# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8648 | 0 | 1.0000 | Host-specific assembly of phycosphere microbiome and enrichment of the associated antibiotic resistance genes: Integrating species of microalgae hosts, developmental stages and water contamination. Phytoplankton-bacteria interactions profoundly impact ecosystem function and biogeochemical cycling, while their substantial potential to carry and disseminate antibiotic resistance genes (ARGs) poses a significant threat to global One Health. However, the ecological paradigm behind the phycosphere assembly of microbiomes and the carrying antibiotic resistomes remains unclear. Our field investigation across various freshwater ecosystems revealed a substantial enrichment of bacteria and ARGs within microalgal niches. Taking account of the influence for species of microalgae hosts, their developmental stages and the stress of water pollution, we characterized the ecological processes governing phycosphere assembly of bacterial consortia and enrichment of the associated ARGs. By inoculating 6 axenic algal hosts with two distinct bacterial consortia from a natural river and the phycosphere of Scenedesmus acuminatus, we observed distinct phycosphere bacteria recruitment among different algal species, yet consistency within the same species. Notably, a convergent bacterial composition was established for the same algae species for two independent inoculations, demonstrating host specificity in phycosphere microbiome assembly. Host-specific signature was discernible as early as the algal lag phase and more pronounced as the algae developed, indicating species types of algae determined mutualism between the bacterial taxa and hosts. The bacteria community dominated the shaping of ARG profiles within the phycosphere and the host-specific phycosphere ARG enrichment was intensified with the algae development. The polluted water significantly stimulated host's directional selection on phycosphere bacterial consortia and increased the proliferation antibiotic resistome. These consortia manifested heightened beneficial functionality, enhancing microalgal adaptability to contamination stress. | 2025 | 40349825 |
| 8649 | 1 | 0.9997 | Antibiotic-Induced Recruitment of Specific Algae-Associated Microbiome Enhances the Adaptability of Chlorella vulgaris to Antibiotic Stress and Incidence of Antibiotic Resistance. Insights into the symbiotic relation between eukaryotic hosts and their microbiome lift the curtain on the crucial roles of microbes in host fitness, behavior, and ecology. However, it remains unclear whether and how abiotic stress shapes the microbiome and further affects host adaptability. This study first investigated the effect of antibiotic exposure on behavior across varying algae taxa at the community level. Chlorophyta, in particular Chlorella vulgaris, exhibited remarkable adaptability to antibiotic stress, leading to their dominance in phytoplankton communities. Accordingly, we isolated C. vulgaris strains and compared the growth of axenic and nonaxenic ones under antibiotic conditions. The positive roles of antibiotics in algal growth were apparent only in the presence of bacteria. Results of 16S rRNA sequencing further revealed that antibiotic challenges resulted in the recruitment of specific bacterial consortia in the phycosphere, whose functions were tightly linked to the host growth promotion and adaptability enhancement. In addition, the algal phycosphere was characterized with 47-fold higher enrichment capability of antibiotic resistance genes (ARGs) than the surrounding water. Under antibiotic stress, specific ARG profiles were recruited in C. vulgaris phycosphere, presumably driven by the specific assembly of bacterial consortia and mobile genetic elements induced by antibiotics. Moreover, the antibiotics even enhanced the dissemination potential of the bacteria carrying ARGs from the algal phycosphere to broader environmental niches. Overall, this study provides an in-depth understanding into the potential functional significance of antibiotic-mediated recruitment of specific algae-associated bacteria for algae adaptability and ARG proliferation in antibiotic-polluted waters. | 2023 | 37642958 |
| 8565 | 2 | 0.9997 | Deciphering the transfers of antibiotic resistance genes under antibiotic exposure conditions: Driven by functional modules and bacterial community. Antibiotics can exert selective pressures on sludge as well as affect the emergence and spread of antibiotic resistance genes (ARGs). However, the underlying mechanisms of ARGs transfers are still controversial and not fully understood in sludge system. In present study, two anaerobic sequence batch reactors (ASBR) were constructed to investigate the development of ARGs exposed to two sulfonamide antibiotics (SMs, sulfadiazine SDZ and sulfamethoxazole SMX) with increasing concentrations. The abundance of corresponding ARGs and total ARGs obviously increased with presence of SMs. Functional analyses indicated that oxidative stress response, signal transduction and type IV secretion systems were triggered by SMs, which would promote ARGs transfers. Network analysis revealed 18 genera were possible hosts of ARGs, and their abundances increased with SMs. Partial least-squares path modeling suggested functional modules directly influenced mobile genetic elements (MGEs) as well as the ARGs might be driven by both functional modules and bacteria community, while bacteria community composition played a more key role. Sludge with refractory antibiotics (SDZ) may stimulate the relevant functions and shift the microbial composition to a greater extent, causing more ARGs to emerge and spread. The mechanisms of ARGs transfers are revealed from the perspective of functional modules and bacterial community in sludge system for the first time, and it could provide beneficial directions, such as oxidative stress reduction, cellular communication control, bacterial composition directional regulation, for ARGs spread controlling in the future. | 2021 | 34563930 |
| 6985 | 3 | 0.9997 | Elevated CO(2) Increased Antibiotic Resistomes in Seed Endophytes: Evidence from a Free-Air CO(2) Enrichment (FACE) Experiment. Climate warming affects antibiotic resistance genes (ARGs) in soil and the plant microbiome, including seed endophytes. Seeds act as vectors for ARG dissemination in the soil-plant system, but the impact of elevated CO(2) on seed resistomes remains poorly understood. Here, a free-air CO(2) enrichment system was used to examine the impact of elevated CO(2) on seed-associated ARGs and seed endophytic bacteria and fungi. Results indicated that elevated CO(2) levels significantly increased the relative abundance of seed ARGs and mobile genetic elements (MGEs), especially those related to beta-lactam resistance and MGEs. Increased CO(2) levels also influenced the composition of seed bacterial and fungal communities and the complexity of bacteria-fungi interactions. Fungi were more sensitive to changes in the CO(2) level than bacteria, with deterministic processes playing a greater role in fungal community assembly. Co-occurrence network analysis revealed a stronger correlation between fungi and ARGs compared to bacteria. The structure equation model (SEM) showed that elevated CO(2) directly influenced seed resistomes by altering bacterial composition and indirectly through bacteria-fungi interactions. Together, our work offers new insights into the effects of elevated CO(2) on antibiotic resistomes in the seed endosphere, highlighting their increased dissemination potential within soil-plant systems and the associated health risks in a changing environment. | 2024 | 39680930 |
| 6433 | 4 | 0.9997 | Do microplastic biofilms promote the evolution and co-selection of antibiotic and metal resistance genes and their associations with bacterial communities under antibiotic and metal pressures? Microplastic (MP) biofilms with heterogeneous bacterial compositions and structure have become a hotspot of antibiotic resistance genes (ARGs) in aquatic environments. The evolutionary features of ARGs and their related factors including class 1 integron (intI1), metal resistance genes (MRGs), and bacterial communities in MP biofilms under exogenous pressures and how they compared with natural substrates (NS) are unclear. The individual and combined pressures of sulfamethoxazole, tetracycline, and zinc were used to drive the dynamic evolution of ARGs, intI1, MRGs, and bacterial communities in the MP and NS biofilms. The exogenous pressures from the combined selection of sulfamethoxazole, tetracycline, and zinc and their increasing concentrations both significantly enhanced the abundances of ARGs on the MP compared to the NS. Meanwhile, the selective pressures resulted in obvious dissimilarities between the MP and NS bacterial communities. The core bacterial taxa and the co-occurrence patterns of ARGs and bacterial genera in the biofilms of MP and NS were obviously different, and more potential ARG host bacteria selectively colonized the MP. Metal pressure also enhanced the enrichment of ARGs in the MP biofilms by promoting the spread of intI1 via the co-selection mechanism. | 2022 | 34597934 |
| 6434 | 5 | 0.9997 | Unraveling the role of microplastics in antibiotic resistance: Insights from long-read metagenomics on ARG mobility and host dynamics. As two emerging pollutants, microplastics (MPs) potentially serve as vectors for antibiotic resistance genes (ARGs) in aquatic environments, but the mechanisms driving ARG enrichment remain unclear. This study used long-read metagenomics to investigate ARG mobility and hosts dynamics within the biofilms of MPs and rocks in different water environments. We identified distinct enrichment patterns for microbial communities and ARGs, highlighting the significant role of horizontal gene transfer in ARG enrichment. Specifically, plasmid-encoded ARGs varied significantly among MP biofilms, rock biofilms, and water samples, while chromosome-encoded ARGs remained consistent across these environments, emphasizing the impact of plasmids on ARG enrichment. Despite this, 55.1 % of ARGs were on chromosomes, indicating that host organisms also play a crucial role. The related mechanisms driving ARG enrichment included enhanced cell adhesion, increased transmembrane transporter activity, and responses to environmental stressors, which led to an increased presence of plasmid-encoded ARGs on MP biofilms, facilitating more frequent horizontal gene transfer. Additionally, the diversity of hosts on MPs was notably lower compared to the water column, with specific bacteria, including Herbaspirillu, Limnohabitans, Polaromonas, Variovorax, Rubrivivax, and Thauera significantly driving ARG enrichment. This study highlights key mechanisms and bacterial taxa involved in ARG dynamics on MPs. | 2025 | 40056523 |
| 6429 | 6 | 0.9997 | Selective enrichment of bacteria and antibiotic resistance genes in microplastic biofilms and their potential hazards in coral reef ecosystems. Microplastics become hotspots for bacteria to trigger a series of ecological effects, but few studies have focused on the potential impacts of microplastic biofilms in coral reef ecosystems. Here, we measured the bacterial communities and antibiotic resistance genes (ARGs) in the seawater and microplastic biofilms. Results showed that microbial biofilms were formed on the surface of microplastics. The alpha diversity of the bacterial community in the microplastic biofilms was lower than that in the seawater, and the bacterial communities were distinct between the two. Further analysis revealed that several bacteria in the microplastic biofilms carried ARGs, and the proportion of which was correlated to the concentration of antibiotics in the seawater. Specifically, Vibrio was positively correlated to sul1 in the microplastic biofilms under higher concentrations of sulfonamides. Pathway analysis reflected significant overrepresentation of human disease related pathways in the bacterial community of microplastic biofilms. These results suggest that the microplastic biofilms could selectively enrich bacteria from the reef environments, causing the development of ARGs under antibiotic driving. This may pose a serious threat to coral reef ecosystems and human health. Our study provides new insights into the ecological impacts of microplastic biofilms in coral reef ecosystems. | 2024 | 38281603 |
| 6426 | 7 | 0.9997 | Deciphering the pathogenic risks of microplastics as emerging particulate organic matter in aquatic ecosystem. Microplastics are accumulating rapidly in aquatic ecosystems, providing habitats for pathogens and vectors for antibiotic resistance genes (ARGs), potentially increasing pathogenic risks. However, few studies have considered microplastics as particulate organic matter (POM) to elucidate their pathogenic risks and underlying mechanisms. Here, we performed microcosm experiments with microplastics and natural POM (leaves, algae, soil), thoroughly investigating their distinct effects on the community compositions, functional profiles, opportunistic pathogens, and ARGs in Particle-Associated (PA) and Free-Living (FL) bacterial communities. We found that both microplastics and leaves have comparable impacts on microbial community structures and functions, enriching opportunistic pathogens and ARGs, which may pose potential environmental risks. These effects are likely driven by their influences on water properties, including dissolved organic carbon, nitrate, DO, and pH. However, microplastics uniquely promoted pathogens as keystone species and further amplified their capacity as hosts for ARGs, potentially posing a higher pathogenic risk than natural POM. Our research also emphasized the importance of considering both PA and FL bacteria when assessing microplastic impacts, as they exhibited different responses. Overall, our study elucidates the role and underlying mechanism of microplastics as an emerging POM in intensifying pathogenic risks of aquatic ecosystems in comparison with conventional natural POM. | 2024 | 38805824 |
| 6934 | 8 | 0.9997 | Impact of protist predation on bacterial community traits in river sediments. Sediment-associated microbial communities are pivotal in driving biogeochemical processes and serve as key indicators of ecosystem health and function. However, the ecological impact of protist predation on these microbial communities remains poorly understood. Here, sediment microcosms were established with varying concentrations of indigenous protists. Results revealed that protist predation exerted strong and differential effects on the bacterial community composition, functional capabilities, and antibiotic resistance profiles. Higher levels of protist predation pressure increased bacterial alpha diversity and relative abundance of genera associated with carbon and nitrogen cycling, such as Fusibacter, Methyloversatilis, Azospirillum, and Holophaga. KEGG analysis indicated that protist predation stimulated microbial processes related to the carbon, nitrogen, and sulfur cycles. Notably, the relative abundance and associated health risks of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and mobile genetic elements (MGEs) were affected by predation pressure. Medium protist predation pressure increased the relative abundance and potential risks associated with ARGs, whereas high protist concentrations led to a reduction in both, likely due to a decrease in the relative abundance of ARG-hosting pathogenic bacteria such as Pseudomonas, Acinetobacter, and Aeromonas. These findings provide comprehensive insights into the dynamics of bacterial communities under protist predation in river sediment ecosystems. | 2025 | 40885182 |
| 6936 | 9 | 0.9997 | Pivotal role of earthworm gut protists in mediating antibiotic resistance genes under microplastic and sulfamethoxazole stress in soil-earthworm systems. Microplastics (MPs) are currently receiving widespread attention worldwide, and their co-occurrence with antibiotics is unavoidable. However, our understanding of how protists respond to co-pollution and mediate antibiotic resistance genes (ARGs) profiles remains exceedingly limited, particularly within non-target animals' guts. To bridge these gaps, we investigated the individual and combined effects of polyethylene and sulfamethoxazole (SMZ) on microbial communities and ARGs in soil and earthworm guts. We found that the MP-SMZ combination significantly elevated the abundance and richness of ARGs in the soil and earthworm. Protistan compositions (particularly consumers) responded more strongly to pollutants than did bacterial and fungal communities, especially under combined pollution. Interkingdom cooccurrence network analysis revealed that protists had stronger and more effective interactions with the resistome in the earthworm guts, suggesting that the impact of these protists on ARGs compositional changes was potentially modulated through the "top-down" regulation of bacteria and fungi. Meta-cooccurrence networks further confirmed that protist-related networks had more keystone pollution-sensitive ASVs (psASVs) and these psASVs were mostly associated with protistan consumers. Our study highlights protists as promising agents for regulating and monitoring microbial functions, as well as the ecological risks of the antibiotic resistome associated with MPs and SMZ pollution in agricultural ecosystems. | 2025 | 40412325 |
| 8562 | 10 | 0.9997 | Nitrogen and phosphorus limitations promoted bacterial nitrate metabolism and propagation of antibiotic resistome in the phycosphere of Auxenochlorella pyrenoidosa. Despite that nitrogen (N) and phosphorus (P) play critical roles in the lifecycle of microalgae, how N and P further affect the distribution of bacteria and antibiotic resistance genes (ARGs) in the phycosphere is still poorly understood. In this study, the effects of N and P on the distribution of ARGs in the phycosphere of Auxenochlorella pyrenoidosa were investigated. Results showed that the growth and chlorophyll synthesis of microalgae were inhibited when N or P was limited, regardless of the N/P ratios, but the extracellular polymeric substances content and nitrate assimilation efficiency were enhanced in contrast. Metagenomic sequencing revealed that N or P limitation resulted in the recruitment of specific bacteria that highly contribute to the nitrate metabolism in the phycosphere. Besides, N or P limitation promoted the propagation of phycosphere ARGs, primarily through horizontal gene transfer mediated by mobile genetic elements. The enrichment of specific bacteria induced by changes in the algal physiology also contributed to the ARGs proliferation under nutrient limitation. Our results demonstrated that the reduction of algal cells caused by nutrient limitation could promote the propagation of ARGs, which provides new insights into the occurrence and spread of ARGs in the phycosphere. | 2024 | 38367442 |
| 6430 | 11 | 0.9997 | Plastic leachate exposure drives antibiotic resistance and virulence in marine bacterial communities. Plastic pollution is a serious global problem, with more than 12 million tonnes of plastic waste entering the oceans every year. Plastic debris can have considerable impacts on microbial community structure and functions in marine environments, and has been associated with an enrichment in pathogenic bacteria and antimicrobial resistance (AMR) genes. However, our understanding of these impacts is largely restricted to microbial assemblages on plastic surfaces. It is therefore unclear whether these effects are driven by the surface properties of plastics, providing an additional niche for certain microbes residing in biofilms, and/or chemicals leached from plastics, the effects of which could extend to surrounding planktonic bacteria. Here, we examine the effects of polyvinyl chloride (PVC) plastic leachate exposure on the relative abundance of genes associated with bacterial pathogenicity and AMR within a seawater microcosm community. We show that PVC leachate, in the absence of plastic surfaces, drives an enrichment in AMR and virulence genes. In particular, leachate exposure significantly enriches AMR genes that confer multidrug, aminoglycoside and peptide antibiotic resistance. Additionally, enrichment of genes involved in the extracellular secretion of virulence proteins was observed among pathogens of marine organisms. This study provides the first evidence that chemicals leached from plastic particles alone can enrich genes related to microbial pathogenesis within a bacterial community, expanding our knowledge of the environmental impacts of plastic pollution with potential consequences for human and ecosystem health. | 2023 | 37019264 |
| 6986 | 12 | 0.9997 | Variations in antibiotic resistomes associated with archaeal, bacterial, and viral communities affected by integrated rice-fish farming in the paddy field ecosystem. Antibiotic resistance genes (ARGs) serving as a newly recognized pollutant that poses potential risks to global human health, which in the paddy soil can be potentially altered by different agricultural production patterns. To elucidate the impacts and mechanisms of the widely used and sustainable agricultural production pattern, namely integrated rice-fish farming, on the antibiotic resistomes, we applied metagenomic sequencing to assess ARGs, mobile genetic elements (MGEs), bacteria, archaea, and viruses in paddy soil. There were 20 types and 359 subtypes of ARGs identified in paddy soil. The integrated rice-fish farming reduced the ARG and MGE diversities and the abundances of dominant ARGs and MGEs. Significantly decreased ARGs were mainly antibiotic deactivation and regulator types and primarily ranked level IV based on their potential threat to human health. The integrated rice-fish farming decreased the alpha diversities and altered microbial community compositions. MGEs, bacteria, archaea, and virus exhibited significant correlations with ARGs, while integrated rice-fish farming effectively changed their interrelationships. Viruses, bacteria, and MGEs played crucial roles in affecting the ARGs by the integrated rice-fish farming. The most crucial pathway by which integrated rice-fish farming affected ARGs was through the modulation of viral communities, thereby directly or indirectly influencing ARG abundance. Our research contributed to the control and restoration of ARGs pollution from a new perspective and providing theoretical support for the development of clean and sustainable agricultural production. | 2024 | 38518910 |
| 7562 | 13 | 0.9997 | Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. The comprehensive effect of exogenous pollutants on the dispersal and abundance of antibiotic-resistance genes (ARGs) in the phycosphere, bacterial community and algae-bacteria interaction remains poorly understood. We investigated community structure and abundance of ARGs in free-living (FL) and particle-attached (PA) bacteria in the phycosphere under nanoparticles (silver nanoparticles (AgNPs) and hematite nanoparticles (HemNPs)) and antibiotics (tetracycline and sulfadiazine) stress using high-throughput sequencing and real-time quantitative PCR. Meanwhile, the intrinsic connection of algae-bacteria interaction was explored by transcriptome and metabolome. The results showed that the relative abundance of sulfonamide and tetracycline ARGs in PA and FL bacteria increased 103-129 % and 112-134 %, respectively, under combined stress of nanoparticles and antibiotics. Antibiotics have a greater effect on ARGs than nanoparticles at environmentally relevant concentrations. Proteobacteria, Firmicutes, and Bacteroidetes, as the primary potential hosts of ARGs, were the dominant phyla. Lifestyle, i.e., PA and FL, significantly determined the abundance of ARGs and bacterial communities. Moreover, algae can provide bacteria with nutrients (carbohydrates and amino acids), and can also produce antibacterial substances (fatty acids). This algal-bacterial interaction may indirectly affect the distribution and abundance of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in microalgae-bacteria symbiotic systems. | 2023 | 36283215 |
| 6935 | 14 | 0.9996 | Effects of soil protists on the antibiotic resistome under long term fertilization. Soil protists are key in regulating soil microbial communities. However, our understanding on the role of soil protists in shaping antibiotic resistome is limited. Here, we considered the diversity and composition of bacteria, fungi and protists in arable soils collected from a long-term field experiment with multiple fertilization treatments. We explored the effects of soil protists on antibiotic resistome using high-throughput qPCR. Our results showed that long term fertilization had stronger effect on the composition of protists than those of bacteria and fungi. The detected number and relative abundance of antibiotic resistance genes (ARGs) were elevated in soils amended with organic fertilizer. Co-occurrence network analysis revealed that changes in protists may contribute to the changes in ARGs composition, and the application of different fertilizers altered the communities of protistan consumers, suggesting that effects of protistan communities on ARGs might be altered by the top-down impact on bacterial composition. This study demonstrates soil protists as promising agents in monitoring and regulating ecological risk of antibiotic resistome associated with organic fertilizers. | 2022 | 35609845 |
| 6431 | 15 | 0.9996 | The dynamics and transmission of antibiotic resistance associated with plant microbiomes. Antibiotic resistance genes (ARGs) have been widely found and studied in soil and water environments. However, the propagation of ARGs in plant microbiomes has attracted insufficient attention. Plant microbiomes, especially the rhizosphere microorganisms, are closely connected with water, soil, and air, which allows ARGs to spread widely in ecosystems and pose a threat to human health after entering the human body with bacteria. Therefore, it is necessary to deeply understand and explore the dynamics and the transmission of ARGs in rhizosphere microorganisms and endophytes of plants. In this review, the transmission and influencing factors of ARGs in the microorganisms associated with plants, especially the influence of root exudates on plant microbiomes, are analyzed. Notably, the role of intrinsic genes of plants in determining root exudates and their potential effects on ARGs are proposed and analyzed. The important role of phyllosphere microorganisms and endophytes in the transmission of ARGs and co-resistance of antibiotics and other substances are also emphasized. The proliferation and transmission of ARGs associated with plant microbiomes addressed in this review is conducive to revealing the fate of ARGs in plant microorganisms and alleviating ARG pollution. | 2023 | 37257204 |
| 6439 | 16 | 0.9996 | A review: Marine aquaculture impacts marine microbial communities. Marine aquaculture is key for protein production but disrupts marine ecosystems by releasing excess feed and pharmaceuticals, thus affecting marine microbes. Though vital, its environmental impact often remains overlooked. This article delves into mariculture's effects on marine microbes, including bacteria, fungi, viruses, and antibiotic-resistance genes in seawater and sediments. It highlights how different mariculture practices-open, pond, and cage culture-affect these microbial communities. Mariculture's release of nutrients, antibiotics, and heavy metals alters the microbial composition, diversity, and functions. Integrated multi-trophic aquaculture, a promising sustainable approach, is still developing and needs refinement. A deep understanding of mariculture's impact on microbial ecosystems is crucial to minimize pollution and foster sustainable practices, paving the way for the industry's sustainable advancement. | 2024 | 38919720 |
| 8613 | 17 | 0.9996 | Insights into the role of extracellular polymeric substances (EPS) in the spread of antibiotic resistance genes. Antibiotic resistance genes (ARG) are prevalent in aquatic environments. Discharge from wastewater treatment plants is an important point source of ARG release into the environment. It has been reported that biological treatment processes may enhance rather than remove ARG because of their presence in sludge. Attenuation of ARG in biotechnological processes has been studied in depth, showing that many microorganisms can secrete complex extracellular polymeric substances (EPS). These EPS can serve as multifunctional elements of microbial communities, involving aspects, such as protection, structure, recognition, adhesion, and physiology. These aspects can influence the interaction between microbial cells and extracellular ARG, as well as the uptake of extracellular ARG by microbial cells, thus changing the transformative capability of extracellular ARG. However, it remains unclear whether EPS can affect horizontal ARG transfer, which is one of the main processes of ARG dissemination. In light of this knowledge gap, this review provides insight into the role of EPS in the transmission of ARGs; furthermore, the mechanism of ARG spread is analyzed, and the molecular compositions and functional properties of EPS are summarized; also, how EPS influence ARG mitigation is addressed, and factors impacting how EPS facilitate ARG during wastewater treatment are summarized. This review provides comprehensive insights into the role of EPS in controlling the transport and fate of ARG during biodegradation processes at the mechanistic level. | 2024 | 38169168 |
| 8612 | 18 | 0.9996 | Nano- and microplastics drive the dynamic equilibrium of amoeba-associated bacteria and antibiotic resistance genes. As emerging pollutants, microplastics have become pervasive on a global scale, inflicting significant harm upon ecosystems. However, the impact of these microplastics on the symbiotic relationship between protists and bacteria remains poorly understood. In this study, we investigated the mechanisms through which nano- and microplastics of varying sizes and concentrations influence the amoeba-bacterial symbiotic system. The findings reveal that nano- and microplastics exert deleterious effects on the adaptability of the amoeba host, with the magnitude of these effects contingent upon particle size and concentration. Furthermore, nano- and microplastics disrupt the initial equilibrium in the symbiotic relationship between amoeba and bacteria, with nano-plastics demonstrating a reduced ability to colonize symbiotic bacteria within the amoeba host when compared to their microplastic counterparts. Moreover, nano- and microplastics enhance the relative abundance of antibiotic resistance genes and heavy metal resistance genes in the bacteria residing within the amoeba host, which undoubtedly increases the potential transmission risk of both human pathogens and resistance genes within the environment. In sum, the results presented herein provide a novel perspective and theoretical foundation for the study of interactions between microplastics and microbial symbiotic systems, along with the establishment of risk assessment systems for ecological environments and human health. | 2024 | 38905974 |
| 6428 | 19 | 0.9996 | Effluents of wastewater treatment plants promote the rapid stabilization of the antibiotic resistome in receiving freshwater bodies. Treated wastewater discharged into the environment acts as a disturbance of the natural microbial communities in terms of taxonomic composition and of functional gene pool, including antibiotic resistance genes. We tested whether stochastic and heterogeneous site-specific trajectories or generalities, potentially driven by deterministic processes, control the fate of allochthonous bacteria from anthropogenic sources and the persistence of their functional traits in freshwater. Finding generalities would allow the identification of wastewater treatments that could be effective in abating determinants of antibiotic resistance. We analysed the short-term response of native bacterial communities in waters exposed to the disturbance of wastewater at different dilutions, using a metagenomic approach that revealed both microbial community composition and the scope and abundance of the resistome that can pose indirect risks to human health. We found that the taxonomic composition of the communities after the disturbance was driven by case-specific stochastic processes, whereas the resistome had a deterministic trajectory, rapidly stabilising its functional traits with higher proportions of wastewater effluents, regardless of differences in taxonomic composition, richness of antibiotic resistance genes and of bacterial taxa, phenotypic features of the bacterial communities, and type of wastewater treatment. The observed deterministic proliferation of resistomes in freshwater bodies receiving wastewater effluents, suggests that this process may contribute to the global propagation of antibiotic resistance, and thus calls for new legislations promoting alternative tertiary treatments for the wastewater reuse, and targeting bacterial functional traits and not only bacterial abundances. | 2019 | 31015144 |