# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8701 | 0 | 1.0000 | Assembling a genome for novel nitrogen-fixing bacteria with capabilities for utilization of aromatic hydrocarbons. Metagenome from refinery wastewater treatment plant running under nitrogen stress was analyzed for mining of novel aromatic hydrocarbon-degrading bacteria. The sequence data were assembled using metaspade followed by binning using the Metabat tool to assemble genome; where coverage and depth were calculated using bowtie and samtools. The analysis picked a novel genome belonging to family Bradyrhizobiaceae, identified based on 16S rDNA gene which was supported by CheckM and Kraken analysis. Using RAST, the assembled genome showed the capabilities for nitrogen fixation with the utilization of multiple hydrocarbon substrates with 14 different types of oxygenases as mapped by Minpath. An additional genetic feature like genes for stress and resistance towards heavy metals and antibiotic suggested that the genome has gone through the rigorous process of adaptation. If such bacteria could be cultivated then it will open the broad window of bioremediation strategies under nitrogen stress environment. | 2019 | 30552976 |
| 9670 | 1 | 0.9992 | An Approach to In Silico Dissection of Bacterial Intelligence Through Selective Genomic Tools. All the genetic potential and the intelligence a bacteria can showcase in a given environment are embedded in its genome. In this study, we have presented systematic guidelines to understand a bacterial genome with the relevant set of in silico tools using a novel bacteria as an example. This study presents a multi-dimensional approach from genome annotation to tracing genes and their network of metabolism operating in an organism. It also shows how the sequence can be used to mine the enzymes and construction of its 3-dimensional structure so that its functional behavior can be predicted and compared. The discriminating algorithm allows analysis of the promoter region and provides the insight in the regulation of genes in spite of the similarity in its sequences. The ecological niche specific bacterial behavior and adapted altered physiology can be understood through the presence of secondary metabolite, antibiotic resistance genes, and viral genes; and it helps in the valorization of genetic information for developing new biological application/processes. This study provides an in silico work plan and necessary steps for genome analysis of novel bacteria without any rigorous wet lab experiments. | 2018 | 30013271 |
| 9004 | 2 | 0.9992 | Shedding light on the bacterial resistance to toxic UV filters: a comparative genomic study. UV filters are toxic to marine bacteria that dominate the marine biomass. Ecotoxicology often studies the organism response but rarely integrates the toxicity mechanisms at the molecular level. In this study, in silico comparative genomics between UV filters sensitive and resistant bacteria were conducted in order to unravel the genes responsible for a resistance phenotype. The genomes of two environmentally relevant Bacteroidetes and three Firmicutes species were compared through pairwise comparison. Larger genomes were carried by bacteria exhibiting a resistant phenotype, favoring their ability to adapt to environmental stresses. While the antitoxin and CRISPR systems were the only distinctive features in resistant Bacteroidetes, Firmicutes displayed multiple unique genes that could support the difference between sensitive and resistant phenotypes. Several genes involved in ROS response, vitamin biosynthesis, xenobiotic degradation, multidrug resistance, and lipophilic compound permeability were shown to be exclusive to resistant species. Our investigation contributes to a better understanding of UV filters resistance phenotypes, by identifying pivotal genes involved in key pathways. | 2021 | 34760358 |
| 8387 | 3 | 0.9992 | Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. A systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes. Using these libraries, we update the set of essential genes known for this organism, provide a comprehensive compendium of B. subtilis auxotrophic genes, and identify genes required for utilizing specific carbon and nitrogen sources, as well as those required for growth at low temperature. We report the identification of enzymes catalyzing several missing steps in amino acid biosynthesis. Finally, we describe a suite of high-throughput phenotyping methodologies and apply them to provide a genome-wide analysis of competence and sporulation. Altogether, we provide versatile resources for studying gene function and pathway and network architecture in Gram-positive bacteria. | 2017 | 28189581 |
| 4368 | 4 | 0.9992 | Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase. BACKGROUND: The ars gene system provides arsenic resistance for a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. A survey of GenBank shows that arsC appears to be phylogenetically widespread both in organisms with known arsenic resistance and those organisms that have been sequenced as part of whole genome projects. RESULTS: Phylogenetic analysis of aligned arsC sequences shows broad similarities to the established 16S rRNA phylogeny, with separation of bacterial, archaeal, and subsequently eukaryotic arsC genes. However, inconsistencies between arsC and 16S rRNA are apparent for some taxa. Cyanobacteria and some of the gamma-Proteobacteria appear to possess arsC genes that are similar to those of Low GC Gram-positive Bacteria, and other isolated taxa possess arsC genes that would not be expected based on known evolutionary relationships. There is no clear separation of plasmid-borne and chromosomal arsC genes, although a number of the Enterobacteriales (gamma-Proteobacteria) possess similar plasmid-encoded arsC sequences. CONCLUSION: The overall phylogeny of the arsenate reductases suggests a single, early origin of the arsC gene and subsequent sequence divergence to give the distinct arsC classes that exist today. Discrepancies between 16S rRNA and arsC phylogenies support the role of horizontal gene transfer (HGT) in the evolution of arsenate reductases, with a number of instances of HGT early in bacterial arsC evolution. Plasmid-borne arsC genes are not monophyletic suggesting multiple cases of chromosomal-plasmid exchange and subsequent HGT. Overall, arsC phylogeny is complex and is likely the result of a number of evolutionary mechanisms. | 2003 | 12877744 |
| 4373 | 5 | 0.9992 | Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such "short-term" evolution is often enabled by plasmids-extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species boundaries. | 2014 | 25426110 |
| 8705 | 6 | 0.9991 | Culturable Bacterial Endophytes of Wild White Poplar (Populus alba L.) Roots: A First Insight into Their Plant Growth-Stimulating and Bioaugmentation Potential. The white poplar (Populus alba L.) has good potential for a green economy and phytoremediation. Bioaugmentation using endophytic bacteria can be considered as a safe strategy to increase poplar productivity and its resistance to toxic urban conditions. The aim of our work was to find the most promising strains of bacterial endophytes to enhance the growth of white poplar in unfavorable environmental conditions. To this end, for the first time, we performed whole-genome sequencing of 14 bacterial strains isolated from the tissues of the roots of white poplar in different geographical locations. We then performed a bioinformatics search to identify genes that may be useful for poplar growth and resistance to environmental pollutants and pathogens. Almost all endophytic bacteria obtained from white poplar roots are new strains of known species belonging to the genera Bacillus, Corynebacterium, Kocuria, Micrococcus, Peribacillus, Pseudomonas, and Staphylococcus. The genomes of the strains contain genes involved in the enhanced metabolism of nitrogen, phosphorus, and metals, the synthesis of valuable secondary metabolites, and the detoxification of heavy metals and organic pollutants. All the strains are able to grow on media without nitrogen sources, which indicates their ability to fix atmospheric nitrogen. It is concluded that the strains belonging to the genus Pseudomonas and bacteria of the species Kocuria rosea have the best poplar growth-stimulating and bioaugmentation potential, and the roots of white poplar are a valuable source for isolation of endophytic bacteria for possible application in ecobiotechnology. | 2023 | 38132345 |
| 9313 | 7 | 0.9991 | Towards an accurate identification of mosaic genes and partial horizontal gene transfers. Many bacteria and viruses adapt to varying environmental conditions through the acquisition of mosaic genes. A mosaic gene is composed of alternating sequence polymorphisms either belonging to the host original allele or derived from the integrated donor DNA. Often, the integrated sequence contains a selectable genetic marker (e.g. marker allowing for antibiotic resistance). An effective identification of mosaic genes and detection of corresponding partial horizontal gene transfers (HGTs) are among the most important challenges posed by evolutionary biology. We developed a method for detecting partial HGT events and related intragenic recombination giving rise to the formation of mosaic genes. A bootstrap procedure incorporated in our method is used to assess the support of each predicted partial gene transfer. The proposed method can be also applied to confirm or discard complete (i.e. traditional) horizontal gene transfers detected by any HGT inferring method. While working on a full-genome scale, the new method can be used to assess the level of mosaicism in the considered genomes as well as the rates of complete and partial HGT underlying their evolution. | 2011 | 21917854 |
| 9350 | 8 | 0.9991 | Genome DNA Sequence Variation, Evolution, and Function in Bacteria and Archaea. Comparative genomics has revealed that variations in bacterial and archaeal genome DNA sequences cannot be explained by only neutral mutations. Virus resistance and plasmid distribution systems have resulted in changes in bacterial and archaeal genome sequences during evolution. The restriction-modification system, a virus resistance system, leads to avoidance of palindromic DNA sequences in genomes. Clustered, regularly interspaced, short palindromic repeats (CRISPRs) found in genomes represent yet another virus resistance system. Comparative genomics has shown that bacteria and archaea have failed to gain any DNA with GC content higher than the GC content of their chromosomes. Thus, horizontally transferred DNA regions have lower GC content than the host chromosomal DNA does. Some nucleoid-associated proteins bind DNA regions with low GC content and inhibit the expression of genes contained in those regions. This form of gene repression is another type of virus resistance system. On the other hand, bacteria and archaea have used plasmids to gain additional genes. Virus resistance systems influence plasmid distribution. Interestingly, the restriction-modification system and nucleoid-associated protein genes have been distributed via plasmids. Thus, GC content and genomic signatures do not reflect bacterial and archaeal evolutionary relationships. | 2013 | 22772895 |
| 6340 | 9 | 0.9991 | Identification and functional analysis of novel protein-encoding sequences related to stress-resistance. Currently, industrial bioproducts are less competitive than chemically produced goods due to the shortcomings of conventional microbial hosts. Thus, is essential developing robust bacteria for improved cell tolerance to process-specific parameters. In this context, metagenomic approaches from extreme environments can provide useful biological parts to improve bacterial robustness. Here, in order to build genetic constructs that increase bacterial resistance to diverse stress conditions, we recovered novel protein-encoding sequences related to stress-resistance from metagenomic databases using an in silico approach based on Hidden-Markov-Model profiles. For this purpose, we used metagenomic shotgun sequencing data from microbial communities of extreme environments to identify genes encoding chaperones and other proteins that confer resistance to stress conditions. We identified and characterized 10 novel protein-encoding sequences related to the DNA-binding protein HU, the ATP-dependent protease ClpP, and the chaperone protein DnaJ. By expressing these genes in Escherichia coli under several stress conditions (including high temperature, acidity, oxidative and osmotic stress, and UV radiation), we identified five genes conferring resistance to at least two stress conditions when expressed in E. coli. Moreover, one of the identified HU coding-genes which was retrieved from an acidic soil metagenome increased E. coli tolerance to four different stress conditions, implying its suitability for the construction of a synthetic circuit directed to expand broad bacterial resistance. | 2023 | 37840709 |
| 9327 | 10 | 0.9991 | Detection of the merA gene and its expression in the environment. Bacterial transformation of mercury in the environment has received much attention owing to the toxicity of both the ionic form and organomercurial compounds. Bacterial resistance to mercury and the role of bacteria in mercury cycling have been widely studied. The genes specifying the required functions for resistance to mercury are organized on the mer operon. Gene probing methodologies have been used for several years to detect specific gene sequences in the environment that are homologous to cloned mer genes. While mer genes have been detected in a wide variety of environments, less is known about the expression of these genes under environmental conditions. We combined new methodologies for recovering specific gene mRNA transcripts and mercury detection with a previously described method for determining biological potential for mercury volatilization to examine the effect of mercury concentrations and nutrient availability on rates of mercury volatilization and merA transcription. Levels of merA-specific transcripts and Hg(II) volatilization were influenced more by microbial activity (as manipulated by nutrient additions) than by the concentration of total mercury. The detection of merA-specific transcripts in some samples that did not reduce Hg(II) suggests that rates of mercury volatilization in the environment may not always be proportional to merA transcription. | 1996 | 8849424 |
| 9708 | 11 | 0.9991 | Potential dissemination of antibiotic resistance genes from transgenic plants to microorganisms. Evidence that genes were transferred during evolution from plants to bacteria was obtained from nucleotide and protein sequence analyses. However, the extent of such transfers among phylogenetically distant organisms is limited by various factors, including those related to complexity of the environment and those endogenous to the bacteria, designed to prevent a drift of the genome integrity. The goal of this article is to give an overview of the potentials and limits of natural interkingdom gene transfers, with a particular focus on prokaryote originating sequences fitting the nuclear genome of transgenic plants. | 2000 | 10879570 |
| 7699 | 12 | 0.9991 | Effects of different assembly strategies on gene annotation in activated sludge. Activated sludge comprises diverse bacteria, fungi, and other microorganisms, featuring a rich repertoire of genes involved in antibiotic resistance, pollutant degradation, and elemental cycling. In this regard, hybrid assembly technology can revolutionize metagenomics by detecting greater gene diversity in environmental samples. Nonetheless, the optimal utilization and comparability of genomic information between hybrid assembly and short- or long-read technology remain unclear. To address this gap, we compared the performance of the hybrid assembly, short- and long-read technologies, abundance and diversity of annotated genes, and taxonomic diversity by analysing 46, 161, and 45 activated sludge metagenomic datasets, respectively. The results revealed that hybrid assembly technology exhibited the best performance, generating the most contiguous and longest contigs but with a lower proportion of high-quality metagenome-assembled genomes than short-read technology. Compared with short- or long-read technologies, hybrid assembly technology can detect a greater diversity of microbiota and antibiotic resistance genes, as well as a wider range of potential hosts. However, this approach may yield lower gene abundance and pathogen detection. Our study revealed the specific advantages and disadvantages of hybrid assembly and short- and long-read applications in wastewater treatment plants, and our approach could serve as a blueprint to be extended to terrestrial environments. | 2024 | 38734289 |
| 8694 | 13 | 0.9991 | A genomic perspective of metal-resistant bacteria from gold particles: Possible survival mechanisms during gold biogeochemical cycling. A bacterial consortium was enriched from gold particles that 'experienced' ca. 80 years of biotransformation within waste-rock piles (Australia). This bacterial consortium was exposed to 10 µM AuCl3 to obtain Au-tolerant bacteria. From these isolates, Serratia sp. and Stenotrophomonas sp. were the most Au-tolerant and reduced soluble Au as pure gold nanoparticles, indicating that passive mineralisation is a mechanism for mediating the toxic effect of soluble Au produced during particle dissolution. Genome-wide analysis demonstrated that these isolates also possessed various genes that could provide cellular defence enabling survival under heavy-metal stressed condition by mediating the toxicity of heavy metals through active efflux/reduction. Diverse metal-resistant genes or genes clusters (cop, cus, czc, zntand ars) were detected, which could confer resistance to soluble Au. Comparative genome analysis revealed that the majority of detected heavy-metal resistant genes were similar (i.e. orthologous) to those genes of Cupriavidus metallidurans CH34. The detection of heavy-metal resistance, nutrient cycling and biofilm formation genes (pgaABCD, bsmAandhmpS) may have indirect yet important roles when dealing with soluble Au during particle dissolution. In conclusion, the physiological and genomic results suggest that bacteria living on gold particles would likely use various genes to ensure survival during Au-biogeochemical cycling. | 2020 | 32495831 |
| 171 | 14 | 0.9991 | Codon usage bias reveals genomic adaptations to environmental conditions in an acidophilic consortium. The analysis of codon usage bias has been widely used to characterize different communities of microorganisms. In this context, the aim of this work was to study the codon usage bias in a natural consortium of five acidophilic bacteria used for biomining. The codon usage bias of the consortium was contrasted with genes from an alternative collection of acidophilic reference strains and metagenome samples. Results indicate that acidophilic bacteria preferentially have low codon usage bias, consistent with both their capacity to live in a wide range of habitats and their slow growth rate, a characteristic probably acquired independently from their phylogenetic relationships. In addition, the analysis showed significant differences in the unique sets of genes from the autotrophic species of the consortium in relation to other acidophilic organisms, principally in genes which code for proteins involved in metal and oxidative stress resistance. The lower values of codon usage bias obtained in this unique set of genes suggest higher transcriptional adaptation to living in extreme conditions, which was probably acquired as a measure for resisting the elevated metal conditions present in the mine. | 2018 | 29742107 |
| 172 | 15 | 0.9991 | Molecular characterization influencing metal resistance in the Cupriavidus/Ralstonia genomes. Our environment is stressed with a load of heavy and toxic metals. Microbes, abundant in our environment, are found to adapt well to this metal-stressed condition. A comparative study among five Cupriavidus/Ralstonia genomes can offer a better perception of their evolutionary mechanisms to adapt to these conditions. We have studied codon usage among 1051 genes common to all these organisms and identified 15 optimal codons frequently used in highly expressed genes present within 1051 genes. We found the core genes of Cupriavidus metallidurans CH34 have a different optimal codon choice for arginine, glycine and alanine in comparison with the other four bacteria. We also found that the synonymous codon usage bias within these 1051 core genes is highly correlated with their gene expression. This supports that translational selection drives synonymous codon usage in the core genes of these genomes. Synonymous codon usage is highly conserved in the core genes of these five genomes. The only exception among them is C. metallidurans CH34. This genomewide shift in synonymous codon choice in C. metallidurans CH34 may have taken place due to the insertion of new genes in its genomes facilitating them to survive in heavy metal containing environment and the co-evolution of the other genes in its genome to achieve a balance in gene expression. Structural studies indicated the presence of a longer N-terminal region containing a copper-binding domain in the cupC proteins of C. metallidurans CH3 that helps it to attain higher binding efficacy with copper in comparison with its orthologs. | 2015 | 26156561 |
| 9345 | 16 | 0.9991 | Replacement of the arginine biosynthesis operon in Xanthomonadales by lateral gene transfer. The role of lateral gene transfer (LGT) in prokaryotes has been shown to rapidly change the genome content, providing new gene tools for environmental adaptation. Features related to pathogenesis and resistance to strong selective conditions have been widely shown to be products of gene transfer between bacteria. The genomes of the gamma-proteobacteria from the genus Xanthomonas, composed mainly of phytopathogens, have potential genomic islands that may represent imprints of such evolutionary processes. In this work, the evolution of genes involved in the pathway responsible for arginine biosynthesis in Xanthomonadales was investigated, and several lines of evidence point to the foreign origin of the arg genes clustered within a potential operon. Their presence inside a potential genomic island, bordered by a tRNA gene, the unusual ranking of sequence similarity, and the atypical phylogenies indicate that the metabolic pathway for arginine biosynthesis was acquired through LGT in the Xanthomonadales group. Moreover, although homologues were also found in Bacteroidetes (Flavobacteria group), for many of the genes analyzed close homologues are detected in different life domains (Eukarya and Archaea), indicating that the source of these arg genes may have been outside the Bacteria clade. The possibility of replacement of a complete primary metabolic pathway by LGT events supports the selfish operon hypothesis and may occur only under very special environmental conditions. Such rare events reveal part of the history of these interesting mosaic Xanthomonadales genomes, disclosing the importance of gene transfer modifying primary metabolism pathways and extending the scenario for bacterial genome evolution. | 2008 | 18305979 |
| 281 | 17 | 0.9991 | Detection of potential transgenic plant DNA recipients among soil bacteria. The likelihood of gene transfer from transgenic plants to bacteria is dependent on gene number and the presence of homologous sequences. The large number of transgene copies in transplastomic (transgenes contained in the chloroplast genome) plant cells as well as the prokaryotic origin of the transgene, may thus significantly increase the likelihood of gene transfer to bacteria that colonize plant tissues. In order to assess the probability of such transfer, the length of homologous DNA sequences required between the transgene and the genome of the bacterial host was assessed. In addition, the probability that bacteria, which co-infect diseased plants, are transformable and have sequences similar to the flanking regions of the transgene was evaluated. Using Acinetobacter baylyi strain BD143 and transplastomic tobacco plants harboring the aadA gene (streptomycin and spectinomycin resistance), we found that sequences identical to the flanking regions containing as few as 55 nucleotides were sufficient for recombination to occur. Consequently, a collection of bacterial isolates able to colonize tobacco plant tissue infected by Ralstonia solanacearum strain K60 was obtained, screened for DNA sequence similarity with the chloroplastic genes accD and rbcL flanking the transgene, and tested for their ability to uptake extracellular DNA (broad host-range pBBR1MCS plasmids) by natural or electro-transformation. Results showed that among the 288 bacterial isolates tested, 8% presented DNA sequence similarity with one or both chloroplastic regions flanking the transgene. Two isolates, identified as Pseudomonas sp. and Acinetobacter sp., were able to integrate exogenous plasmid DNA by electro-transformation and natural transformation, respectively. Our data suggest that transplastomic plant DNA recipients might be present in soil bacterial communities. | 2007 | 17961481 |
| 8406 | 18 | 0.9991 | Available cloned genes and markers for genetic improvement of biotic stress resistance in rice. Biotic stress is one of the major threats to stable rice production. Climate change affects the shifting of pest outbreaks in time and space. Genetic improvement of biotic stress resistance in rice is a cost-effective and environment-friendly way to control diseases and pests compared to other methods such as chemical spraying. Fast deployment of the available and suitable genes/alleles in local elite varieties through marker-assisted selection (MAS) is crucial for stable high-yield rice production. In this review, we focused on consolidating all the available cloned genes/alleles conferring resistance against rice pathogens (virus, bacteria, and fungus) and insect pests, the corresponding donor materials, and the DNA markers linked to the identified genes. To date, 48 genes (independent loci) have been cloned for only major biotic stresses: seven genes for brown planthopper (BPH), 23 for blast, 13 for bacterial blight, and five for viruses. Physical locations of the 48 genes were graphically mapped on the 12 rice chromosomes so that breeders can easily find the locations of the target genes and distances among all the biotic stress resistance genes and any other target trait genes. For efficient use of the cloned genes, we collected all the publically available DNA markers (~500 markers) linked to the identified genes. In case of no available cloned genes yet for the other biotic stresses, we provided brief information such as donor germplasm, quantitative trait loci (QTLs), and the related papers. All the information described in this review can contribute to the fast genetic improvement of biotic stress resistance in rice for stable high-yield rice production. | 2023 | 37731986 |
| 4374 | 19 | 0.9991 | Core genes can have higher recombination rates than accessory genes within global microbial populations. Recombination is essential to microbial evolution, and is involved in the spread of antibiotic resistance, antigenic variation, and adaptation to the host niche. However, assessing the impact of homologous recombination on accessory genes which are only present in a subset of strains of a given species remains challenging due to their complex phylogenetic relationships. Quantifying homologous recombination for accessory genes (which are important for niche-specific adaptations) in comparison to core genes (which are present in all strains and have essential functions) is critical to understanding how selection acts on variation to shape species diversity and genome structures of bacteria. Here, we apply a computationally efficient, non-phylogenetic approach to measure homologous recombination rates in the core and accessory genome using >100,000 whole genome sequences from Streptococcus pneumoniae and several additional species. By analyzing diverse sets of sequence clusters, we show that core genes often have higher recombination rates than accessory genes, and for some bacterial species the associated effect sizes for these differences are pronounced. In a subset of species, we find that gene frequency and homologous recombination rate are positively correlated. For S. pneumoniae and several additional species, we find that while the recombination rate is higher for the core genome, the mutational divergence is lower, indicating that divergence-based homologous recombination barriers could contribute to differences in recombination rates between the core and accessory genome. Homologous recombination may therefore play a key role in increasing the efficiency of selection in the most conserved parts of the genome. | 2022 | 35801696 |