Genome-centric metagenomics insights into functional divergence and horizontal gene transfer of denitrifying bacteria in anammox consortia. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
865601.0000Genome-centric metagenomics insights into functional divergence and horizontal gene transfer of denitrifying bacteria in anammox consortia. Denitrifying bacteria with high abundances in anammox communities play crucial roles in achieving stable anammox-based systems. Despite the relative constant composition of denitrifying bacteria, their functional diversity remains to be explored in anammox communities. Herein, a total of 77 high-quality metagenome-assembled genomes (MAGs) of denitrifying bacteria were recovered from the anammox community in a full-scale swine wastewater treatment plant. Among these microbes, a total of 26 MAGs were affiliated with the seven dominant denitrifying genera that have total abundances higher than 1%. A meta-analysis of these species suggested that external organics reduced the abundances of genus Ignavibacterium and species MAG.305 of UTPRO2 in anammox communities. Comparative genome analysis revealed functional divergence across different denitrifying bacteria, largely owing to their distinct capabilities for carbohydrate (including endogenous and exogenous) utilization and vitamin (e.g., pantothenate and thiamine) biosynthesis. Serval microbes in this system contained fewer genes encoding biotin, pantothenate and methionine biosynthesis compared with their related species from other habitats. In addition, the genes encoding energy production and conversion (73 genes) and inorganic ion transport (53 genes) putatively transferred from other species to denitrifying bacteria, while these denitrifying bacteria (especially genera UTPRO2 and SCN-69-89) likely donated the genes encoding nutrients (e.g., inorganic ion and amino acid) transporter (64 genes) for other members to utilize new metabolites. Collectively, these findings highlighted the functional divergence of these denitrifying bacteria and speculated that the genetic interactions within anammox communities through horizontal gene transfer may be one of the reasons for their functional divergence.202236116192
751810.9997Deciphering the toxic effects of metals in gold mining area: Microbial community tolerance mechanism and change of antibiotic resistance genes. Mine tailing dumps represent significant threats to ecological environments due to the presence of toxic substances. The present work investigated the relationship among microbial activity, the community, antibiotic resistance genes (ARGs) and trace metals in soil surrounding gold mine tailings. Using microbial metabolic activity and high-throughput sequencing analysis, we found the trace metals Cd and Hg could be main factors influencing the microbial community. According to bacterial co-occurrence pattern analysis, the effects of total cadmium and total mercury on bacterial diversity are potentially mediated by influencing bacteria community in the keystone module II. Additionally, most of metal-resistant bacteria belong to Actinobacteria and Proteobacteria, and the metal tolerance suggested to be linked with various functions including replication, recombination and repair, as well as inorganic ion transport and metabolism based on PICRUSt2 analysis. We also found that metals generated by mining activity may trigger the co-selection of antibiotic resistance in the phyla Actinobacteria and Proteobacteria due to co-resistance or cross resistance. Additionally, PLS-PM analysis revealed that metals could indirectly affect ARGs by influencing bacterial diversity in gold mining areas.202032678731
795720.9996Differential size-dependent response patterns and antibiotic resistance development mechanism in anammox consortia. Antibiotic resistance is a global threat to human and animal health. Anaerobic ammonia oxidation (anammox) is an efficient and innovative wastewater treatment technology, which can be served as a promising approach to teat antibiotic wastewater. This study systematically investigated effects of sulfamethazine on the performance, microbial community dynamics and the resistome in anammox systems inoculated with different-sized granular sludge. The activity and performance of small (< 0.5 mm) anammox granules were more susceptible to sulfamethazine stress than those of medium (0.5-1.0 mm) and large (1.0-2.0 mm) granules. Sulfamethazine addition greatly increased the diversity and abundance of mobile genetic elements (MGEs) and antibiotic resistance genes (ARGs). Based on the metagenomic analysis, the horizontal transfer of ARGs in the anammox system was upregulated through bacterial oxidative stress, pili synthesis and type IV secretion system. In addition, two strains of sulfamethazine-resistant bacteria (Pseudomonas asiatica sp. nov. and Pseudomonas shirazica sp. nov.) were isolated from the anammox system. Their whole genome sequencing results showed that the most abundant plasmid was pkF7158B, which mediated the horizontal transfer of two main multidrug resistance genes (cpxR and mexB). This work provides a holistic insight into microbial heterogeneity of different-sized anammox granular sludge and their evolution and resistance development mechanism.202540086246
866430.9996Genome-centric metagenomics reveals the host-driven dynamics and ecological role of CPR bacteria in an activated sludge system. BACKGROUND: Candidate phyla radiation (CPR) constitutes highly diverse bacteria with small cell sizes and are likely obligate intracellular symbionts. Given their distribution and complex associations with bacterial hosts, genetic and biological features of CPR bacteria in low-nutrient environments have received increasing attention. However, CPR bacteria in wastewater treatment systems remain poorly understood. We utilized genome-centric metagenomics to answer how CPR communities shift over 11 years and what kind of ecological roles they act in an activated sludge system. RESULTS: We found that approximately 9% (135) of the 1,526 non-redundant bacterial and archaeal metagenome-assembled genomes were affiliated with CPR. CPR bacteria were consistently abundant with a relative abundance of up to 7.5% in the studied activated sludge system. The observed striking fluctuations in CPR community compositions and the limited metabolic and biosynthetic capabilities in CPR bacteria collectively revealed the nature that CPR dynamics may be directly determined by the available hosts. Similarity-based network analysis further confirmed the broad bacterial hosts of CPR lineages. The proteome contents of activated sludge-associated CPR had a higher similarity to those of environmental-associated CPR than to those of human-associated ones. Comparative genomic analysis observed significant enrichment of genes for oxygen stress resistance in activated sludge-associated CPR bacteria. Furthermore, genes for carbon cycling and horizontal gene transfer were extensively identified in activated sludge-associated CPR genomes. CONCLUSIONS: These findings highlight the presence of specific host interactions among CPR lineages in activated sludge systems. Despite the lack of key metabolic pathways, these small, yet abundant bacteria may have significant involvements in biogeochemical cycling and bacterial evolution in activated sludge systems. Video Abstract.202336945052
696340.9996Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems. It is widely demonstrated that antibiotics in the environment affect microbial community structure. However, direct evidence regarding the impacts of antibiotics on microbial functional structures in wastewater treatment systems is limited. Herein, a high-throughput functional gene array (GeoChip 3.0) in combination with quantitative PCR and clone libraries were used to evaluate the microbial functional structures in two biological wastewater treatment systems, which treat antibiotic production wastewater mainly containing oxytetracycline. Despite the bacteriostatic effects of antibiotics, the GeoChip detected almost all key functional gene categories, including carbon cycling, nitrogen cycling, etc., suggesting that these microbial communities were functionally diverse. Totally 749 carbon-degrading genes belonging to 40 groups (24 from bacteria and 16 from fungi) were detected. The abundance of several fungal carbon-degrading genes (e.g., glyoxal oxidase (glx), lignin peroxidase or ligninase (lip), manganese peroxidase (mnp), endochitinase, exoglucanase_genes) was significantly correlated with antibiotic concentrations (Mantel test; P < 0.05), showing that the fungal functional genes have been enhanced by the presence of antibiotics. However, from the fact that the majority of carbon-degrading genes were derived from bacteria and diverse antibiotic resistance genes were detected in bacteria, it was assumed that many bacteria could survive in the environment by acquiring antibiotic resistance and may have maintained the position as a main player in nutrient removal. Variance partitioning analysis showed that antibiotics could explain 24.4% of variations in microbial functional structure of the treatment systems. This study provides insights into the impacts of antibiotics on microbial functional structure of a unique system receiving antibiotic production wastewater, and reveals the potential importance of the cooperation between fungi and bacteria with antibiotic resistance in maintaining the stability and performance of the systems.201323981791
688850.9996Viral Communities Contribute More to the Lysis of Antibiotic-Resistant Bacteria than the Transduction of Antibiotic Resistance Genes in Anaerobic Digestion Revealed by Metagenomics. Ecological role of the viral community on the fate of antibiotic resistance genes (ARGs) (reduction vs proliferation) remains unclear in anaerobic digestion (AD). Metagenomics revealed a dominance of Siphoviridae and Podoviridae among 13,895 identified viral operational taxonomic units (vOTUs) within AD, and only 21 of the vOTUs carried ARGs, which only accounted for 0.57 ± 0.43% of AD antibiotic resistome. Conversely, ARGs locating on plasmids and integrative and conjugative elements accounted for above 61.0%, indicating a substantial potential for conjugation in driving horizontal gene transfer of ARGs within AD. Virus-host prediction based on CRISPR spacer, tRNA, and homology matches indicated that most viruses (80.2%) could not infect across genera. Among 480 high-quality metagenome assembly genomes, 95 carried ARGs and were considered as putative antibiotic-resistant bacteria (pARB). Furthermore, lytic phages of 66 pARBs were identified and devoid of ARGs, and virus/host abundance ratios with an average value of 71.7 indicated extensive viral activity and lysis. The infectivity of lytic phage was also elucidated through laboratory experiments concerning changes of the phage-to-host ratio, pH, and temperature. Although metagenomic evidence for dissemination of ARGs by phage transduction was found, the higher proportion of lytic phages infecting pARBs suggested that the viral community played a greater role in reducing ARB numbers than spreading ARGs in AD.202438267392
674260.9996Influence of epiphytic bacteria on arsenic metabolism in Hydrilla verticillata. Microbial assemblages such as biofilms around aquatic plants play a major role in arsenic (As) cycling, which has often been overlooked in previous studies. In this study, arsenite (As(III))-oxidizing, arsenate (As(V))-reducing and As(III)-methylating bacteria were found to coexist in the phyllosphere of Hydrilla verticillata, and their relative activities were shown to determine As speciation, accumulation and efflux. When exposed to As(III), As(III) oxidation was not observed in treatment H(III)-B, whereas treatment H(III)+B showed a significant As(III) oxidation ability, thereby indicating that epiphytic bacteria displayed a substantial As(III) oxidation ability. When exposed to As(V), the medium only contained 5.89% As(III) after 48 h of treatment H(V)-B, while an As(III) content of 86.72% was observed after treatment H(V)+B, thereby indicating that the elevated As(III) in the medium probably originated from As(V) reduction by epiphytic bacteria. Our data also indicated that oxidizing bacteria decreased the As accumulation (by approximately 64.44% compared with that of treatment H(III)-B) in plants, while reducing bacteria played a critical role in increasing As accumulation (by approximately 3.31-fold compared with that of treatment H(V)-B) in plants. Regardless of whether As(III) or As(V) was supplied, As(III) was dominant in the plant tissue (over 75%). Furthermore, the presence of epiphytic bacteria enhanced As efflux by approximately 9-fold. Metagenomic analysis revealed highly diverse As metabolism genes in epiphytic bacterial community, particularly those related to energetic metabolism (aioAB), and As resistance (arsABCR, acr3, arsM). Phylogenetic analysis of As metabolism genes revealed evidence of both vertical inheritance and horizontal gene transfer, which might have contributed to the evolution of the As metabolism genes. Taken together, our research suggested that the diversity of As metabolism genes in epiphytic bacterial community is associated with aquatic submerged macrophytes which may play an important role in As biogeochemistry in aquatic environments.202032114122
771470.9996Functional traits and health implications of the global household drinking-water microbiome retrieved using an integrative genome-centric approach. The biological safety of drinking water plays a crucial role in public health protection. However, research on the drinking water microbiome remains in its infancy, especially little is known about the potentially pathogenic bacteria in and functional characteristics of the microbiome in household tap water that people are directly exposed to. In this study, we used a genomic-centric approach to construct a genetic catalogue of the drinking water microbiome by analysing 116 metagenomic datasets of household tap water worldwide, spanning nine countries/regions on five continents. We reconstructed 859 high-quality metagenome-assembled genomes (MAGs) spanning 27 bacterial and 2 archaeal phyla, and found that the core MAGs belonging to the phylum Proteobacteria encoded the highest metabolic functional diversity of the 33 key complete metabolic modules. In particular, we found that two core MAGs of Brevibacillus and Methylomona encoded genes for methane metabolism, which may support the growth of heterotrophic organisms observed in the oligotrophic ecosystem. Four MAGs of complete ammonia oxidation (comammox) Nitrospira were identified and functional metabolic analysis suggested these may enable mixotrophic growth and encode genes for reactive oxygen stress defence and arsenite reduction that could aid survival in the environment of oligotrophic drinking water systems. Four MAGs were annotated as potentially pathogenic bacteria (PPB) and thus represented a possible public health concern. They belonged to the genera Acinetobacter (n = 3) and Mycobacterium (n = 1), with a total relative abundance of 1.06 % in all samples. The genomes of PPB A. junii and A. ursingii were discovered to contain antibiotic resistance genes and mobile genetic elements that could contribute to antimicrobial dissemination in drinking water. Further network analysis suggested that symbiotic microbes which support the growth of pathogenic bacteria can be targets for future surveillance and removal.202438183799
751680.9995Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments. Lake DePue (IL, USA) has been contaminated for > 80 years by an adjacent Zn-smelting facility. Previous work indicated that sulfate reduction increased and biomass declined as pore-water metal concentrations increased, while 16S rRNA gene profiles remained relatively stable. To better understand this phenomenon, the sediment microbial community structure and functional potential were investigated using a functional gene microarray (GeoChip) targeting > 10,000 functional genes. Nonmetric multidimensional scaling and clustering analyses showed that the overall community structure was similar across all sites based on the relative abundance of all detected genes, but some individual gene categories did show differences. A subset of sulfate reduction genes (dsr) and the most relevant metal resistance genes were more abundant than other categories and were highly correlated with metal contamination. The most significant correlations were between pore-water metal concentrations and dsr, with Zn, Cd, and Mn as the most predictive for the presence of dsr. These results suggest that metal contamination influences sediment microbial community structure and function by increasing the abundance of relevant metal-resistant and sulfate-reducing populations. These populations therefore appear to contribute significantly to the resistance and stability of the microbial communities throughout the gradient of metal contamination in Lake DePue.201323710534
752490.9995Insights into the interactions of plant-associated bacteria and their role in the transfer of antibiotic resistance genes from soil to plant. This study discussed the role of plant-associated microbiome in regulating ARG transfer in soil-plant systems. Results showed that target ARGs in plants were mainly derived from rhizosphere soil. Cooperative interactions among bacteria in rhizosphere soil, plant-roots, plant-shoots, and soil-roots-shoots systems occurred during ARG transfer. The number of modules and keystone taxa identified as positively correlated with ARG transfer in rhizosphere soil, roots, and shoots was 3 and 49, 3 and 41, 2 and 5, respectively. Among these modules, module 3 in roots was significantly positively correlated with module 3 in rhizosphere soils and module 2 in shoots, indicating that module 3 in roots played central hub roles in ARG transfer from rhizosphere soil to roost and shoots. This may be because module 3 in roots increased cell motility and xenobiotics biodegradation and metabolism. These keystone taxa mainly belonged to Proteobacteria that can carry ARGs to transfer in soil-plant systems, especially Clostridium-sensu_stricito and Pseudomonas in rhizosphere soil carried ARGs into the shoot. Additionally, they promoted ARG transfer by increasing plant biomass, net photosynthetic rate and water use efficiency. The findings helped reveal the mechanism of plant-associated bacterial interactions and provided understanding for potential risks of ARG transfer from soil to plants.202439305593
7419100.9995The bacterial microbiota in florfenicol contaminated soils: The antibiotic resistome and the nitrogen cycle. Soil antibiotic resistome and the nitrogen cycle are affected by florfenicol addition to manured soils but their interactions have not been fully described. In the present study, antibiotic resistance genes (ARGs) and nitrogen cycle genes possessed by soil bacteria were characterized using real-time fluorescence quantification PCR (qPCR) and metagenomic sequencing in a short-term (30 d) soil model experiment. Florfenicol significantly changed in the abundance of genes conferring resistance to aminoglycosides, β-lactams, tetracyclines and macrolides. And the abundance of Sphingomonadaceae, the protein metabolic and nitrogen metabolic functions, as well as NO reductase, nitrate reductase, nitrite reductase and N(2)O reductase can also be affected by florfenicol. In this way, ARG types of genes conferring resistance to aminoglycosides, β-lactamases, tetracyclines, colistin, fosfomycin, phenicols and trimethoprim were closely associated with multiple nitrogen cycle genes. Actinobacteria, Chlorobi, Firmicutes, Gemmatimonadetes, Nitrospirae, Proteobacteria and Verrucomicrobia played an important role in spreading of ARGs. Moreover, soil physicochemical properties were important factors affecting the distribution of soil flora. This study provides a theoretical basis for further exploration of the transmission regularity and interference mechanism of ARGs in soil bacteria responsible for nitrogen cycle.202032023788
7713110.9995Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BACKGROUND: Concrete corrosion of wastewater collection systems is a significant cause of deterioration and premature collapse. Failure to adequately address the deteriorating infrastructure networks threatens our environment, public health, and safety. Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. RESULTS: Taxonomic and functional analysis demonstrated that approximately 90% of the total diversity was associated with the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The top (TP) and bottom pipe (BP) communities were different in composition, with some of the differences attributed to the abundance of sulfide-oxidizing and sulfate-reducing bacteria. Additionally, human fecal bacteria were more abundant in the BP communities. Among the functional categories, proteins involved in sulfur and nitrogen metabolism showed the most significant differences between biofilms. There was also an enrichment of genes associated with heavy metal resistance, virulence (protein secretion systems) and stress response in the TP biofilm, while a higher number of genes related to motility and chemotaxis were identified in the BP biofilm. Both biofilms contain a high number of genes associated with resistance to antibiotics and toxic compounds subsystems. CONCLUSIONS: The function potential of wastewater biofilms was highly diverse with level of COG diversity similar to that described for soil. On the basis of the metagenomic data, some factors that may contribute to niche differentiation were pH, aerobic conditions and availability of substrate, such as nitrogen and sulfur. The results from this study will help us better understand the genetic network and functional capability of microbial members of wastewater concrete biofilms.201222727216
8649120.9995Antibiotic-Induced Recruitment of Specific Algae-Associated Microbiome Enhances the Adaptability of Chlorella vulgaris to Antibiotic Stress and Incidence of Antibiotic Resistance. Insights into the symbiotic relation between eukaryotic hosts and their microbiome lift the curtain on the crucial roles of microbes in host fitness, behavior, and ecology. However, it remains unclear whether and how abiotic stress shapes the microbiome and further affects host adaptability. This study first investigated the effect of antibiotic exposure on behavior across varying algae taxa at the community level. Chlorophyta, in particular Chlorella vulgaris, exhibited remarkable adaptability to antibiotic stress, leading to their dominance in phytoplankton communities. Accordingly, we isolated C. vulgaris strains and compared the growth of axenic and nonaxenic ones under antibiotic conditions. The positive roles of antibiotics in algal growth were apparent only in the presence of bacteria. Results of 16S rRNA sequencing further revealed that antibiotic challenges resulted in the recruitment of specific bacterial consortia in the phycosphere, whose functions were tightly linked to the host growth promotion and adaptability enhancement. In addition, the algal phycosphere was characterized with 47-fold higher enrichment capability of antibiotic resistance genes (ARGs) than the surrounding water. Under antibiotic stress, specific ARG profiles were recruited in C. vulgaris phycosphere, presumably driven by the specific assembly of bacterial consortia and mobile genetic elements induced by antibiotics. Moreover, the antibiotics even enhanced the dissemination potential of the bacteria carrying ARGs from the algal phycosphere to broader environmental niches. Overall, this study provides an in-depth understanding into the potential functional significance of antibiotic-mediated recruitment of specific algae-associated bacteria for algae adaptability and ARG proliferation in antibiotic-polluted waters.202337642958
6736130.9995Biotic pathways of reciprocal responses between antibiotic resistance genes and inorganic nitrogen cycling genes in amoxicillin-stressed compost ecosystems. This study explored the transformation of inorganic nitrogen, the expression levels of antibiotic resistance genes (ARGs), and the regulatory mechanisms of key species on ARGs and inorganic nitrogen cycling genes (INCGs) under different levels of amoxicillin (AMX) stress. High level of AMX inhibited the accumulation of NH(4)(+)-N, which increased by 531 % relative to the initial. Moreover, AMX to some extent increased the levels of nirS and nirK, which could potentially result in nitrogen loss and the accumulation of NO(2)(-). Actinobacteria might serve as potential hosts for ARGs during sludge composting. This stress induced a complex response between INCGs and ARGs more complex due to key species. Under high-level AMX pressure, most species associated with ARGs likely derived from nitrogen cycling functional species. To conclude, high levels of AMX stress might lead to nitrogen cycling imbalance and the dissemination of antibiotic resistance genes in composting systems.202438387840
7965140.9995Screening and evaluation of heavy metals facilitating antibiotic resistance gene transfer in a sludge bacterial community. Recent growing evidence suggests that heavy metals can stimulate the transfer of antibiotic resistance genes (ARGs) between bacteria. However, most previous studies focused on pure strains, the effect of heavy metals on ARG transfer in bacterial communities, especially in activated sludge, has not been clearly explored. In this study, a high-throughput method, combining computerized incubator (Bioscreen C) and flow cytometry, was developed to evaluate different concentrations of heavy metals influencing ARG transfer in sludge bacteria communities. By using Escherichia coli MG1655 as the donor of broad-host range IncP-1 plasmid pKJK5, it was found that 0.5 mmol/L Pb, 0.1 mmol/L As and 0.005 mmol/L Hg could obviously promote ARG transfer in sludge bacteria communities. Furthermore, mating assays on microfluidic chips also proved higher transfer frequencies in attached communities under the above heavy metal stresses. Transconjugants under Pb, As and Hg stresses were isolated and phylogenetically described. For As and Hg, the dominant genus was Pseudomonas, accounting for 88% and 96%, respectively. While under Pb stress, the genera Aeromonas and Enterobacter were the main transconjugants, accounting for 56% and 32% respectively. Moreover, ABC transporters and Amino acid metabolism, which were related to heavy metal transport and cellular metabolism, were dominant in the prediction of microbial metabolic function of transconjugants. This study can be helpful for risk assessment and control of ARG spreading in WWTPs.201931425984
8534150.9995Response of microbial nitrogen transformation processes to antibiotic stress in a drinking water reservoir. Effects of antibiotics on microbial nitrogen transformation processes in natural aquatic ecosystems are largely unknown. In this study, we utilized the (15)N stable isotope tracers and metagenomic sequencing to identify how antibiotics drive nitrogen transformation processes in Danjiangkou Reservoir, which is the largest artificial drinking water reservoir in China. We retrieved 51 nitrogen functional genes, and found that the highest abundances of nitrate reduction and denitrification-related genes occurred in dissimilatory nitrogen transformation pathways. (15)N-labelling analysis substantiated that denitrification was the main pathway for nitrogen removal, accounting for 57.1% of nitrogen loss. Nitrogen functional genes and antibiotic resistance genes co-occurred in Danjiangkou Reservoir, and they were mainly carried by the denitrifying bacteria such as Rhodoferax, Polaromonas, Limnohabitans, Pararheinheimera, Desulfobulbus, and Pseudopelobacter. Genome annotation revealed that antibiotic deactivation, Resistance-Nodulation-Division and facilitator superfamily efflux pumps were responsible for the multiple-resistance to antibiotics in these bacteria. Moreover, antibiotics showed non-significant effects on nitrogen transformation processes. It is speculated that denitrifying bacteria harboring ARGs played crucial roles in protecting nitrogen transformation from low-level antibiotics stress in the reservoir. Our results highlight that denitrifying bacteria are important hosts of ARGs, which provides a novel perspective for evaluating the effects of antibiotics on nitrogen cycle in natural aquatic ecosystems.202134303244
7523160.9995Transfer of antibiotic resistance genes from soil to wheat: Role of host bacteria, impact on seed-derived bacteria, and affecting factors. The transfer of antibiotic resistance genes (ARGs) from soils to plants is poorly understood, especially the role of host bacteria in soils and its impact on seed-derived bacteria. Wheat (Triticum aestivum L.) was thus used to fill the gap by conducting pot experiments, with target ARGs and bacterial community analyzed. Results showed that the relative abundances of target ARGs gradually decreased during transfer of ARGs from the rhizosphere soil to root and shoot. Host bacteria in the rhizosphere soil were the primary source of ARGs in wheat. The 38, 21, and 19 potential host bacterial genera of target ARGs and intI1 in the rhizosphere soil, root, and shoot were identified, respectively, and they mainly belonged to phylum Proteobacteria. The abundance of ARGs carried by pathogenic Corynebacterium was reduced in sequence. During transfer of ARGs from the rhizosphere soil to root and shoot, some seed-derived bacteria and pathogenic Acinetobacter obtained ARGs through horizontal gene transfer and became potential host bacteria. Furthermore, total organic carbon, available nitrogen of the rhizosphere soil, water use efficiency, vapor pressure deficit, and superoxide dismutase of plants were identified as the key factors affecting potential host bacteria transfer in soils to wheat. This work provides important insights into transfer of ARGs and deepens our understanding of potential health risks of ARGs from soils to plants.202337741386
6107170.9995Metagenomic and genomic analysis of heavy metal-tolerant and -resistant bacteria in resource islands in a semi-arid zone of the Colombian Caribbean. Bacteria from resource islands can adapt to different extreme conditions in semi-arid regions. We aimed to determine the potential resistance and tolerance to heavy metals from the bacterial community under the canopy of three resource islands in a semi-arid zone of the Colombian Caribbean. Total DNA was extracted from soil and through a metagenomics approach, we identified genes related to heavy metal tolerance and resistance under the influence of drought and humidity conditions, as well as the presence or absence of vegetation. We characterized the genomes of bacterial isolates cultivated in the presence of four heavy metals. The abundances of genes related to heavy metal resistance and tolerance were favored by soil moisture and the presence of vegetation. We observed a high abundance of resistance genes (60.4%) for Cu, Zn, and Ni, while 39.6% represented tolerance. These genes positively correlated with clay and silt content, and negatively correlated with sand content. Resistance and tolerance were associated with detoxification mechanisms involving oxidoreductase enzymes, metalloproteases, and hydrolases, as well as transmembrane proteins involved in metal transport such as efflux pumps and ion transmembrane transporters. The Bacillus velezensis C3-3 and Cytobacillus gottheilii T106 isolates showed resistance to 5 mM of Cd, Co, Mn, and Ni through detoxification genes associated with ABC pumps, metal transport proteins, ion antiporter proteins, and import systems, among others. Overall, these findings highlight the potential of bacteria from resource islands in bioremediation processes of soils contaminated with heavy metals.202438127234
8655180.9995Toxic trace element resistance genes and systems identified using the shotgun metagenomics approach in an Iranian mine soil. This study aimed to identify the microbial communities, resistance genes, and resistance systems in an Iranian mine soil polluted with toxic trace elements (TTE). The polluted soil samples were collected from a mining area and compared against non-polluted (control) collected soils from the vicinity of the mine. The soil total DNA was extracted and sequenced, and bioinformatic analysis of the assembled metagenomes was conducted to identify soil microbial biodiversity, TTE resistance genes, and resistance systems. The results of the employed shotgun approach indicated that the relative abundance of Proteobacteria, Firmicutes, Bacteroidetes, and Deinococcus-Thermus was significantly higher in the TTE-polluted soils compared with those in the control soils, while the relative abundance of Actinobacteria and Acidobacteria was significantly lower in the polluted soils. The high concentration of TTE increased the ratio of archaea to bacteria and decreased the alpha diversity in the polluted soils compared with the control soils. Canonical correspondence analysis (CCA) demonstrated that heavy metal pollution was the major driving factor in shaping microbial communities compared with any other soil characteristics. In the identified heavy metal resistome (HV-resistome) of TTE-polluted soils, major functional pathways were carbohydrates metabolism, stress response, amino acid and derivative metabolism, clustering-based subsystems, iron acquisition and metabolism, cell wall synthesis and capsulation, and membrane transportation. Ten TTE resistance systems were identified in the HV-resistome of TTE-polluted soils, dominated by "P-type ATPases," "cation diffusion facilitators," and "heavy metal efflux-resistance nodulation cell division (HME-RND)." Most of the resistance genes (69%) involved in resistance systems are affiliated to cell wall, outer membrane, periplasm, and cytoplasmic membrane. The finding of this study provides insight into the microbial community in Iranian TTE-polluted soils and their resistance genes and systems.202132949366
3860190.9995Mobility of antibiotic resistance and its co-occurrence with metal resistance in pathogens under oxidative stress. The bacterial communities are challenged with oxidative stress during their exposure to bactericidal antibiotics, metals, and different levels of dissolved oxygen (DO) encountered in diverse environmental habitats. The frequency of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) co-selection is increased by selective pressure posed by oxidative stress. Hence, study of resistance acquisition is important from an evolutionary perspective. To understand the dependence of oxidative stress on the dissemination of ARGs and MRGs through a pathogenic bacterial population, 12 metagenomes belonging to gut, water and soil habitats were evaluated. The metagenome-wide analysis showed the chicken gut to pose the most diverse pool of ARGs (30.4 ppm) and pathogenic bacteria (Simpson diversity = 0.98). The most common types of resistances found in all the environmental samples were efflux pumps (13.22 ppm) and genes conferring resistance to vancomycin (12.4 ppm), tetracycline (12.1 ppm), or beta-lactam (9.4 ppm) antibiotics. Additionally, limiting DO level in soil was observed to increase the abundance of excision nucleases (uvrA and uvrB), DNA polymerase (polA), catalases (katG), and other oxidative stress response genes (OSGs). This was further evident from major variations occurred in antibiotic efflux genes due to the effect of DO concentration on two human pathogens, namely Salmonella enterica and Shigella sonnei found in all the selected habitats. In conclusion, the microbial community, when challenged with oxidative stress caused by environmental variations in oxygen level, tends to accumulate higher amounts of ARGs with increased dissemination potential through triggering non-lethal mutagenesis. Furthermore, the genetic linkage or co-occurrence of ARGs and MRGs provides evidence for selecting ARGs under high concentrations of heavy metals.202134298350