Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
869101.0000Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.201626860944
869210.9999Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Arsenic, distributed pervasively in the natural environment, is an extremely toxic substance which can severely impair the normal functions of living cells. Research on the genetic mechanisms of arsenic metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. This review summarizes arsenic detoxification as well as arsenic respiratory metabolic pathways in bacteria and discusses novel arsenic resistance pathways in various bacterial strains. This knowledge provides insights into the mechanisms of arsenic biotransformation in bacteria. Multiple detoxification strategies among bacteria imply possible functional relationships among different arsenic detoxification/metabolism pathways. In addition, this review sheds light on the bioremediation of arsenic-contaminated environments and prevention of antibiotic resistance.201930349994
932320.9998Metal resistance and accumulation in bacteria. Recent research on the ecology, physiology and genetics of metal resistance and accumulation in bacteria has significantly increased the basic understanding of microbiology in these areas. Research has clearly demonstrated the versatility of bacteria to cope with toxic metal ions. For example, certain strains of bacteria can efficiently efflux toxic ions such as cadmium, that normally exert an inhibitory effect on bacteria. Some bacteria such as Escherichia coli and Staphylococcus sp. can volatilize mercury via enzymatic transformations. It is also noteworthy that many of these resistance mechanisms are encoded on plasmids or transposons. By expanding the knowledge on metal-resistance and accumulation mechanisms in bacteria, it may be possible to utilize certain strains to recover precious metals such as gold and silver, or alternatively remove toxic metal ions from environments or products where their presence is undesirable.198714543146
932230.9998Copper uptake and resistance in bacteria. Copper ions are essential for bacteria but can cause a number of toxic cellular effects if levels of free ions are not controlled. Investigations of copper-resistant bacteria have revealed several mechanisms, mostly plasmid-determined, that prevent cellular uptake of high levels of free copper ions. However, these studies have also revealed that bacteria apparently have efficient chromosomally encoded systems for uptake and management of trace levels of copper. This review will explore the relationship of copper uptake systems to resistance mechanisms and the possibility that copper resistance has evolved directly through modification of chromosomal copper uptake genes.19938437513
869040.9998Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. Mercury (Hg) is a highly toxic element that occurs at low concentrations in nature. However, various anthropogenic and natural sources contribute around 5000 to 8000 metric tons of Hg per year, rapidly deteriorating the environmental conditions. Mercury-resistant bacteria that possess the mer operon system have the potential for Hg bioremediation through volatilization from the contaminated milieus. Thus, bacterial mer operon plays a crucial role in Hg biogeochemistry and bioremediation by converting both reactive inorganic and organic forms of Hg to relatively inert, volatile, and monoatomic forms. Both the broad-spectrum and narrow-spectrum bacteria harbor many genes of mer operon with their unique definitive functions. The presence of mer genes or proteins can regulate the fate of Hg in the biogeochemical cycle in the environment. The efficiency of Hg transformation depends upon the nature and diversity of mer genes present in mercury-resistant bacteria. Additionally, the bacterial cellular mechanism of Hg resistance involves reduced Hg uptake, extracellular sequestration, and bioaccumulation. The presence of unique physiological properties in a specific group of mercury-resistant bacteria enhances their bioremediation capabilities. Many advanced biotechnological tools also can improve the bioremediation efficiency of mercury-resistant bacteria to achieve Hg bioremediation.202234464861
932150.9998Copper resistance determinants in bacteria. Copper is an essential trace element that is utilized in a number of oxygenases and electron transport proteins, but it is also a highly toxic heavy metal, against which all organisms must protect themselves. Known bacterial determinants of copper resistance are plasmid-encoded. The mechanisms which confer resistance must be integrated with the normal metabolism of copper. Different bacteria have adopted diverse strategies for copper resistance, and this review outlines what is known about bacterial copper resistance mechanisms and their genetic regulation.19921741459
973160.9998Towards an understanding of the genetics of bacterial metal resistance. Many bacteria show great promise for use in metal recovery. However, the genetics of metal-leaching, accumulation-resistance, and oxidation/reduction mechanisms of these bacteria is still an area of research in its infancy. The introduction of such genes into bacteria of economic importance would have application in biomining and environmental bioremediation.19911366923
863270.9998Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management. Arsenic (As) is a nonessential element that is often present in plants and in other organisms. However, it is one of the most hazardous of toxic elements globally. In many parts of the world, arsenic contamination in groundwater is a serious and continuing threat to human health. Microbes play an important role in regulating the environmental fate of arsenic. Different microbial processes influence the biogeochemical cycling of arsenic in ways that affect the accumulation of different arsenic species in various ecosystem compartments. For example, in soil, there are bacteria that methylate arsenite to trimethylarsine gas, thereby releasing arsenic to the atmosphere.In marine ecosystems, microbes exist that can convert inorganic arsenicals to organic arsenicals (e.g., di- and tri-methylated arsenic derivatives, arsenocholine,arsenobetaine, arsenosugars, arsenolipids). The organo arsenicals are further metabolized to complete the arsenic cycle.Microbes have developed various strategies that enable them to tolerate arsenic and to survive in arsenic-rich environments. Such strategies include As exclusion from cells by establishing permeability barrier, intra- and extracellular sequestration,active efflux pumps, enzymatic reduction, and reduction in the sensitivity of cellular targets. These strategies are used either singly or in combination. In bacteria,the genes for arsenic resistance/detoxification are encoded by the arsenic resistance operons (ars operon).In this review, we have addressed and emphasized the impact of different microbial processes (e.g., arsenite oxidation, cytoplasmic arsenate reduction, respiratory arsenate reduction, arsenite methylation) on the arsenic cycle. Microbes are the only life forms reported to exist in heavy arsenic-contaminated environments. Therefore,an understanding of the strategies adopted by microbes to cope with arsenic stress is important in managing such arsenic-contaminated sites. Further future insights into the different microbial genes/proteins that are involved in arsenic resistance may also be useful for developing arsenic resistant crop plants.201323232917
932580.9998Dissemination and conservation of cadmium and arsenic resistance determinants in Listeria and other Gram-positive bacteria. Metal homeostasis in bacteria is a complex and delicate balance. While some metals such as iron and copper are essential for cellular functions, others such as cadmium and arsenic are inherently cytotoxic. While bacteria regularly encounter essential metals, exposure to high levels of toxic metals such as cadmium and arsenic is only experienced in a handful of special habitats. Nonetheless, Listeria and other Gram-positive bacteria have evolved an impressively diverse array of genetic tools for acquiring enhanced tolerance to such metals. Here, we summarize this fascinating collection of resistance determinants in Listeria, with special focus on resistance to cadmium and arsenic, as well as to biocides and antibiotics. We also provide a comparative description of such resistance determinants and adaptations in other Gram-positive bacteria. The complex coselection of heavy metal resistance and other types of resistance seems to be universal across the Gram-positive bacteria, while the type of coselected traits reflects the lifestyle of the specific microbe. The roles of heavy metal resistance genes in environmental adaptation and virulence appear to vary by genus, highlighting the need for further functional studies to explain the mystery behind the array of heavy metal resistance determinants dispersed and maintained among Gram-positive bacteria.202031972871
973290.9998Interactions of heavy metals with bacteria. The toxicity of heavy metals to bacteria, with particular reference to metal forms and species, has been reviewed. Factors which influence metal forms and thus their potential toxicity, such as pH, chelation and competitive interactions have been discussed. The mechanisms whereby bacteria may influence the forms of heavy metals to which they are exposed have been discussed with reference to the importance of the role of bacteria in immobilisation and environmental cycling of metals. Bacterial resistance to metal toxicity is an environmentally important phenomenon. It may occur from non-specific mechanisms, such as impermeability of the cell, or it may be due to specific resistance transfer factors. The coincidence and co-selection of resistance factors for antibiotics and heavy metals in bacterial populations and the clinical implications of this have been described.19806988964
8689100.9998Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI), which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each of these microorganisms. It is expected that a detailed knowledge of the mechanisms that these environmental microorganisms use to adapt to their harsh niche will help to improve biomining and metal bioremediation in industrial processes.201324510139
8634110.9998Synthetic bacteria designed using ars operons: a promising solution for arsenic biosensing and bioremediation. The global concern over arsenic contamination in water due to its natural occurrence and human activities has led to the development of innovative solutions for its detection and remediation. Microbial metabolism and mobilization play crucial roles in the global cycle of arsenic. Many microbial arsenic-resistance systems, especially the ars operons, prevalent in bacterial plasmids and genomes, play vital roles in arsenic resistance and are utilized as templates for designing synthetic bacteria. This review novelty focuses on the use of these tailored bacteria, engineered with ars operons, for arsenic biosensing and bioremediation. We discuss the advantages and disadvantages of using synthetic bacteria in arsenic pollution treatment. We highlight the importance of genetic circuit design, reporter development, and chassis cell optimization to improve biosensors' performance. Bacterial arsenic resistances involving several processes, such as uptake, transformation, and methylation, engineered in customized bacteria have been summarized for arsenic bioaccumulation, detoxification, and biosorption. In this review, we present recent insights on the use of synthetic bacteria designed with ars operons for developing tailored bacteria for controlling arsenic pollution, offering a promising avenue for future research and application in environmental protection.202438709285
9288120.9997Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach.19957766205
8637130.9997Microbial reduction and resistance to selenium: Mechanisms, applications and prospects. Selenium is an essential trace element for humans, animals and microorganisms. Microbial transformations, in particular, selenium dissimilatory reduction and bioremediation applications have received increasing attention in recent years. This review focuses on multiple Se-reducing pathways under anaerobic and aerobic conditions, and the phylogenetic clustering of selenium reducing enzymes that are involved in these processes. It is emphasized that a selenium reductase may have more than one metabolic function, meanwhile, there are several Se(VI) and/or Se(IV) reduction pathways in a bacterial strain. It is noted that Se(IV)-reducing efficiency is inconsistent with Se(IV) resistance in bacteria. Moreover, we discussed the links of selenium transformations to biogeochemical cycling of other elements, roles of Se-reducing bacteria in soil, plant and digestion system, and the possibility of using functional genes involved in Se transformation as biomarker in different environments. In addition, we point out the gaps and perspectives both on Se transformation mechanisms and applications in terms of bioremediation, Se fortification or dietary supplementation.202234339989
8631140.9997Bacterial metal(loid) resistance genes (MRGs) and their variation and application in environment: A review. Toxic metal(loid)s are widespread and permanent in the biosphere, and bacteria have evolved a wide variety of metal(loid) resistance genes (MRGs) to resist the stress of excess metal(loid)s. Via active efflux, permeability barriers, extracellular/intracellular sequestration, enzymatic detoxification and reduction in metal(loid)s sensitivity of cellular targets, the key components of bacterial cells are protected from toxic metal(loid)s to maintain their normal physiological functions. Exploiting bacterial metal(loid) resistance mechanisms, MRGs have been applied in many environmental fields. Based on the specific binding ability of MRGs-encoded regulators to metal(loid)s, MRGs-dependent biosensors for monitoring environmental metal(loid)s are developed. MRGs-related biotechnologies have been applied to environmental remediation of metal(loid)s by using the metal(loid) tolerance, biotransformation, and biopassivation abilities of MRGs-carrying microorganisms. In this work, we review the historical evolution, resistance mechanisms, environmental variation, and environmental applications of bacterial MRGs. The potential hazards, unresolved problems, and future research directions are also discussed.202336758696
9320150.9997Bacterial resistance to arsenic protects against protist killing. Protists kill their bacterial prey using toxic metals such as copper. Here we hypothesize that the metalloid arsenic has a similar role. To test this hypothesis, we examined intracellular survival of Escherichia coli (E. coli) in the amoeba Dictyostelium discoideum (D. discoideum). Deletion of the E. coli ars operon led to significantly lower intracellular survival compared to wild type E. coli. This suggests that protists use arsenic to poison bacterial cells in the phagosome, similar to their use of copper. In response to copper and arsenic poisoning by protists, there is selection for acquisition of arsenic and copper resistance genes in the bacterial prey to avoid killing. In agreement with this hypothesis, both copper and arsenic resistance determinants are widespread in many bacterial taxa and environments, and they are often found together on plasmids. A role for heavy metals and arsenic in the ancient predator-prey relationship between protists and bacteria could explain the widespread presence of metal resistance determinants in pristine environments.201728210928
9324160.9997Role of horizontally transferred copper resistance genes in Staphylococcus aureus and Listeria monocytogenes. Bacteria have evolved mechanisms which enable them to control intracellular concentrations of metals. In the case of transition metals, such as copper, iron and zinc, bacteria must ensure enough is available as a cofactor for enzymes whilst at the same time preventing the accumulation of excess concentrations, which can be toxic. Interestingly, metal homeostasis and resistance systems have been found to play important roles in virulence. This review will discuss the copper homeostasis and resistance systems in Staphylococcus aureus and Listeria monocytogenes and the implications that acquisition of additional copper resistance genes may have in these pathogens.202235404222
9729170.9997Omics technology draws a comprehensive heavy metal resistance strategy in bacteria. The rapid industrial revolution significantly increased heavy metal pollution, becoming a major global environmental concern. This pollution is considered as one of the most harmful and toxic threats to all environmental components (air, soil, water, animals, and plants until reaching to human). Therefore, scientists try to find a promising and eco-friendly technique to solve this problem i.e., bacterial bioremediation. Various heavy metal resistance mechanisms were reported. Omics technologies can significantly improve our understanding of heavy metal resistant bacteria and their communities. They are a potent tool for investigating the adaptation processes of microbes in severe conditions. These omics methods provide unique benefits for investigating metabolic alterations, microbial diversity, and mechanisms of resistance of individual strains or communities to harsh conditions. Starting with genome sequencing which provides us with complete and comprehensive insight into the resistance mechanism of heavy metal resistant bacteria. Moreover, genome sequencing facilitates the opportunities to identify specific metal resistance genes, operons, and regulatory elements in the genomes of individual bacteria, understand the genetic mechanisms and variations responsible for heavy metal resistance within and between bacterial species in addition to the transcriptome, proteome that obtain the real expressed genes. Moreover, at the community level, metagenome, meta transcriptome and meta proteome participate in understanding the microbial interactive network potentially novel metabolic pathways, enzymes and gene species can all be found using these methods. This review presents the state of the art and anticipated developments in the use of omics technologies in the investigation of microbes used for heavy metal bioremediation.202438709343
9730180.9997At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance. Environmental influences on antibiotic activity and resistance can wreak havoc with in vivo antibiotic efficacy and, ultimately, antimicrobial chemotherapy. In nature, bacteria encounter a variety of metal ions, particularly copper (Cu) and zinc (Zn), as contaminants in soil and water, as feed additives in agriculture, as clinically-used antimicrobials, and as components of human antibacterial responses. Importantly, there is a growing body of evidence for Cu/Zn driving antibiotic resistance development in metal-exposed bacteria, owing to metal selection of genetic elements harbouring both metal and antibiotic resistance genes, and metal recruitment of antibiotic resistance mechanisms. Many classes of antibiotics also form complexes with metal cations, including Cu and Zn, and this can hinder (or enhance) antibiotic activity. This review highlights the ways in which Cu/Zn influence antibiotic resistance development and antibiotic activity, and in so doing impact in vivo antibiotic efficacy.201728526548
169190.9997Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. The soil bacterium Cupriavidus metallidurans CH34 contains a high number of heavy metal resistance genes making it an interesting model organism to study microbial responses to heavy metals. In this study the transcriptional response of strain CH34 was measured when challenged to sub-lethal concentrations of various essential or toxic metals. Based on the global transcriptional responses for each challenge and the overlap in upregulated genes between different metal responses, the sixteen metals were clustered in three groups. In addition, the transcriptional response of already known metal resistance genes was assessed, and new metal response gene clusters were identified. The majority of the studied metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex interplay at transcriptional level between the different metal responses. The pronounced redundancy of these metal resistant regions-as illustrated by the large number of paralogous genes-combined with the phylogenetic distribution of these metal response regions within either evolutionary related or other metal resistant bacteria, provides important insights on the recent evolutionary forces shaping this naturally soil-dwelling bacterium into a highly metal-resistant strain well adapted to harsh and anthropogenic environments.201121706166