Wildfire-dependent changes in soil microbiome diversity and function. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
866001.0000Wildfire-dependent changes in soil microbiome diversity and function. Forest soil microbiomes have crucial roles in carbon storage, biogeochemical cycling and rhizosphere processes. Wildfire season length, and the frequency and size of severe fires have increased owing to climate change. Fires affect ecosystem recovery and modify soil microbiomes and microbially mediated biogeochemical processes. To study wildfire-dependent changes in soil microbiomes, we characterized functional shifts in the soil microbiota (bacteria, fungi and viruses) across burn severity gradients (low, moderate and high severity) 1 yr post fire in coniferous forests in Colorado and Wyoming, USA. We found severity-dependent increases of Actinobacteria encoding genes for heat resistance, fast growth, and pyrogenic carbon utilization that might enhance post-fire survival. We report that increased burn severity led to the loss of ectomycorrhizal fungi and less tolerant microbial taxa. Viruses remained active in post-fire soils and probably influenced carbon cycling and biogeochemistry via turnover of biomass and ecosystem-relevant auxiliary metabolic genes. Our genome-resolved analyses link post-fire soil microbial taxonomy to functions and reveal the complexity of post-fire soil microbiome activity.202236008619
866210.9994Relationships between Phyllosphere Bacterial Communities and Leaf Functional Traits in a Temperate Forest. As a vital component of biodiversity, phyllosphere bacteria in forest canopy play a critical role in maintaining plant health and influencing the global biogeochemical cycle. There is limited research on the community structure of phyllosphere bacteria in natural forests, which creates a gap in our understanding of whether and/or how phyllosphere bacteria are connected to leaf traits of their host. In this study, we investigated the bacterial diversity and composition of the canopy leaves of six dominant tree species in deciduous broad-leaved forests in northeastern China, using high-throughput sequencing. We then compare the differences in phyllosphere bacterial community structure and functional genes of dominant tree species. Fourteen key leaf functional traits of their host trees were also measured according to standard protocols to investigate the relationships between bacterial community composition and leaf functional traits. Our result suggested that tree species with closer evolutionary distances had similar phyllosphere microbial alpha diversity. The dominant phyla of phyllosphere bacteria were Proteobacteria, Actinobacteria, and Firmicutes. For these six tree species, the functional genes of phyllosphere bacteria were mainly involved in amino acid metabolism and carbohydrate metabolism processes. The redundancy and envfit analysis results showed that the functional traits relating to plant nutrient acquisition and resistance to diseases and pests (such as leaf area, isotope carbon content, and copper content) were the main factors influencing the community structure of phyllosphere bacteria. This study highlights the key role of plant interspecific genetic relationships and plant attributes in shaping phyllosphere bacterial diversity.202338005751
752220.9994Plants select antibiotic resistome in rhizosphere in early stage. Knowledge of the dissemination and emergence of antibiotic resistance genes (ARGs) in the plant rhizosphere is essential for evaluating the risk of the modern ARGs in soil planetary health. However, little is known about the selection mechanism in the plant rhizosphere. Here, we firstly analyzed the dynamic changes in the rhizosphere antibiotic resistome during the process of three passage enrichment of the rhizosphere microbiome in Arabidopsis thaliana (Col-0) and found evidence that plants directionally enriched levels of beneficial functional bacteria with many ARGs. Using the metagenome, we next evaluated the enrichment potential of the resistome in four common crops (barley, indica rice, japonica rice, and wheat) and found that the wheat rhizosphere harbored more abundant ARGs. Therefore, we finally cultivated the rhizosphere microbiome of wheat for three generations and found that approximately 60 % of ARGs were associated with beneficial bacteria enriched in the wheat rhizosphere, which might enter the soil food web and threaten human health, despite also performing beneficial functions in the plant rhizosphere. Our study provides new insights into the dissemination of ARGs in the plant rhizosphere, and the obtained data may be useful for sustainable and ecologically safe agricultural development.202336461576
864930.9994Antibiotic-Induced Recruitment of Specific Algae-Associated Microbiome Enhances the Adaptability of Chlorella vulgaris to Antibiotic Stress and Incidence of Antibiotic Resistance. Insights into the symbiotic relation between eukaryotic hosts and their microbiome lift the curtain on the crucial roles of microbes in host fitness, behavior, and ecology. However, it remains unclear whether and how abiotic stress shapes the microbiome and further affects host adaptability. This study first investigated the effect of antibiotic exposure on behavior across varying algae taxa at the community level. Chlorophyta, in particular Chlorella vulgaris, exhibited remarkable adaptability to antibiotic stress, leading to their dominance in phytoplankton communities. Accordingly, we isolated C. vulgaris strains and compared the growth of axenic and nonaxenic ones under antibiotic conditions. The positive roles of antibiotics in algal growth were apparent only in the presence of bacteria. Results of 16S rRNA sequencing further revealed that antibiotic challenges resulted in the recruitment of specific bacterial consortia in the phycosphere, whose functions were tightly linked to the host growth promotion and adaptability enhancement. In addition, the algal phycosphere was characterized with 47-fold higher enrichment capability of antibiotic resistance genes (ARGs) than the surrounding water. Under antibiotic stress, specific ARG profiles were recruited in C. vulgaris phycosphere, presumably driven by the specific assembly of bacterial consortia and mobile genetic elements induced by antibiotics. Moreover, the antibiotics even enhanced the dissemination potential of the bacteria carrying ARGs from the algal phycosphere to broader environmental niches. Overall, this study provides an in-depth understanding into the potential functional significance of antibiotic-mediated recruitment of specific algae-associated bacteria for algae adaptability and ARG proliferation in antibiotic-polluted waters.202337642958
864640.9994A Degeneration Gradient of Poplar Trees Contributes to the Taxonomic, Functional, and Resistome Diversity of Bacterial Communities in Rhizosphere Soils. Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.202133810508
864750.9993Eco-evolutionary strategies for relieving carbon limitation under salt stress differ across microbial clades. With the continuous expansion of saline soils under climate change, understanding the eco-evolutionary tradeoff between the microbial mitigation of carbon limitation and the maintenance of functional traits in saline soils represents a significant knowledge gap in predicting future soil health and ecological function. Through shotgun metagenomic sequencing of coastal soils along a salinity gradient, we show contrasting eco-evolutionary directions of soil bacteria and archaea that manifest in changes to genome size and the functional potential of the soil microbiome. In salt environments with high carbon requirements, bacteria exhibit reduced genome sizes associated with a depletion of metabolic genes, while archaea display larger genomes and enrichment of salt-resistance, metabolic, and carbon-acquisition genes. This suggests that bacteria conserve energy through genome streamlining when facing salt stress, while archaea invest in carbon-acquisition pathways to broaden their resource usage. These findings suggest divergent directions in eco-evolutionary adaptations to soil saline stress amongst microbial clades and serve as a foundation for understanding the response of soil microbiomes to escalating climate change.202439019914
748660.9993Body size: A hidden trait of the organisms that influences the distribution of antibiotic resistance genes in soil. Body size is a key life-history trait of organisms, which has important ecological functions. However, the relationship between soil antibiotic resistance gene (ARG) distribution and organisms' body size has not been systematically reported so far. Herein, the impact of organic fertilizer on the soil ARGs and organisms (bacteria, fungi, and nematode) at the aggregate level was analyzed. The results showed that the smaller the soil aggregate size, the greater the abundance of ARGs, and the larger the body size of bacteria and nematodes. Further analysis revealed significant positive correlations of ARG abundance with the body sizes of bacteria, fungi, and nematodes, respectively. Additionally, the structural equation model demonstrated that changes in soil fertility mainly regulate the ARG abundance by affecting bacterial body size. The random forest model revealed that total phosphorus was the primary soil fertility factor influencing the body size of organisms. Therefore, these findings proposed that excessive application of phosphate fertilizers could increase the risk of soil ARG transmission by increasing the body size of soil organisms. This study highlights the significance of organisms' body size in determining the distribution of soil ARGs and proposes a new disadvantage of excessive fertilization from the perspective of ARGs.202438696961
752170.9993Rhizosphere suppression hinders antibiotic resistance gene (ARG) spread under bacterial invasion. The rhizosphere is an extremely important component of the "one health" scenario by linking the soil microbiome and plants, in which the potential enrichment of antibiotic resistance genes (ARGs) might ultimately flow into the human food chain. Despite the increased occurrence of soil-borne diseases, which can lead to increased use of pesticides and antibiotic-producing biocontrol agents, the understanding of the dynamics of ARG spread in the rhizosphere is largely overlooked. Here, tomato seedlings grown in soils conducive and suppressive to the pathogen Ralstonia solanacearum were selected as a model to investigate ARG spread in the rhizosphere with and without pathogen invasion. Metagenomics data revealed that R. solanacearum invasion increased the density of ARGs and mobile genetic elements (MGEs). Although we found ARGs originating from human pathogenic bacteria in both soils, the enrichment was alleviated in the suppressive soil. In summary, the suppressive soil hindered ARG spread through pathogen suppression and had a lower number of taxa carrying antibiotic resistance.202336683960
869880.9993Metagenomics of Virus Diversities in Solid-State Brewing Process of Traditional Chinese Vinegar. Traditional Chinese vinegar offers an exceptional flavor and rich nutrients due to its unique solid-state fermentation process, which is a multiple microbial fermentation system including various bacteria, fungi and viruses. However, few studies on the virus diversities in traditional Chinese vinegar have been reported. In this paper, using Zhenjiang aromatic vinegar as a model system, we systemically explored the viral communities in the solid-state brewing process of traditional Chinese vinegar using bacterial and viral metagenomes. Results showed that the viral diversity in vinegar Pei was extensive and the virus communities varied along with the fermentation process. In addition, there existed some interactions between viral and bacterial communities. Moreover, abundant antibiotic resistance genes were found in viromes, indicating that viruses might protect fermentation bacteria strains from the stress of antibiotics in the fermentation environment. Remarkably, we identified abundant auxiliary carbohydrate metabolic genes (including alcohol oxidases, the key enzymes for acetic acid synthesis) from viromes, implying that viruses might participate in the acetic acid synthesis progress of the host through auxiliary metabolic genes. Taken together, our results indicated the potential roles of viruses in the vinegar brewing process and provided a new perspective for studying the fermentation mechanisms of traditional Chinese vinegar.202237431044
866390.9993CPR bacteria and DPANN archaea play pivotal roles in response of microbial community to antibiotic stress in groundwater. The accumulation of antibiotics in the natural environment can disrupt microbial population dynamics. However, our understanding of how microbial communities adapt to the antibiotic stress in groundwater ecosystems remains limited. By recovering 2675 metagenome-assembled genomes (MAGs) from 66 groundwater samples, we explored the effect of antibiotics on bacterial, archaeal, and fungal communities, and revealed the pivotal microbes and their mechanisms in coping with antibiotic stress. The results indicated that antibiotics had the most significant influence on bacterial and archaeal communities, while the impact on the fungal community was minimal. Analysis of co-occurrence networks between antibiotics and microbes revealed the critical roles of Candidate Phyla Radiation (CPR) bacteria and DPANN archaea, two representative microbial groups in groundwater ecosystem, in coping with antibiotic resistance and enhancing network connectivity and complexity. Further genomic analysis demonstrated that CPR bacteria carried approximately 6 % of the identified antibiotic resistance genes (ARGs), indicating their potential to withstand antibiotics on their own. Meanwhile, the genomes of CPR bacteria and DPANN archaea were found to encode diverse biosynthetic gene clusters (BGCs) responsible for producing antimicrobial metabolites, which could not only assist CPR and DPANN organisms but also benefit the surrounding microbes in combating antibiotic stress. These findings underscore the significant impact of antibiotics on prokaryotic microbial communities in groundwater, and highlight the importance of CPR bacteria and DPANN archaea in enhancing the overall resilience and functionality of the microbial community in the face of antibiotic stress.202438246077
6737100.9993Microbial-mediated conversion of soil organic carbon co-regulates the evolution of antibiotic resistance. The influence of organic carbon on the proliferation of antibiotic resistance genes (ARGs) in the soil has been widely documented. However, it is unclear how soil organic carbon (SOC) interacts with the evolution of antibiotic resistance in bacteria. Here, we examined the variations in ARGs abundance during SOC mineralization and explored the microbiological mechanisms and key metabolic pathways involved in their coevolution. The results showed that the SOC mineralization rate was closely correlated with ARGs abundance (p < 0.05). High organic carbon (OC) mineralization was conducive to the occurrence of multidrug resistance genes. For example, multidrug_transporter and mexB increased 2.26 and 7.83 times from the initial level. The competitor (stress) evolutionary strategy model revealed that higher OC inputs drive environmental microorganisms to evolve from stress tolerant to high resistance and strong adaptation. Meta-genomic and transcriptomic analyses revealed that the conversion process of pyruvate to acetyl-CoA to acetate was the critical metabolic pathway for the co-regulation of antibiotic resistance. Gene deletion validation trials have demonstrated that the key functional genes (ackA and pta) involved in this process can modulate the development of vancomycin and multidrug resistance. This outcome provides a preliminary framework for microbial mechanisms that target the co-regulation of microbial OC conversion and the evolution of antibiotic resistance.202438688217
7523110.9992Transfer of antibiotic resistance genes from soil to wheat: Role of host bacteria, impact on seed-derived bacteria, and affecting factors. The transfer of antibiotic resistance genes (ARGs) from soils to plants is poorly understood, especially the role of host bacteria in soils and its impact on seed-derived bacteria. Wheat (Triticum aestivum L.) was thus used to fill the gap by conducting pot experiments, with target ARGs and bacterial community analyzed. Results showed that the relative abundances of target ARGs gradually decreased during transfer of ARGs from the rhizosphere soil to root and shoot. Host bacteria in the rhizosphere soil were the primary source of ARGs in wheat. The 38, 21, and 19 potential host bacterial genera of target ARGs and intI1 in the rhizosphere soil, root, and shoot were identified, respectively, and they mainly belonged to phylum Proteobacteria. The abundance of ARGs carried by pathogenic Corynebacterium was reduced in sequence. During transfer of ARGs from the rhizosphere soil to root and shoot, some seed-derived bacteria and pathogenic Acinetobacter obtained ARGs through horizontal gene transfer and became potential host bacteria. Furthermore, total organic carbon, available nitrogen of the rhizosphere soil, water use efficiency, vapor pressure deficit, and superoxide dismutase of plants were identified as the key factors affecting potential host bacteria transfer in soils to wheat. This work provides important insights into transfer of ARGs and deepens our understanding of potential health risks of ARGs from soils to plants.202337741386
6985120.9992Elevated CO(2) Increased Antibiotic Resistomes in Seed Endophytes: Evidence from a Free-Air CO(2) Enrichment (FACE) Experiment. Climate warming affects antibiotic resistance genes (ARGs) in soil and the plant microbiome, including seed endophytes. Seeds act as vectors for ARG dissemination in the soil-plant system, but the impact of elevated CO(2) on seed resistomes remains poorly understood. Here, a free-air CO(2) enrichment system was used to examine the impact of elevated CO(2) on seed-associated ARGs and seed endophytic bacteria and fungi. Results indicated that elevated CO(2) levels significantly increased the relative abundance of seed ARGs and mobile genetic elements (MGEs), especially those related to beta-lactam resistance and MGEs. Increased CO(2) levels also influenced the composition of seed bacterial and fungal communities and the complexity of bacteria-fungi interactions. Fungi were more sensitive to changes in the CO(2) level than bacteria, with deterministic processes playing a greater role in fungal community assembly. Co-occurrence network analysis revealed a stronger correlation between fungi and ARGs compared to bacteria. The structure equation model (SEM) showed that elevated CO(2) directly influenced seed resistomes by altering bacterial composition and indirectly through bacteria-fungi interactions. Together, our work offers new insights into the effects of elevated CO(2) on antibiotic resistomes in the seed endosphere, highlighting their increased dissemination potential within soil-plant systems and the associated health risks in a changing environment.202439680930
7518130.9992Deciphering the toxic effects of metals in gold mining area: Microbial community tolerance mechanism and change of antibiotic resistance genes. Mine tailing dumps represent significant threats to ecological environments due to the presence of toxic substances. The present work investigated the relationship among microbial activity, the community, antibiotic resistance genes (ARGs) and trace metals in soil surrounding gold mine tailings. Using microbial metabolic activity and high-throughput sequencing analysis, we found the trace metals Cd and Hg could be main factors influencing the microbial community. According to bacterial co-occurrence pattern analysis, the effects of total cadmium and total mercury on bacterial diversity are potentially mediated by influencing bacteria community in the keystone module II. Additionally, most of metal-resistant bacteria belong to Actinobacteria and Proteobacteria, and the metal tolerance suggested to be linked with various functions including replication, recombination and repair, as well as inorganic ion transport and metabolism based on PICRUSt2 analysis. We also found that metals generated by mining activity may trigger the co-selection of antibiotic resistance in the phyla Actinobacteria and Proteobacteria due to co-resistance or cross resistance. Additionally, PLS-PM analysis revealed that metals could indirectly affect ARGs by influencing bacterial diversity in gold mining areas.202032678731
9001140.9992Bacterial Methionine Metabolism Genes Influence Drosophila melanogaster Starvation Resistance. Animal-associated microorganisms (microbiota) dramatically influence the nutritional and physiological traits of their hosts. To expand our understanding of such influences, we predicted bacterial genes that influence a quantitative animal trait by a comparative genomic approach, and we extended these predictions via mutant analysis. We focused on Drosophila melanogaster starvation resistance (SR). We first confirmed that D. melanogaster SR responds to the microbiota by demonstrating that bacterium-free flies have greater SR than flies bearing a standard 5-species microbial community, and we extended this analysis by revealing the species-specific influences of 38 genome-sequenced bacterial species on D. melanogaster SR. A subsequent metagenome-wide association analysis predicted bacterial genes with potential influence on D. melanogaster SR, among which were significant enrichments in bacterial genes for the metabolism of sulfur-containing amino acids and B vitamins. Dietary supplementation experiments established that the addition of methionine, but not B vitamins, to the diets significantly lowered D. melanogaster SR in a way that was additive, but not interactive, with the microbiota. A direct role for bacterial methionine metabolism genes in D. melanogaster SR was subsequently confirmed by analysis of flies that were reared individually with distinct methionine cycle Escherichia coli mutants. The correlated responses of D. melanogaster SR to bacterial methionine metabolism mutants and dietary modification are consistent with the established finding that bacteria can influence fly phenotypes through dietary modification, although we do not provide explicit evidence of this conclusion. Taken together, this work reveals that D. melanogaster SR is a microbiota-responsive trait, and specific bacterial genes underlie these influences.IMPORTANCE Extending descriptive studies of animal-associated microorganisms (microbiota) to define causal mechanistic bases for their influence on animal traits is an emerging imperative. In this study, we reveal that D. melanogaster starvation resistance (SR), a model quantitative trait in animal genetics, responds to the presence and identity of the microbiota. Using a predictive analysis, we reveal that the amino acid methionine has a key influence on D. melanogaster SR and show that bacterial methionine metabolism mutants alter normal patterns of SR in flies bearing the bacteria. Our data further suggest that these effects are additive, and we propose the untested hypothesis that, similar to bacterial effects on fruit fly triacylglyceride deposition, the bacterial influence may be through dietary modification. Together, these findings expand our understanding of the bacterial genetic basis for influence on a nutritionally relevant trait of a model animal host.201829934334
7636150.9992Environmental concentrations of antibiotics alter the zebrafish gut microbiome structure and potential functions. A paradoxical impact of high rates of production and consumption of antibiotics is their widespread release in the environment. Consequently, low concentrations of antibiotics and their byproducts have been routinely identified from various environmental settings especially from aquatic environments. However, the impact of such low concentrations of antibiotics on the exposed host especially in early life remains poorly understood. We exposed zebrafish to two different environmental concentrations of oxytetracycline and sulfamethoxazole, from larval stage to adulthood (∼120 days) and characterized their impact on the taxonomic diversity, antibiotic resistance genes, and metabolic pathways of the gut microbiome using metagenomic shotgun sequencing and analysis. Long term exposure of environmental concentrations of oxytetracycline and sulfamethoxazole significantly impacted the taxonomic composition and metabolic pathways of zebrafish gut microbiome. The antibiotic exposed samples exhibited significant enrichment of multiple flavobacterial species, including Flavobacterium sp. F52, Flavobacterium johnsoniae and Flavobacterium sp. Fl, which are well known pathogenic bacteria. The relative abundance of antibiotic resistance genes, especially several tetratcycline and sulfonamide resistance genes were significantly higher in the exposed samples and showed a linear correlation with the antibiotic concentrations. Furthermore, several metabolic pathways, including folate biosynthesis, oxidative phosphorylation, and biotin metabolism pathways, showed significant enrichment in the antibiotic exposed samples. Collectively, our results suggest that early life exposure of the environmental concentrations of antibiotics can increase the abundance of unfavorable bacteria, antibiotic resistance genes and associated pathways in the gut microbiome of zebrafish.202133725532
7524160.9992Insights into the interactions of plant-associated bacteria and their role in the transfer of antibiotic resistance genes from soil to plant. This study discussed the role of plant-associated microbiome in regulating ARG transfer in soil-plant systems. Results showed that target ARGs in plants were mainly derived from rhizosphere soil. Cooperative interactions among bacteria in rhizosphere soil, plant-roots, plant-shoots, and soil-roots-shoots systems occurred during ARG transfer. The number of modules and keystone taxa identified as positively correlated with ARG transfer in rhizosphere soil, roots, and shoots was 3 and 49, 3 and 41, 2 and 5, respectively. Among these modules, module 3 in roots was significantly positively correlated with module 3 in rhizosphere soils and module 2 in shoots, indicating that module 3 in roots played central hub roles in ARG transfer from rhizosphere soil to roost and shoots. This may be because module 3 in roots increased cell motility and xenobiotics biodegradation and metabolism. These keystone taxa mainly belonged to Proteobacteria that can carry ARGs to transfer in soil-plant systems, especially Clostridium-sensu_stricito and Pseudomonas in rhizosphere soil carried ARGs into the shoot. Additionally, they promoted ARG transfer by increasing plant biomass, net photosynthetic rate and water use efficiency. The findings helped reveal the mechanism of plant-associated bacterial interactions and provided understanding for potential risks of ARG transfer from soil to plants.202439305593
7713170.9992Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BACKGROUND: Concrete corrosion of wastewater collection systems is a significant cause of deterioration and premature collapse. Failure to adequately address the deteriorating infrastructure networks threatens our environment, public health, and safety. Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. RESULTS: Taxonomic and functional analysis demonstrated that approximately 90% of the total diversity was associated with the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The top (TP) and bottom pipe (BP) communities were different in composition, with some of the differences attributed to the abundance of sulfide-oxidizing and sulfate-reducing bacteria. Additionally, human fecal bacteria were more abundant in the BP communities. Among the functional categories, proteins involved in sulfur and nitrogen metabolism showed the most significant differences between biofilms. There was also an enrichment of genes associated with heavy metal resistance, virulence (protein secretion systems) and stress response in the TP biofilm, while a higher number of genes related to motility and chemotaxis were identified in the BP biofilm. Both biofilms contain a high number of genes associated with resistance to antibiotics and toxic compounds subsystems. CONCLUSIONS: The function potential of wastewater biofilms was highly diverse with level of COG diversity similar to that described for soil. On the basis of the metagenomic data, some factors that may contribute to niche differentiation were pH, aerobic conditions and availability of substrate, such as nitrogen and sulfur. The results from this study will help us better understand the genetic network and functional capability of microbial members of wastewater concrete biofilms.201222727216
8565180.9992Deciphering the transfers of antibiotic resistance genes under antibiotic exposure conditions: Driven by functional modules and bacterial community. Antibiotics can exert selective pressures on sludge as well as affect the emergence and spread of antibiotic resistance genes (ARGs). However, the underlying mechanisms of ARGs transfers are still controversial and not fully understood in sludge system. In present study, two anaerobic sequence batch reactors (ASBR) were constructed to investigate the development of ARGs exposed to two sulfonamide antibiotics (SMs, sulfadiazine SDZ and sulfamethoxazole SMX) with increasing concentrations. The abundance of corresponding ARGs and total ARGs obviously increased with presence of SMs. Functional analyses indicated that oxidative stress response, signal transduction and type IV secretion systems were triggered by SMs, which would promote ARGs transfers. Network analysis revealed 18 genera were possible hosts of ARGs, and their abundances increased with SMs. Partial least-squares path modeling suggested functional modules directly influenced mobile genetic elements (MGEs) as well as the ARGs might be driven by both functional modules and bacteria community, while bacteria community composition played a more key role. Sludge with refractory antibiotics (SDZ) may stimulate the relevant functions and shift the microbial composition to a greater extent, causing more ARGs to emerge and spread. The mechanisms of ARGs transfers are revealed from the perspective of functional modules and bacterial community in sludge system for the first time, and it could provide beneficial directions, such as oxidative stress reduction, cellular communication control, bacterial composition directional regulation, for ARGs spread controlling in the future.202134563930
8654190.9992Metagenomic and Metatranscriptomic Study of Microbial Metal Resistance in an Acidic Pit Lake. Cueva de la Mora (CM) is an acidic, meromictic pit lake in the Iberian Pyrite Belt characterized by extremely high metal(loid) concentrations and strong gradients in oxygen, metal, and nutrient concentrations. We hypothesized that geochemical variations with depth would result in differences in community composition and in metal resistance strategies among active microbial populations. We also hypothesized that metal resistance gene (MRG) expression would correlate with toxicity levels for dissolved metal species in the lake. Water samples were collected in the upper oxic layer, chemocline, and deep anoxic layer of the lake for shotgun metagenomic and metatranscriptomic sequencing. Metagenomic analyses revealed dramatic differences in the composition of the microbial communities with depth, consistent with changing geochemistry. Based on relative abundance of taxa identified in each metagenome, Eukaryotes (predominantly Coccomyxa) dominated the upper layer, while Archaea (predominantly Thermoplasmatales) dominated the deep layer, and a combination of Bacteria and Eukaryotes were abundant at the chemocline. We compared metal resistance across communities using a curated list of protein-coding MRGs with KEGG Orthology identifiers (KOs) and found that there were broad differences in the metal resistance strategies (e.g., intracellular metal accumulation) expressed by Eukaryotes, Bacteria, and Archaea. Although normalized abundances of MRG and MRG expression were generally higher in the deep layer, expression of metal-specific genes was not strongly related to variations in specific metal concentrations, especially for Cu and As. We also compared MRG potential and expression in metagenome assembled genomes (MAGs) from the deep layer, where metal concentrations are highest. Consistent with previous work showing differences in metal resistance mechanisms even at the strain level, MRG expression patterns varied strongly among MAG populations from the same depth. Some MAG populations expressed very few MRG known to date, suggesting that novel metal resistance strategies remain to be discovered in uncultivated acidophiles.202032899650