# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8704 | 0 | 1.0000 | Unraveling nitrogen metabolism, cold and stress adaptation in polar Bosea sp. PAMC26642 through comparative genome analysis. Nitrogen metabolism, related genes, and other stress-resistance genes are poorly understood in Bosea strain. To date, most of the research work in Bosea strains has been focused on thiosulfate oxidation and arsenic reduction. This work aimed to better understand and identify genomic features that enable thiosulfate-oxidizing lichen-associated Bosea sp. PAMC26642 from the Arctic region of Svalbard, Norway, to withstand harsh environments. Comparative genomic analysis was performed using various bioinformatics tools to compare Bosea sp. PAMC26642 with other strains of the same genus, emphasizing nitrogen metabolism and stress adaptability. During genomic analysis of Bosea sp. PAMC26642, assimilatory nitrogen metabolic pathway and its associated enzymes such as nitrate reductase, NAD(P)H-nitrite reductase, ferredoxin-nitrite reductase, glutamine synthetase, glutamine synthase, and glutamate dehydrogenase were identified. In addition, carbonic anhydrase, cyanate lyase, and nitronate monooxygenase were also identified. Furthermore, the strain demonstrated nitrate reduction at two different temperatures (15°C and 25°C). Enzymes associated with various stress adaptation pathways, including oxidative stress (superoxide dismutase, catalase, and thiol peroxidase), osmotic stress (OmpR), temperature stress (Csp and Hsp), and heavy metal resistance, were also identified. The average Nucleotide Identity (ANI) value is found to be below the threshold of 94-95%, indicating this bacterium might be a potential new species. This study is very helpful in determining the diversity of thiosulfate-oxidizing nitrate-reducing bacteria, as well as their ability to adapt to extreme environments. These bacteria can be used in the future for environmental, biotechnological, and agricultural purposes, particularly in processes involving sulfur and nitrogen transformation. | 2024 | 39925882 |
| 160 | 1 | 0.9994 | A comprehensive comparative genomic analysis revealed that plant growth promoting traits are ubiquitous in strains of Stenotrophomonas. Stenotrophomonas strains, which are often described as plant growth promoting (PGP) bacteria, are ubiquitous in many environments. A total of 213 genomes of strains of Stenotrophomonas were analyzed using comparative genomics to better understand the ecological roles of these bacteria in the environment. The pan-genome of the 213 strains of Stenotrophomonas consists of 27,186 gene families, including 710 core gene families, 11,039 unique genes and 15,437 accessory genes. Nearly all strains of Stenotrophomonas harbor the genes for GH3-family cellulose degradation and GH2- and GH31-family hemicellulose hydrolase, as well as intact glycolysis and tricarboxylic acid cycle pathways. These abilities suggest that the strains of this genus can easily obtain carbon and energy from the environment. The Stenotrophomonas strains can respond to oxidative stress by synthesizing catalase, superoxide dismutase, methionine sulfoxide reductase, and disulfide isomerase, as well as managing their osmotic balance by accumulating potassium and synthesizing compatible solutes, such as betaine, trehalose, glutamate, and proline. Each Stenotrophomonas strain also contains many genes for resistance to antibiotics and heavy metals. These genes that mediate stress tolerance increase the ability of Stenotrophomonas strains to survive in extreme environments. In addition, many functional genes related to attachment and plant colonization, growth promotion and biocontrol were identified. In detail, the genes associated with flagellar assembly, motility, chemotaxis and biofilm formation enable the strains of Stenotrophomonas to effectively colonize host plants. The presence of genes for phosphate-solubilization and siderophore production and the polyamine, indole-3-acetic acid, and cytokinin biosynthetic pathways confer the ability to promote plant growth. These strains can produce antimicrobial compounds, chitinases, lipases and proteases. Each Stenotrophomonas genome contained 1-9 prophages and 17-60 genomic islands, and the genes related to antibiotic and heavy metal resistance and the biosynthesis of polyamines, indole-3-acetic acid, and cytokinin may be acquired by horizontal gene transfer. This study demonstrates that strains of Stenotrophomonas are highly adaptable for different environments and have strong potential for use as plant growth-promoting bacteria. | 2024 | 38817968 |
| 8685 | 2 | 0.9994 | Transcriptome analysis of an arsenite-/antimonite-oxidizer, Bosea sp. AS-1 reveals the importance of the type 4 secretion system in antimony resistance. Bosea sp. AS-1 is an arsenite [As(III)] and antimonite [Sb(III)] oxidizer previously isolated by our group from the Xikuangshan Antimony (Sb) Mine area. Our previous study showed that Bosea sp. AS-1 had a preference for oxidizing As(III) or Sb(III) with different carbon sources, which suggested that different metabolic mechanisms may be utilized by the bacteria to survive in As(III)- or Sb(III)-contaminated environments. Here, we conducted whole-genome and transcriptome sequencing to reveal the molecular mechanisms utilized by Bosea sp. AS-1 to resist As(III) or Sb(III). We discovered that AS-1 acquired various As- and Sb-resistant genes in its genome and might resist As(III) or Sb(III) through the regulation of multiple pathways, such as As and Sb metabolism, the bacterial secretion system, oxidative phosphorylation, the TCA cycle and bacterial flagellar motility. Interestingly, we discovered that genes of the type IV secretion system (T4SS) were activated in response to Sb(III), and inhibiting T4SS activity in AS-1 dramatically reduced its oxidation efficiency and tolerance to Sb(III). To our knowledge, this is the first study showing the activation of T4SS genes by Sb and a direct involvement of T4SS in bacterial Sb resistance. Our findings establish the T4SS as an important Sb resistance factor in bacteria and may help us understand the spread of Sb resistance genes in the environment. | 2022 | 35231521 |
| 8705 | 3 | 0.9994 | Culturable Bacterial Endophytes of Wild White Poplar (Populus alba L.) Roots: A First Insight into Their Plant Growth-Stimulating and Bioaugmentation Potential. The white poplar (Populus alba L.) has good potential for a green economy and phytoremediation. Bioaugmentation using endophytic bacteria can be considered as a safe strategy to increase poplar productivity and its resistance to toxic urban conditions. The aim of our work was to find the most promising strains of bacterial endophytes to enhance the growth of white poplar in unfavorable environmental conditions. To this end, for the first time, we performed whole-genome sequencing of 14 bacterial strains isolated from the tissues of the roots of white poplar in different geographical locations. We then performed a bioinformatics search to identify genes that may be useful for poplar growth and resistance to environmental pollutants and pathogens. Almost all endophytic bacteria obtained from white poplar roots are new strains of known species belonging to the genera Bacillus, Corynebacterium, Kocuria, Micrococcus, Peribacillus, Pseudomonas, and Staphylococcus. The genomes of the strains contain genes involved in the enhanced metabolism of nitrogen, phosphorus, and metals, the synthesis of valuable secondary metabolites, and the detoxification of heavy metals and organic pollutants. All the strains are able to grow on media without nitrogen sources, which indicates their ability to fix atmospheric nitrogen. It is concluded that the strains belonging to the genus Pseudomonas and bacteria of the species Kocuria rosea have the best poplar growth-stimulating and bioaugmentation potential, and the roots of white poplar are a valuable source for isolation of endophytic bacteria for possible application in ecobiotechnology. | 2023 | 38132345 |
| 149 | 4 | 0.9993 | Unravelling the mechanism of arsenic resistance and bioremediation in Stenotrophomonas maltophilia: A molecular approach. The mechanism of arsenic resistance in bacteria is under studied and still lacks a clear understanding despite of wide research work. The advanced technologies can help in analysing the arsenic bioremediating bacteria at a molecular level. With this line of idea, highly efficient arsenic bioremediating S. maltophilia was subjected to extensive analysis to understand the mechanism of arsenic resistance and bioremediation. The cell surface analysis revealed that S. maltophilia induces only slight changes in cell surface in the presence of arsenic. Whereas, TEM analysis has indicated the bioaccumulation of arsenic in S. maltophilia. Also, arsenic was found to generate ROS in a concentration dependant manner, and in response, S. maltophilia activated SOD, catalase, thioredoxin reductase etc. to manage oxidative stress which is very much crucial in managing arsenic toxicity. S. maltophilia was found to possess genes such as arsC, aoxB, aoxC and aioA. These genes are involved in arsenic reduction and oxidation. Transcriptomics and proteomics analysis have shown that S. maltophilia detoxifies arsenic by upregulating ars operon, arsH, BetB etc. which are responsible for arsenic reduction, efflux methylation, oxidation etc. A detailed molecular mechanism of arsenic bioremediation in S. maltophilia was put forth. | 2024 | 39368626 |
| 682 | 5 | 0.9993 | Comparative transcriptome analysis of Brucella melitensis in an acidic environment: Identification of the two-component response regulator involved in the acid resistance and virulence of Brucella. Brucella melitensis, encounters a very stressful environment in phagosomes, especially low pH levels. So identifying the genes that contribute to the replication and survival within an acidic environment is critical in understanding the pathogenesis of the Brucella bacteria. In our research, comparative transcriptome with RNA-seq were used to analyze the changes of genes in normal-medium culture and in pH4.4-medium culture. The results reveal that 113 genes expressed with significant differences (|log2Ratio| ≥ 3); about 44% genes expressed as up-regulated. With GO term analysis, structural constituent of the ribosome, rRNA binding, structural molecule activity, and cation-transporting ATPase activity were significantly enriched (p-value ≤ 0.05). These genes distributed in 51 pathways, in which ribosome and photosynthesis pathways were significantly enriched. Six pathways (oxidative phosphorylation, iron-transporting, bacterial secretion system, transcriptional regulation, two-component system, and ABC transporters pathways) tightly related to the intracellular survival and virulence of Brucella were analyzed. A two-component response regulator gene in the transcriptional regulation pathway, identified through gene deletion and complementary technologies, played an important role in the resistance to the acid-resistance and virulence of Brucella. | 2016 | 26691825 |
| 8149 | 6 | 0.9993 | Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction. The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in bacterial colonization. | 2015 | 26238382 |
| 156 | 7 | 0.9993 | Bacterial Acid Resistance Toward Organic Weak Acid Revealed by RNA-Seq Transcriptomic Analysis in Acetobacter pasteurianus. Under extreme acidic environments, bacteria exploit several acid resistance (AR) mechanisms for enhancing their survival, which is concerned with several aspects, such as issues in human health and fermentation for acidic products. Currently, knowledge of bacterial AR mainly comes from the strong acid (such as hydrochloric acid) stresses, whereas AR mechanisms against organic weak acids (such as acetic acid), which are indeed encountered by bacteria, are less understood. Acetic acid bacteria (AAB), with the ability to produce acetic acid up to 20 g/100 mL, possess outstanding acetic acid tolerance, which is conferred by their unique AR mechanisms, including pyrroloquinoline quinine-dependent alcohol dehydrogenase, acetic acid assimilation and molecular chaperons. The distinguished AR of AAB toward acetic acid may provide a paradigm for research in bacterial AR against weak organic acids. In order to understand AAB's AR mechanism more holistically, omics approaches have been employed in the corresponding field. However, the currently reported transcriptomic study was processed under a low-acidity (1 g/100 mL) environment, which could not reflect the general conditions that AAB are usually faced with. This study performed RNA-Seq transcriptomic analysis investigating AR mechanisms in Acetobacter pasteurianus CGMCC 1.41, a widely used vinegar-brewing AAB strain, at different stages of fermentation, namely, under different acetic acid concentrations (from 0.6 to 6.03 g/100 mL). The results demonstrated the even and clustered genomic distribution of up- and down-regulated genes, respectively. Difference in AR between AAB and other microorganisms was supported by the down-regulation of urea degradation and trehalose synthesis-related genes in response to acetic acid. Detailed analysis reflected the role of ethanol respiration as the main energy source and the limited effect of acetic acid assimilation on AR during fermentation as well as the competition between ethanol respiratory chain and NADH, succinate dehydrogenase-based common respiratory chain. Molecular chaperons contribute to AR, too, but their regulatory mechanisms require further investigation. Moreover, pathways of glucose catabolism and fatty acid biosynthesis are also related to AR. Finally, 2-methylcitrate cycle was proposed as an AR mechanism in AAB for the first time. This study provides new insight into AR mechanisms of AAB, and it also indicates the existence of numerous undiscovered AR mechanisms. | 2019 | 31447789 |
| 8706 | 8 | 0.9993 | Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association. The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant. | 2012 | 22481887 |
| 155 | 9 | 0.9993 | RNA-Seq transcriptomic analysis reveals gene expression profiles of acetic acid bacteria under high-acidity submerged industrial fermentation process. Acetic acid bacteria (AAB) are Gram-negative obligate aerobics in Acetobacteraceae family. Producing acetic acid and brewing vinegars are one of the most important industrial applications of AAB, attributed to their outstanding ability to tolerate the corresponding stresses. Several unique acid resistance (AR) mechanisms in AAB have been revealed previously. However, their overall AR strategies are still less-comprehensively clarified. Consequently, omics analysis was widely performed for a better understanding of this field. Among them, transcriptome has recently obtained more and more attention. However, most currently reported transcriptomic studies were conducted under lab conditions and even in low-acidity environment, which may be unable to completely reflect the conditions that AAB confront under industrialized vinegar-brewing processes. In this study, we performed an RNA-Seq transcriptomic analysis concerning AAB's AR mechanisms during a continuous and periodical industrial submerged vinegar fermentation process, where a single AAB strain performed the fermentation and the acetic acid concentration fluctuated between ~8% and ~12%, the highest acidity as far we know for transcriptomic studies. Samples were directly taken from the initial (CK), mid, and final stages of the same period of the on-going fermentation. 16S rRNA sequence analysis indicated the participation of Komagataeibacter europaeus in the fermentation. Transcriptomic results demonstrated that more genes were downregulated than upregulated at both mid and final stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich analysis reflected that the upregulated genes mainly carried out tricarboxylic acid cycle and oxidative phosphorylation processes, probably implying a considerable role of acetic acid overoxidation in AR during fermentation. Besides, upregulation of riboflavin biosynthesis pathway and two NAD(+)-dependent succinate-semialdehyde dehydrogenase-coding genes suggested a critical role of succinate oxidation in AR. Meanwhile, downregulated genes were mainly ribosomal protein-coding ones, reflecting that the adverse impact on ribosomes initiates at the transcription level. However, it is ambiguous whether the downregulation is good for stress responding or it actually reflects the stress. Furthermore, we also assumed that the fermentation stages may have a greater effect on gene expression than acidity. Additionally, it is possible that some physiological alterations would affect the AR to a larger extent than changes in gene expression, which suggests the combination of molecular biology and physiology research will provide deeper insight into the AR mechanisms in AAB. | 2022 | 36246236 |
| 8694 | 10 | 0.9993 | A genomic perspective of metal-resistant bacteria from gold particles: Possible survival mechanisms during gold biogeochemical cycling. A bacterial consortium was enriched from gold particles that 'experienced' ca. 80 years of biotransformation within waste-rock piles (Australia). This bacterial consortium was exposed to 10 µM AuCl3 to obtain Au-tolerant bacteria. From these isolates, Serratia sp. and Stenotrophomonas sp. were the most Au-tolerant and reduced soluble Au as pure gold nanoparticles, indicating that passive mineralisation is a mechanism for mediating the toxic effect of soluble Au produced during particle dissolution. Genome-wide analysis demonstrated that these isolates also possessed various genes that could provide cellular defence enabling survival under heavy-metal stressed condition by mediating the toxicity of heavy metals through active efflux/reduction. Diverse metal-resistant genes or genes clusters (cop, cus, czc, zntand ars) were detected, which could confer resistance to soluble Au. Comparative genome analysis revealed that the majority of detected heavy-metal resistant genes were similar (i.e. orthologous) to those genes of Cupriavidus metallidurans CH34. The detection of heavy-metal resistance, nutrient cycling and biofilm formation genes (pgaABCD, bsmAandhmpS) may have indirect yet important roles when dealing with soluble Au during particle dissolution. In conclusion, the physiological and genomic results suggest that bacteria living on gold particles would likely use various genes to ensure survival during Au-biogeochemical cycling. | 2020 | 32495831 |
| 144 | 11 | 0.9992 | Genome analysis of Bacillus amyloliquefaciens Subsp. plantarum UCMB5113: a rhizobacterium that improves plant growth and stress management. The Bacillus amyloliquefaciens subsp. plantarum strain UCMB5113 is a Gram-positive rhizobacterium that can colonize plant roots and stimulate plant growth and defense based on unknown mechanisms. This reinforcement of plants may provide protection to various forms of biotic and abiotic stress. To determine the genetic traits involved in the mechanism of plant-bacteria association, the genome sequence of UCMB5113 was obtained by assembling paired-end Illumina reads. The assembled chromosome of 3,889,532 bp was predicted to encode 3,656 proteins. Genes that potentially contribute to plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis and siderophore production were identified. Moreover, annotation identified putative genes responsible for non-ribosomal synthesis of secondary metabolites and genes supporting environment fitness of UCMB5113 including drug and metal resistance. A large number of genes encoding a diverse set of secretory proteins, enzymes of primary and secondary metabolism and carbohydrate active enzymes were found which reflect a high capacity to degrade various rhizosphere macromolecules. Additionally, many predicted membrane transporters provides the bacterium with efficient uptake capabilities of several nutrients. Although, UCMB5113 has the possibility to produce antibiotics and biosurfactants, the protective effect of plants to pathogens seems to be indirect and due to priming of plant induced systemic resistance. The availability of the genome enables identification of genes and their function underpinning beneficial interactions of UCMB5113 with plants. | 2014 | 25119988 |
| 8676 | 12 | 0.9992 | Induced Mutagenesis and Comparative Genomics of Raoultella sp. 64 for Enhanced Antimony Resistance and Biosorption. Antimony-resistant bacteria are potential natural resources for the bioremediation of mining soil pollution. A Raoultella sp. 64 strain was isolated from antimony-contaminated soil. To enhance its Sb resistance abilities, this strain was transported into space aboard the Shenzhou spacecraft for space breeding, resulting in a mutant strain, Raoultella sp. D9. The whole genomes of Raoultella sp. 64 and mutant strain Raoultella sp. D9 were sequenced, revealing the genomic information for the bacterium. Comparative genomic analysis was then carried out to identify differential functional genes. The adsorption conditions for Sb(III) were optimized and refined. Further, Fourier transform infrared spectroscopy (FTIR) was used to determine the adsorption of antimony. Results show that strain D9 exhibits a higher tolerance to Sb(III), and Sb resistance genes were identified in both Raoultella sp. 64 and D9. Analysis of the differential functional genes indicated that the increased copy number of plsX may lead to a higher lipid content in the cell membrane, thereby enhancing the cell's resistance to heavy metals. Mutant strain D9 exhibited better biosorption capacity compared to strain 64. FTIR studies showed that key functional groups, including -OH, C-N, C-H, and C-O, are likely to have participated in Sb(III) biosorption. Further study of the differential functional genes could provide a basis for future research and the subsequent development of technologies for the remediation of Sb-contaminated sites. | 2025 | 40284716 |
| 683 | 13 | 0.9992 | Integrative Multiomics Analysis of the Heat Stress Response of Enterococcus faecium. A continuous heat-adaptation test was conducted for one Enterococcus faecium (E. faecium) strain wild-type (WT) RS047 to obtain a high-temperature-resistant strain. After domestication, the strain was screened with a significantly higher ability of heat resistance. which is named RS047-wl. Then a multi-omics analysis of transcriptomics and metabolomics was used to analyze the mechanism of the heat resistance of the mutant. A total of 98 differentially expressed genes (DEGs) and 115 differential metabolites covering multiple metabolic processes were detected in the mutant, which indicated that the tolerance of heat resistance was regulated by multiple mechanisms. The changes in AgrB, AgrC, and AgrA gene expressions were involved in quorum-sensing (QS) system pathways, which regulate biofilm formation. Second, highly soluble osmotic substances such as putrescine, spermidine, glycine betaine (GB), and trehalose-6P were accumulated for the membrane transport system. Third, organic acids metabolism and purine metabolism were down-regulated. The findings can provide target genes for subsequent genetic modification of E. faecium, and provide indications for screening heat-resistant bacteria, so as to improve the heat-resistant ability of E. faecium for production. | 2023 | 36979372 |
| 157 | 14 | 0.9992 | Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation. | 2008 | 17920150 |
| 8811 | 15 | 0.9992 | Mechanisms controlling the transformation of and resistance to mercury(II) for a plant-associated Pseudomonas sp. strain, AN-B15. Bioremediation using mercury (Hg)-volatilizing and immobilizing bacteria is an eco-friendly and cost-effective strategy for Hg-polluted farmland. However, the mechanisms controlling the transformation of and resistance to Hg(II) by these bacteria remain unknown. In this study, a plant-associated Pseudomonas sp. strain, AN-B15 was isolated and determined to effectively remove Hg(II) under both nutrient-poor and nutrient-rich conditions via volatilization by transforming Hg(II) to Hg(0) and immobilization by transforming Hg(II) to mercury sulfide and Hg-sulfhydryl. Genome and transcriptome analyses revealed that the molecular mechanisms involved in Hg(II) resistance in AN-B15 were a collaborative process involving multiple metabolic systems at the transcriptional level. Under Hg(II) stress, AN-B15 upregulated genes involved in the mer operon and producing the reducing power to rapidly volatilize Hg(II), thereby decreasing its toxicity. Hydroponic culture experiments also revealed that inoculation with strain AN-B15 alleviated Hg-induced toxicity and reduced the uptake of Hg(II) in the roots of wheat seedlings, as explained by the volatilization and immobilization of Hg(II) and plant growth-promoting traits of AN-B15. Overall, the results from the in vitro assays provided vital information that are essential for understanding the mechanism of Hg(II) resistance in plant-associated bacteria, which can also be applied for the bioremediation of Hg-contamination in future. | 2022 | 34915295 |
| 159 | 16 | 0.9992 | Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus. Decarboxylation pathways are widespread among lactic acid bacteria; their physiological role is related to acid resistance through the regulation of the intracellular pH and to the production of metabolic energy via the generation of a proton motive force and its conversion into ATP. These pathways include, among others, biogenic amine (BA) production pathways. BA accumulation in foodstuffs is a health risk; thus, the study of the factors involved in their production is of major concern. The analysis of several lactic acid bacterial strains isolated from different environments, including fermented foods and beverages, revealed that the genes encoding these pathways are clustered on the chromosome, which suggests that these genes are part of a genetic hotspot related to acid stress resistance. Further attention was devoted to the ornithine decarboxylase pathway, which affords putrescine from ornithine. Studies were performed on three lactic acid bacteria belonging to different species. The ODC pathway was always shown to be involved in cytosolic pH alkalinisation and acid shock survival, which were observed to occur with a concomitant increase in putrescine production. | 2014 | 24495587 |
| 8294 | 17 | 0.9992 | Unraveling the genetic mechanisms of UV radiation resistance in Bacillus through biofilm formation, sporulation, and carotenoid production. Bacillus species are Gram-positive bacteria that are rod-shaped, endospore-forming, and aerobic or facultatively anaerobic. With over 300 recognized species, Bacillus subtilis stands out as a well-studied model organism. The genus's various species exhibit a wide range of physiological capabilities, allowing them to thrive in diverse environmental conditions. Each cell produces a single endospore, which is highly resistant to heat, cold, radiation, desiccation, and disinfectants. Among Bacillus strains, those capable of producing spores, biofilms, and carotenoids demonstrate significant resilience to UV light. This review examines the genes involved in spore formation, biofilm development, and carotenoid synthesis, emphasizing their roles in UV radiation survival. We explore the interconnections between these processes and their combined contribution to UV resistance, focusing on the underlying genetic mechanisms. These insights will benefit researchers studying the genetic basis of UV radiation resistance in Bacillus species. IMPORTANCE: Bacteria employ adaptive strategies in extreme environments through rapid changes in gene expression, altering their phenotype for survival. Bacillus species, for example, defend against UV radiation by making spores, creating biofilms, and producing pigments. During sporulation, sigma factors (σ(F), σ(E), σ(G), and σ(K)) regulate gene expression to adapt to environmental shifts. It has been found that the spores of some species may contain pigments that strongly absorb UV radiation, playing a crucial role in spore UV resistance. UV light penetrates biofilm matrices minimally, mainly affecting surface cells, which produce compounds like mycosporine-like amino acids and carotenoids to shield against UV damage. | 2025 | 40456420 |
| 6340 | 18 | 0.9992 | Identification and functional analysis of novel protein-encoding sequences related to stress-resistance. Currently, industrial bioproducts are less competitive than chemically produced goods due to the shortcomings of conventional microbial hosts. Thus, is essential developing robust bacteria for improved cell tolerance to process-specific parameters. In this context, metagenomic approaches from extreme environments can provide useful biological parts to improve bacterial robustness. Here, in order to build genetic constructs that increase bacterial resistance to diverse stress conditions, we recovered novel protein-encoding sequences related to stress-resistance from metagenomic databases using an in silico approach based on Hidden-Markov-Model profiles. For this purpose, we used metagenomic shotgun sequencing data from microbial communities of extreme environments to identify genes encoding chaperones and other proteins that confer resistance to stress conditions. We identified and characterized 10 novel protein-encoding sequences related to the DNA-binding protein HU, the ATP-dependent protease ClpP, and the chaperone protein DnaJ. By expressing these genes in Escherichia coli under several stress conditions (including high temperature, acidity, oxidative and osmotic stress, and UV radiation), we identified five genes conferring resistance to at least two stress conditions when expressed in E. coli. Moreover, one of the identified HU coding-genes which was retrieved from an acidic soil metagenome increased E. coli tolerance to four different stress conditions, implying its suitability for the construction of a synthetic circuit directed to expand broad bacterial resistance. | 2023 | 37840709 |
| 189 | 19 | 0.9992 | Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Pseudomonas sp. strain As-1, obtained from an electroplating industrial effluent, was capable of growing aerobically in growth medium supplemented with up to 65 mM arsenate (As (V)), significantly higher concentrations than those tolerated by other reference arsenic resistant bacteria. The majority of the arsenic was detected in culture supernatants as arsenite (As (III)) and X-ray absorbance spectroscopy suggested that 30% of this cell-bound arsenic was As (V), 65% As (III) and 5% of arsenic was associated with sulphur. PCR analysis using primers designed against arsenic resistance genes of other Gram-negative bacteria confirmed the presence of an arsenic resistance operon comprising of three genes, arsR, arsB and arsC in order of predicted transcription, and consistent with a role in intracellular reduction of As (V) and efflux of As (III). In addition to this classical arsenic resistance mechanism, other biochemical responses to arsenic were implicated. Novel arsenic-binding proteins were purified from cellular fractions, while proteomic analysis of arsenic-induced cultures identified the upregulation of additional proteins not normally associated with the metabolism of arsenic. Cross-talk with a network of proteins involved in phosphate metabolism was suggested by these studies, consistent with the similarity between the phosphate and arsenate anions. | 2007 | 17160678 |