing-Streptomyces species underpins uranate immobilization and phosphorus availability in uranium tailings. Phosphate-solubilizing bacteria (PSB) are important but often overlooked regulators of uranium (U) cycling in soil. However, the impact of PSB on uranate fixation coupled with the decomposition of recalcitrant phosphorus (P) in mining land remains poorly understood. Here, we combined gene amplicon sequencing, metagenome and metatranscriptome sequencing analysis and strain isolation to explore the effects of PSB on the stabilization of uranate and P availability in U mining areas. We found that the content of available phosphorus (AP), carbonate-U and Fe-Mn-U oxides in tailings was significantly (P < 0.05) higher than their adjacent soils. Also, organic phosphate mineralizing (PhoD) bacteria (e.g., Streptomyces) and inorganic phosphate solubilizing (gcd) bacteria (e.g., Rhodococcus) were enriched in tailings and soils, but only organic phosphate mineralizing-bacteria substantially contributed to the AP. Notably, most genes involved in organophosphorus mineralization and uranate resistance were widely present in tailings rather than soil. Comparative genomics analyses supported that organophosphorus mineralizing-Streptomyces species could increase soil AP content and immobilize U(VI) through organophosphorus mineralization (e.g., PhoD, ugpBAEC) and U resistance related genes (e.g., petA). We further demonstrated that the isolated Streptomyces sp. PSBY1 could enhance the U(VI) immobilization mediated by the NADH-dependent ubiquinol-cytochrome c reductase (petA) through decomposing organophosphorous compounds. This study advances our understanding of the roles of PSB in regulating the fixation of uranate and P availability in U tailings. | 2024 | 38908177 |
| 8543 | 1 | 0.9971 | Soil bacteria, genes, and metabolites stimulated during sulfur cycling and cadmium mobilization under sodium sulfate stress. Sodium sulfate stress is known to improve cadmium (Cd) mobilization in soil and microbial sulfur oxidation, Cd resistance, and the accumulation of stress tolerance-associated metabolites has been correlated with increased soil Cd availability and toxicity. In this study, aerobic soil microcosms with Cd-contamination were stimulated with sodium sulfate to investigate its effects on soil microbial community structure, functional genes, and associated metabolite profiles. Metagenomic analysis revealed that sulfur oxidizing and Cd-resistant bacteria carried gene clusters encoding sox, dsr, and sqr genes, and znt, czc, and cad genes, respectively. Exposure to sodium sulfate resulted in the reprogram of soil metabolites. In particular, intensification of sulfur metabolism triggered an up-regulation in the tricarboxylic acid (TCA) cycle, which promoted the secretion of carboxylic acids and their precursors by soil bacteria. The accumulation of organic acids induced in response to high sodium sulfate dosages potentially drove an observed increase in Cd mobility. Pseudomonas and Erythrobacter spp. exhibited a high capacity for adaptation to heavy metal- or sulfur-induced stress, evident by an increased abundance of genes and metabolites for sulfur cycling and Cd resistance. These results provide valuable insights towards understanding the microbial mechanisms of sulfur transformation and Cd dissolution under saline stress. | 2021 | 34214562 |
| 7953 | 2 | 0.9971 | Rapid impact of phenanthrene and arsenic on bacterial community structure and activities in sand batches. The impact of both organic and inorganic pollution on the structure of soil microbial communities is poorly documented. A short-time batch experiment (6 days) was conducted to study the impact of both types of pollutants on the taxonomic, metabolic and functional diversity of soil bacteria. For this purpose sand spiked with phenanthrene (500 mg kg(-1) sand) or arsenic (arsenite 0.66 mM and arsenate 12.5 mM) was supplemented with artificial root exudates and was inoculated with bacteria originated from an aged PAH and heavy-metal-polluted soil. The bacterial community was characterised using bacterial strain isolation, TTGE fingerprinting and proteomics. Without pollutant, or with phenanthrene or arsenic, there were no significant differences in the abundance of bacteria and the communities were dominated by Pseudomonas and Paenibacillus genera. However, at the concentrations used, both phenanthrene or arsenic were toxic as shown by the decrease in mineralisation activities. Using community-level physiological profiles (Biolog Ecoplates™) or differential proteomics, we observed that the pollutants had an impact on the community physiology, in particular phenanthrene induced a general cellular stress response with changes in the central metabolism and membrane protein synthesis. Real-time PCR quantification of functional genes and transcripts revealed that arsenic induced the transcription of functional arsenic resistance and speciation genes (arsB, ACR3 and aioA), while no transcription of PAH-degradation genes (PAH-dioxygenase and catechol-dioxygenase) was detected with phenanthrene. Altogether, in our tested conditions, pollutants do not have a major effect on community abundance or taxonomic composition but rather have an impact on metabolic and functional bacterial properties. | 2014 | 24189653 |
| 8486 | 3 | 0.9971 | Multidrug-resistant plasmid modulates ammonia oxidation efficiency in Nitrosomonas europaea through cyclic di-guanylate and acyl-homoserine lactones pathways. Antibiotic resistance genes present a major public health challenge and have potential implications for global biogeochemical cycles. However, their impacts on biological nitrogen removal systems remain poorly understood. In the ammonia-oxidizing bacteria Nitrosomonas europaea ATCC 19718 harboring the multidrug-resistant plasmid RP4, a significant decrease in ammonia oxidation efficiency was observed, accompanied by markedly elevated levels of cyclic di-guanylate (c-di-GMP) and acyl-homoserine lactones (AHLs), compared to plasmid-free controls. The results demonstrated that c-di-GMP facilitates the secretion of AHLs, while elevated levels of AHLs inhibit the ammonia oxidation efficiency of Nitrosomonas europaea ATCC 19718. These results revealed that RP4 plasmid significantly impaired ammonia oxidation efficiency through the c-di-GMP and AHLs pathways. Our findings indicate that the multidrug-resistant plasmid RP4 adversely affects the nitrogen metabolism of ammonia-oxidizing bacteria, potentially disrupting the nitrogen biogeochemical cycle and posing substantial ecological and environmental risks. | 2026 | 40945801 |
| 7983 | 4 | 0.9971 | Insights into the associations of copper and zinc with nitrogen metabolism during manure composting with shrimp shell powder. The application of shrimp shell powder (SSP) in manure composting can promote the maturation of compost and reduce the associated environmental risk. This study investigated the response of adding SSP at different levels (CK: 0, L: 5%, M: 10%, and H: 15%) on heavy metal resistance genes (MRGs), nitrogen functional genes, enzymes, and microorganisms. SSP inhibited nitrification and denitrification via decreasing the abundances of functional genes and key enzymes related to Cu, Zn, and MRGs. The nitrate reductase and nitrous-oxide reductase in the denitrification pathway were lower under H. Phylogenetic trees indicated that Burkholderiales sp. had strong relationships with OTU396 and OTU333, with important roles in the nitrogen cycle and plant growth. Redundancy analysis and structural equation modeling showed the complex response between heavy metal and nitrogen that bio-Cu and bio-Zn had positive significantly relationships with nirK-type and amoA-type bacteria, and amoA-type bacteria might be hotspot of cueO. | 2022 | 34861387 |
| 8815 | 5 | 0.9971 | Phosphorus-Solubilizing Bacteria Enhance Cadmium Immobilization and Gene Expression in Wheat Roots to Reduce Cadmium Uptake. The application of phosphorus-solubilizing bacteria is an effective method for increasing the available phosphorus content and inhibiting wheat uptake of heavy metals. However, further research is needed on the mechanism by which phosphorus-solubilizing bacteria inhibit cadmium (Cd) uptake in wheat roots and its impact on the expression of root-related genes. Here, the effects of strain Klebsiella aerogenes M2 on Cd absorption in wheat and the expression of root-related Cd detoxification and immobilization genes were determined. Compared with the control, strain M2 reduced (64.1-64.6%) Cd uptake by wheat roots. Cd fluorescence staining revealed that strain M2 blocked the entry of exogenous Cd into the root interior and enhanced the immobilization of Cd by cell walls. Forty-seven genes related to Cd detoxification, including genes encoding peroxidase, chalcone synthase, and naringenin 3-dioxygenase, were upregulated in the Cd+M2 treatment. Strain M2 enhanced the Cd resistance and detoxification activity of wheat roots through the regulation of flavonoid biosynthesis and antioxidant enzyme activity. Moreover, strain M2 regulated the expression of genes related to phenylalanine metabolism and the MAPK signaling pathway to enhance Cd immobilization in roots. These results provide a theoretical basis for the use of phosphorus-solubilizing bacteria to remediate Cd-contaminated fields and reduce Cd uptake in wheat. | 2024 | 39065516 |
| 7879 | 6 | 0.9970 | Multidrug-resistant plasmid RP4 increases NO and N(2)O yields via the electron transport system in Nitrosomonas europaea ammonia oxidation. Antibiotic resistance genes (ARGs) have recently become an important public health problem and therefore several studies have characterized ARG composition and distribution. However, few studies have assessed their impact on important functional microorganisms in the environment. Therefore, our study sought to investigate the mechanisms through which multidrug-resistant plasmid RP4 affected the ammonia oxidation capacity of ammonia-oxidizing bacteria, which play a key role in the nitrogen cycle. The ammonia oxidation capacity of N. europaea ATCC25978 (RP4) was significantly inhibited, and NO and N(2)O were produced instead of nitrite. Our findings demonstrated that the decrease in electrons from NH(2)OH decreased the ammonia monooxygenase (AMO) activity, leading to a decrease in ammonia consumption. In the ammonia oxidation process, N. europaea ATCC25978 (RP4) exhibited ATP and NADH accumulation. The corresponding mechanism was the overactivation of Complex Ⅰ, ATPase, and the TCA cycle by the RP4 plasmid. The genes encoding TCA cycle enzymes related to energy generation, including gltA, icd, sucD, and NE0773, were upregulated in N. europaea ATCC25978 (RP4). These results demonstrate the ecological risks of ARGs, including the inhibition of the ammonia oxidation process and an increased production of greenhouse gases such as NO and N(2)O. | 2023 | 37421866 |
| 8816 | 7 | 0.9970 | Sulfate-reducing bacteria block cadmium and lead uptake in rice by regulating sulfur metabolism. AIM: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination. METHODS AND RESULTS: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through a hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.60% and 39.88%, respectively, and Pb levels by 35.96% and 51.54%. We also compared two treatment groups, inoculated with SYN1 and exogenously added GSH, and found that both enhanced the antioxidant response of the plants, increased the lignin and GSH contents and the expression of genes related to the phenylpropane biosynthesis pathway (OsCAD, Os4CL, OsCOMT, OsPOD, OsC3H, and OsPAL), and decreased the expression of heavy metal transporter genes (OsHMA2, OsIRT1) expression. There were no significant differences between the two treatments. CONCLUSIONS: Sulfate-reducing bacteria produce GSH through the sulfur assimilation pathway, and GSH can directly chelate heavy metals or enhance plant antioxidant enzyme activities and regulate processes such as the uptake and translocation of heavy metals, thus enhancing plant resistance to heavy metal toxicity. | 2025 | 39870375 |
| 511 | 8 | 0.9970 | Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria. Arsenic can be biomethylated to form a variety of organic arsenicals differing in toxicity and environmental mobility. Trivalent methylarsenite (MAs(III)) produced in the methylation process is more toxic than inorganic arsenite (As(III)). MAs(III) also serves as a primitive antibiotic and, consequently, some environmental microorganisms have evolved mechanisms to detoxify MAs(III). However, the mechanisms of MAs(III) detoxification are not well understood. In this study, we identified an arsenic resistance (ars) operon consisting of three genes, arsRVK, that contribute to MAs(III) resistance in Ensifer adhaerens ST2. ArsV is annotated as an NADPH-dependent flavin monooxygenase with unknown function. Expression of arsV in the arsenic hypersensitive Escherichia coli strain AW3110Δars conferred resistance to MAs(III) and the ability to oxidize MAs(III) to MAs(V). In the presence of NADPH and either FAD or FMN, purified ArsV protein was able to oxidize both MAs(III) to MAs(V) and Sb(III) to Sb(V). Genes with arsV-like sequences are widely present in soils and environmental bacteria. Metagenomic analysis of five paddy soils showed the abundance of arsV-like sequences of 0.12-0.25 ppm. These results demonstrate that ArsV is a novel enzyme for the detoxification of MAs(III) and Sb(III) and the genes encoding ArsV are widely present in soil bacteria. | 2022 | 33769668 |
| 8542 | 9 | 0.9970 | Transcriptional Activity of Arsenic-Reducing Bacteria and Genes Regulated by Lactate and Biochar during Arsenic Transformation in Flooded Paddy Soil. Organic substrates and biochar are important in controlling arsenic release from sediments and soils; however, little is known about their impact on arsenic-reducing bacteria and genes during arsenic transformation in flooded paddy soils. In this study, microcosm experiments were established to profile transcriptional activity of As(V)-respiring gene (arrA) and arsenic resistance gene (arsC) as well as the associated bacteria regulated by lactate and/or biochar in anaerobic arsenic-contaminated paddy soils. Chemical analyses revealed that lactate as the organic substrate stimulated microbial reduction of As(V) and Fe(III), which was simultaneously promoted by lactate+biochar, due to biochar's electron shuttle function that facilitates electron transfer from bacteria to As(V)/Fe(III). Sequencing and phylogenetic analyses demonstrated that both arrA closely associated with Geobacter (>60%, number of identical sequences/number of the total sequences) and arsC related to Enterobacteriaceae (>99%) were selected by lactate and lactate+biochar. Compared with the lactate microcosms, transcriptions of the bacterial 16S rRNA gene, Geobacter spp., and Geobacter arrA and arsC genes were increased in the lactate+biochar microcosms, where transcript abundances of Geobacter and Geobacter arrA closely tracked with dissolved As(V) concentrations. Our findings indicated that lactate and biochar in flooded paddy soils can stimulate the active As(V)-respiring bacteria Geobacter species for arsenic reduction and release, which probably increases arsenic bioavailability to rice plants. | 2018 | 29188998 |
| 8808 | 10 | 0.9969 | Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from Nitrosospira species isolated from soil. Ammonia-oxidizing bacteria are believed to be an important source of the climatically important trace gas nitrous oxide (N(2)O). The genes for nitrite reductase (nirK) and nitric oxide reductase (norB), putatively responsible for nitrous oxide production, have been identified in several ammonia-oxidizing bacteria, but not in Nitrosospira strains that may dominate ammonia-oxidizing communities in soil. In this study, sequences from nirK and norB genes were detected in several cultured Nitrosospira species and the diversity and phylogeny of these genes were compared with those in other ammoniaoxidizing bacteria and in classical denitrifiers. The nirK and norB gene sequences obtained from Nitrosospira spp. were diverse and appeared to be less conserved than 16S rRNA genes and functional ammonia monooxygenase (amoA) genes. The nirK and norB genes from some Nitrosospira spp. were not phylogenetically distinct from those of denitrifiers, and phylogenetic analysis suggests that the nirK and norB genes in ammonia-oxidizing bacteria have been subject to lateral transfer. | 2007 | 17100985 |
| 139 | 11 | 0.9969 | The strategy of arsenic metabolism in an arsenic-resistant bacterium Stenotrophomonas maltophilia SCSIOOM isolated from fish gut. Bacteria are candidates for the biotransformation of environmental arsenic (As), while As metabolism in bacteria is not yet fully understood. In this study, we sequenced the genome of an As-resistant bacterium strain Stenotrophomonas maltophilia SCSIOOM isolated from the fish gut. After arsenate (As(V)) exposure, S. maltophilia transformed As(V) to organoarsenicals, along with the significant change of the expression of 40 genes, including the upregulation of arsH, arsRBC and betIBA. The heterogeneous expression of arsH and arsRBC increased As resistance of E. coli AW3110 by increasing As efflux and transformation. E. coli AW3110 (pET-betIBA) could transform inorganic As into dimethylarsinate (DMA) and nontoxic arsenobetaine (AsB), which suggested that AsB could be synthesized through the synthetic pathway of its analog-glycine betaine. In addition, the existence of arsRBC, betIBA and arsH reduced the reactive oxygen species (ROS) induced by As exposure. In total, these results demonstrated that S. maltophilia adopted an As metabolism strategy by reducing As accumulation and synthesizing less toxic As species. We first reported the production and potential synthetic pathway of AsB in bacteria, which improved our knowledge of As toxicology in microorganisms. | 2022 | 36058313 |
| 6742 | 12 | 0.9969 | Influence of epiphytic bacteria on arsenic metabolism in Hydrilla verticillata. Microbial assemblages such as biofilms around aquatic plants play a major role in arsenic (As) cycling, which has often been overlooked in previous studies. In this study, arsenite (As(III))-oxidizing, arsenate (As(V))-reducing and As(III)-methylating bacteria were found to coexist in the phyllosphere of Hydrilla verticillata, and their relative activities were shown to determine As speciation, accumulation and efflux. When exposed to As(III), As(III) oxidation was not observed in treatment H(III)-B, whereas treatment H(III)+B showed a significant As(III) oxidation ability, thereby indicating that epiphytic bacteria displayed a substantial As(III) oxidation ability. When exposed to As(V), the medium only contained 5.89% As(III) after 48 h of treatment H(V)-B, while an As(III) content of 86.72% was observed after treatment H(V)+B, thereby indicating that the elevated As(III) in the medium probably originated from As(V) reduction by epiphytic bacteria. Our data also indicated that oxidizing bacteria decreased the As accumulation (by approximately 64.44% compared with that of treatment H(III)-B) in plants, while reducing bacteria played a critical role in increasing As accumulation (by approximately 3.31-fold compared with that of treatment H(V)-B) in plants. Regardless of whether As(III) or As(V) was supplied, As(III) was dominant in the plant tissue (over 75%). Furthermore, the presence of epiphytic bacteria enhanced As efflux by approximately 9-fold. Metagenomic analysis revealed highly diverse As metabolism genes in epiphytic bacterial community, particularly those related to energetic metabolism (aioAB), and As resistance (arsABCR, acr3, arsM). Phylogenetic analysis of As metabolism genes revealed evidence of both vertical inheritance and horizontal gene transfer, which might have contributed to the evolution of the As metabolism genes. Taken together, our research suggested that the diversity of As metabolism genes in epiphytic bacterial community is associated with aquatic submerged macrophytes which may play an important role in As biogeochemistry in aquatic environments. | 2020 | 32114122 |
| 8819 | 13 | 0.9969 | Responses of Bacillus sp. under Cu(II) stress in relation to extracellular polymeric substances and functional gene expression level. The production and composition of extracellular polymeric substances (EPS), as well as the EPS-related functional resistance genes and metabolic levels of Bacillus sp. under Cu(II) stress, were investigated. EPS production increased by 2.73 ± 0.29 times compared to the control when the strain was treated with 30 mg L(-1) Cu(II). Specifically, the polysaccharide (PS) content in EPS increased by 2.26 ± 0.28 g CDW(-1) and the PN/PS (protein/polysaccharide) ratio value increased by 3.18 ± 0.33 times under 30 mg L(-1) Cu(II) compared to the control. The increased EPS secretion and higher PN/PS ratio in EPS strengthened the cells' ability to resist the toxic effect of Cu(II). Differential expression of functional genes under Cu(II) stress was revealed by Gene Ontology pathway enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The enriched genes were most obviously upregulated in the UMP biosynthesis pathway, the pyrimidine metabolism pathway, and the TCS metabolism pathway. This indicates an enhancement of EPS regulation-related metabolic levels and their role as a defense mechanism for cells to adapt to Cu(II) stress. Additionally, seven copper resistance genes were upregulated while three were downregulated. The upregulated genes were related to the heavy metal resistance, while downregulated genes were related to cell differentiation, indicating that the strain had initiated an obvious resistance to Cu(II) despite its severe cell toxicity. These results provided a basis for promoting EPS-regulated associated functional genes and the application of gene-regulated bacteria in heavy metal-containing wastewater treatment. | 2023 | 37195605 |
| 7984 | 14 | 0.9969 | Distinct response of nitrogen metabolism to exogenous cadmium (Cd) in river sediments with and without Cd contamination history. The role of metal resistance on nitrogen metabolism function and community resilience against Cd is important for elucidating the evolutionary dynamics of key ecological functions in river ecosystems. In this study, the response of nitrogen transforming function to Cd exposure in river sediments from the Yangtze River Basin with varying levels of heavy metal contamination history (Cd-contaminated and Cd-free sediments) was compared to understand how Cd influenced nitrogen metabolism under varying metal resistance conditions. The results showed that chronic and persistent Cd pollution of sediments caused an elevation of transport efflux metal resistance genes (MRGs) and a reduction in the uptake MRGs, leading to a stronger tolerance to Cd for Cd-contaminated sediment than Cd-free ones. Specifically, denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) respectively responded to Cd through different mechanisms. Exogenous Cd (5-100 mg kg(-1)) influenced denitrification rates (-70 %-100 % deviation to control group) by regulating key genera (Thiobacillus, Magnetospirillum, Sideroxydans etc.) and gene clusters for denitrification. Both adaptive nature of anammox bacteria and co-regulation of key genera (Candidatus_Scalindua, Candidatus_Jettenia, Planctomyces etc.) and gene hzsA were drivers of differential responses in sediments from various contamination history. Environmental factors rather than contamination history, key genera or genes were probably critical ones determining Cd-resistance in DNRA, being more tolerant to Cd in sediments with higher TOC and NH(4)(+). Stimulation of N(2)O reduction process (genera Gemmatimonas and Gemmatirosa and genes nosZ) in Cd-contaminated sediments by exogenous Cd lowered N(2)O emission risk, whereas the reverse was true for Cd-free sediments. These results enrich our understanding about the linkages among MRGs and nitrogen reduction functions in river. | 2025 | 39793158 |
| 8696 | 15 | 0.9968 | Specific Enriched Acinetobacter in Camellia Weevil Gut Facilitate the Degradation of Tea Saponin: Inferred from Bacterial Genomic and Transcriptomic Analyses. Beneficial gut bacteria can enhance herbivorous arthropod adaptation to plant secondary compounds (PSMs), and specialist herbivores provide excellent examples of this. Tea saponin (TS) of Camellia oleifera is triterpenoids toxic to seed-feeding weevil pest, Curculio chinensis (CW). Previous studies disclosed that Acinetobacter, which was specific enriched in the CW's gut, was involved in helping CW evade TS toxicity of C. oleifera. However, it is still not clear whether Acinetobacter is associated with other anti-insect compounds, and the molecular mechanism of Acinetobacter degradation of TS has not been clarified. To address these questions, we explored the relationship between host plant toxin content and Acinetobacter of CW gut bacteria. Results demonstrated that TS content significantly affected the CW gut microbiome structure and enriched bacteria functional for TS degradation. We further isolated Acinetobacter strain and conducted its genome and transcriptome analyses for bacterial characterization and investigation on its role in TS degradation. Biological tests were carried out to verify the ability of the functional bacterium within CW larvae to detoxify TS. Our results showed that TS-degrading bacteria strain (Acinetobacter sp. AS23) genome contains 47 genes relating to triterpenoids degradation. The AS23 strain improved the survival rate of CW larvae, and the steroid degradation pathway could be the key one for AS23 to degrade TS. This study provides the direct evidence that gut bacteria mediate adaptation of herbivorous insects to phytochemical resistance. IMPORTANCE Microorganism is directly exposed to the plant toxin environment and play a crucial third party in herbivores gut. Although previous studies have proved the existence of gut bacteria that help CWs degrade TS, the specific core flora and its function have not been explored. In this study, we investigated the correlation between the larva gut microbiome and plant secondary metabolites. Acinetobacter genus was the target flora related to TS degradation. There were many terpenoids genes in Acinetobacter sp. AS23 genome. Results of transcriptome analysis and biological tests suggested that steroid degradation pathway be the key pathway of AS23 to degrade TS. This study not only provides direct evidence that gut microbes mediate the rapid adaptation of herbivorous insects to phytochemical resistance, but also provides a theoretical basis for further research on the molecular mechanism of intestinal bacteria cooperating with pests to adapt to plant toxins. | 2022 | 36413019 |
| 6737 | 16 | 0.9968 | Microbial-mediated conversion of soil organic carbon co-regulates the evolution of antibiotic resistance. The influence of organic carbon on the proliferation of antibiotic resistance genes (ARGs) in the soil has been widely documented. However, it is unclear how soil organic carbon (SOC) interacts with the evolution of antibiotic resistance in bacteria. Here, we examined the variations in ARGs abundance during SOC mineralization and explored the microbiological mechanisms and key metabolic pathways involved in their coevolution. The results showed that the SOC mineralization rate was closely correlated with ARGs abundance (p < 0.05). High organic carbon (OC) mineralization was conducive to the occurrence of multidrug resistance genes. For example, multidrug_transporter and mexB increased 2.26 and 7.83 times from the initial level. The competitor (stress) evolutionary strategy model revealed that higher OC inputs drive environmental microorganisms to evolve from stress tolerant to high resistance and strong adaptation. Meta-genomic and transcriptomic analyses revealed that the conversion process of pyruvate to acetyl-CoA to acetate was the critical metabolic pathway for the co-regulation of antibiotic resistance. Gene deletion validation trials have demonstrated that the key functional genes (ackA and pta) involved in this process can modulate the development of vancomycin and multidrug resistance. This outcome provides a preliminary framework for microbial mechanisms that target the co-regulation of microbial OC conversion and the evolution of antibiotic resistance. | 2024 | 38688217 |
| 667 | 17 | 0.9968 | Increased intracellular H(2)S levels enhance iron uptake in Escherichia coli. We investigated the impact of intracellular hydrogen sulfide (H(2)S) hyperaccumulation on the transcriptome of Escherichia coli. The wild-type (WT) strain overexpressing mstA, encoding 3-mercaptopyruvate sulfur transferase, produced significantly higher H(2)S levels than the control WT strain. The mstA-overexpressing strain exhibited increased resistance to antibiotics, supporting the prior hypothesis that intracellular H(2)S contributes to oxidative stress responses and antibiotic resistance. RNA-seq analysis revealed that over 1,000 genes were significantly upregulated or downregulated upon mstA overexpression. The upregulated genes encompassed those associated with iron uptake, including siderophore synthesis and iron import transporters. The mstA-overexpressing strain showed increased levels of intracellular iron content, indicating that H(2)S hyperaccumulation affects iron availability within cells. We found that the H(2)S-/supersulfide-responsive transcription factor YgaV is required for the upregulated expression of iron uptake genes in the mstA-overexpression conditions. These findings indicate that the expression of iron uptake genes is regulated by intracellular H(2)S, which is crucial for oxidative stress responses and antibiotic resistance in E. coli. IMPORTANCE: H(2)S is recognized as a second messenger in bacteria, playing a vital role in diverse intracellular and extracellular activities, including oxidative stress responses and antibiotic resistance. Both H(2)S and iron serve as essential signaling molecules for gut bacteria. However, the intricate intracellular coordination between them, governing bacterial physiology, remains poorly understood. This study unveils a close relationship between intracellular H(2)S accumulation and iron uptake activity, a relationship critical for antibiotic resistance. We present additional evidence expanding the role of intracellular H(2)S synthesis in bacterial physiology. | 2024 | 39324809 |
| 7954 | 18 | 0.9968 | Metagenomic analysis reveals indole signaling effect on microbial community in sequencing batch reactors: Quorum sensing inhibition and antibiotic resistance enrichment. Indole is an essential signal molecule in microbial studies. However, its ecological role in biological wastewater treatments remains enigmatic. This study explores the links between indole and complex microbial communities using sequencing batch reactors exposed to 0, 15, and 150 mg/L indole concentrations. A concentration of 150 mg/L indole enriched indole degrader Burkholderiales, while pathogens, such as Giardia, Plasmodium, and Besnoitia were inhibited at 15 mg/L indole concentration. At the same time, indole reduced the abundance of predicted genes in the "signaling transduction mechanisms" pathway via the Non-supervised Orthologous Groups distributions analysis. Indole significantly decreased the concentration of homoserine lactones, especially C(14)-HSL. Furthermore, the quorum-sensing signaling acceptors containing LuxR, the dCACHE domain, and RpfC showed negative distributions with indole and indole oxygenase genes. Signaling acceptors' potential origins were mainly Burkholderiales, Actinobacteria, and Xanthomonadales. Meanwhile, concentrated indole (150 mg/L) increased the total abundance of antibiotic resistance genes by 3.52 folds, especially on aminoglycoside, multidrug, tetracycline, and sulfonamide. Based on Spearman's correlation analysis, the homoserine lactone degradation genes which were significantly impacted by indole negatively correlated with the antibiotic resistance gene abundance. This study brings new insights into the effect of indole signaling on in biological wastewater treatment plants. | 2023 | 37054839 |
| 8811 | 19 | 0.9968 | Mechanisms controlling the transformation of and resistance to mercury(II) for a plant-associated Pseudomonas sp. strain, AN-B15. Bioremediation using mercury (Hg)-volatilizing and immobilizing bacteria is an eco-friendly and cost-effective strategy for Hg-polluted farmland. However, the mechanisms controlling the transformation of and resistance to Hg(II) by these bacteria remain unknown. In this study, a plant-associated Pseudomonas sp. strain, AN-B15 was isolated and determined to effectively remove Hg(II) under both nutrient-poor and nutrient-rich conditions via volatilization by transforming Hg(II) to Hg(0) and immobilization by transforming Hg(II) to mercury sulfide and Hg-sulfhydryl. Genome and transcriptome analyses revealed that the molecular mechanisms involved in Hg(II) resistance in AN-B15 were a collaborative process involving multiple metabolic systems at the transcriptional level. Under Hg(II) stress, AN-B15 upregulated genes involved in the mer operon and producing the reducing power to rapidly volatilize Hg(II), thereby decreasing its toxicity. Hydroponic culture experiments also revealed that inoculation with strain AN-B15 alleviated Hg-induced toxicity and reduced the uptake of Hg(II) in the roots of wheat seedlings, as explained by the volatilization and immobilization of Hg(II) and plant growth-promoting traits of AN-B15. Overall, the results from the in vitro assays provided vital information that are essential for understanding the mechanism of Hg(II) resistance in plant-associated bacteria, which can also be applied for the bioremediation of Hg-contamination in future. | 2022 | 34915295 |