# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8621 | 0 | 1.0000 | Effects of symbiotic bacteria on chemical sensitivity of Daphnia magna. The crustacean zooplankton Daphnia magna has been widely used for chemical toxicity tests. Although abiotic factors have been well documented in ecotoxicological test protocols, biotic factors that may affect the sensitivity to chemical compounds remain limited. Recently, we identified symbiotic bacteria that are critical for the growth and reproduction of D. magna. The presence of symbiotic bacteria on Daphnia raised the question as to whether these bacteria have a positive or negative effect on toxicity tests. In order to evaluate the effects of symbiotic bacteria on toxicity tests, bacteria-free Daphnia were prepared, and their chemical sensitivities were compared with that of Daphnia with symbiotic bacteria based on an acute immobilization test. The Daphnia with symbiotic bacteria showed higher chemical resistance to nonylphenol, fenoxycarb, and pentachlorophenol than bacteria-free Daphnia. These results suggested potential roles of symbiotic bacteria in the chemical resistance of its host Daphnia. | 2017 | 28292585 |
| 9627 | 1 | 0.9996 | Effects of glyphosate on antibiotic resistance in soil bacteria and its potential significance: A review. The evolution and spread of antibiotic resistance are problems with important consequences for bacterial disease treatment. Antibiotic use in animal production and the subsequent export of antibiotic resistance elements in animal manure to soil is a concern. Recent reports suggest that exposure of pathogenic bacteria to glyphosate increases antibiotic resistance. We review these reports and identify soil processes likely to affect the persistence of glyphosate, antibiotic resistance elements, and their interactions. The herbicide molecular target of glyphosate is not shared by antibiotics, indicating that target-site cross-resistance cannot account for increased antibiotic resistance. The mechanisms of bacterial resistance to glyphosate and antibiotics differ, and bacterial tolerance or resistance to glyphosate does not coincide with increased resistance to antibiotics. Glyphosate in the presence of antibiotics can increase the activity of efflux pumps, which confer tolerance to glyphosate, allowing for an increased frequency of mutation for antibiotic resistance. Such effects are not unique to glyphosate, as other herbicides and chemical pollutants can have the same effect, although glyphosate is used in much larger quantities on agricultural soils than most other chemicals. Most evidence indicates that glyphosate is not mutagenic in bacteria. Some studies suggest that glyphosate enhances genetic exchange of antibiotic-resistance elements through effects on membrane permeability. Glyphosate and antibiotics are often present together in manure-treated soil for at least part of the crop-growing season, and initial studies indicate that glyphosate may increase abundance of antibiotic resistance genes in soil, but longer term investigations under realistic field conditions are needed. Although there are demonstratable interactions among glyphosate, bacteria, and antibiotic resistance, there is limited evidence that normal use of glyphosate poses a substantial risk for increased occurrence of antibiotic-resistant, bacterial pathogens. Longer term field studies using environmentally relevant concentrations of glyphosate and antibiotics are needed. | 2025 | 39587768 |
| 9626 | 2 | 0.9996 | Daphnia as a refuge for an antibiotic resistance gene in an experimental freshwater community. Mechanisms that enable the maintenance of antibiotic resistance genes in the environment are still greatly unknown. Here we show that the tetracycline resistance gene tet(A) is largely removed from the pelagic aquatic bacterial community through filter feeding by Daphnia obtusa while it becomes detectable within the microbiome of the daphniids themselves, where it was not present prior to the experiment. We moreover show that a multitude of Daphnia-associated bacterial taxa are potential carriers of tet(A) and postulated that the biofilm-like structures, where bacteria grow in, may enable horizontal transfer of such genes. This experiment highlights the need to take ecological interactions and a broad range of niches into consideration when studying and discussing the fate of antibiotic resistance genes in nature. | 2016 | 27459256 |
| 9633 | 3 | 0.9996 | Antibacterials in Aquatic Environment and Their Toxicity to Fish. Antibacterial agents are commonly present in aquatic environment at low concentrations. Terrestrial animal farms, human medicine and aquaculture are main sources of water contamination with antibacterials. Antibiotics were proved to be directly toxic to fish causing oxidative stress, general stress response, histopathological lesions, hematological, metabolic, and reproductive disorders, as well as immunosuppressive and genotoxic effects. Environmentally realistic low concentrations of antibiotics also disturb aquatic bacterial communities causing alterations in fish symbiotic microbiota and induce emergence of antibiotic-resistant pathogenic bacteria by exerting selective pressure on spread of antibiotic-resistance genes. | 2020 | 32784912 |
| 8345 | 4 | 0.9995 | Antibiotic Resistance via Bacterial Cell Shape-Shifting. Bacteria have evolved to develop multiple strategies for antibiotic resistance by effectively reducing intracellular antibiotic concentrations or antibiotic binding affinities, but the role of cell morphology in antibiotic resistance remains poorly understood. By analyzing cell morphological data for different bacterial species under antibiotic stress, we find that bacteria increase or decrease the cell surface-to-volume ratio depending on the antibiotic target. Using quantitative modeling, we show that by reducing the surface-to-volume ratio, bacteria can effectively reduce the intracellular antibiotic concentration by decreasing antibiotic influx. The model further predicts that bacteria can increase the surface-to-volume ratio to induce the dilution of membrane-targeting antibiotics, in agreement with experimental data. Using a whole-cell model for the regulation of cell shape and growth by antibiotics, we predict shape transformations that bacteria can utilize to increase their fitness in the presence of antibiotics. We conclude by discussing additional pathways for antibiotic resistance that may act in synergy with shape-induced resistance. | 2022 | 35616332 |
| 6738 | 5 | 0.9995 | Combined effects of microplastics and antibiotic-resistant bacteria on Daphnia magna growth and expression of functional genes. Microplastics could act as vectors for the transport of harmful bacteria, such as pathogens and antibiotic resistance bacteria (ARB), but their combined effects have not been reported yet. Here, ARB Shigella flexneri with sulfonamides resistance and micro-polystyrene (micro-PS) were used to investigate their possible combined effects on the growth and expression of functional genes in Daphnia magna. Results showed that micro-PS colonized with S. flexneri were ingested by D. magna and blocked in their intestine after 24 h exposure. Changes were observed in the life history and morphology of D. magna, as well as the expression of functional genes in all treatments, but with no difference in the survival rate. We also determined the expression of six functional genes involved in energy and metabolism (arginine kinase, AK) and oxidative stress response (thioredoxin reductase, TRxR, catalase, CAT, and glutathione S-transferases, GSTs), as well as in growth, development and reproduction (vitellogenin, Vtg1 and ecdysone receptor, EcR). AK and Vtg1 did not show significant differences, however, EcR was down-regulated and the other three genes (TRxR, CAT, GSTs) were up-regulated in the combined-treated group. Antibiotic resistance gene (ARGs) sul1 was detected when exposed to micro-PS colonized with S. flexneri., suggesting that D. magna could acquire resistance genes through microplastic biofilms. These results indicated that MPs could act as a carrier of ARB to transfer ARGs into D. magna, and affect the life history, morphology, and the expression of related functional genes of D. magna, to adapt to the stress caused by MPs and ARB. | 2023 | 37709097 |
| 9628 | 6 | 0.9995 | The population genetics of antibiotic resistance. II: Analytic theory for sustained populations of bacteria in a community of hosts. The phenomenon of antibiotic resistance is of practical importance and theoretical interest. As a foundation for further studies by simulation, experiment, and observation, we here develop a mathematical model for the dynamics of resistance among the bacteria resident in a population of hosts. The model incorporates the effects of natural selection within untreated hosts, colonization by bacteria from the environment, and the rapid increase of resistance in hosts who receive antibiotics. We derive explicit formulas for the distribution of resistance among hosts and for the rise or fall of resistance when the frequency of treatment is changed. | 1998 | 9615474 |
| 9632 | 7 | 0.9995 | A simple model of tetracycline antibiotic resistance in the aquatic environment (with application to the Poudre River). Antibiotic resistance is a major concern, yet it is unclear what causes the relatively high densities of resistant bacteria in the anthropogenically impacted environment. There are various possible scenarios (hypotheses): (A) Input of resistant bacteria from wastewater and agricultural sources is significant, but they do not grow in the environment; (B) Input of resistant bacteria is negligible, but the resistant bacteria (exogenous or endogenous) grow due to the selection pressure of the antibiotic; (C) Exogenous bacteria transfer the resistance to the endogenous bacteria and those grow. This paper presents a simple mechanistic model of tetracycline resistance in the aquatic environment. It includes state variables for tetracyclines, susceptible and resistant bacteria, and particulate and dissolved organic matter in the water column and sediment bed. The antibiotic partitions between freely dissolved, dissolved organic matter (DOM)-bound and solids-bound phases, and decays. Bacteria growth is limited by DOM, inhibited by the antibiotic (susceptible bacteria only) and lower due to the metabolic cost of carrying the resistance (resistant bacteria only). Resistant bacteria can transfer resistance to the susceptible bacteria (conjugation) and lose the resistance (segregation). The model is applied to the Poudre River and can reproduce the major observed (literature data) patterns of antibiotic concentration and resistance. The model suggests observed densities of resistant bacteria in the sediment bed cannot be explained by input (scenario A), but require growth (scenarios B or C). | 2011 | 21556198 |
| 9634 | 8 | 0.9995 | New perspectives on bacterial chlorine resistance: Phages encoding chlorine resistance genes improve bacterial adaptation. Bacterial resistance to chlorine disinfectant reduces its effectiveness in killing pathogenic bacteria and poses a severe threat to environmental and health safety. The interaction between bacteria and phages is the most frequent biological activity in Earth's biosphere, but little is known about what role and mechanism phages play in the resistance of bacterial communities to chlorine disinfectants. Here, we investigated the changes in the abundance, activity and function of the bacterial-phage community under the effect of chlorine disinfectants in a 92-day running anaerobic-anoxic-oxic system, using metagenomics and metatranscriptomics sequencing. We found that transcriptional activities of both bacteria and phage are highly sensitive to chlorine disinfectants, although their relative abundance was not obviously altered. The increase in both phage diversity and the ratio of temperate to lytic phages' average activity indicated phages, especially temperate, could play a crucial role in the response to chlorine disinfectants. Interestingly, the phages that carry chlorine resistance genes (CRGs) were the drivers of the phage and microbial community when chlorine disinfectants were present, but they followed the dynamics of community in the absence of chlorine disinfectants. Based on the association bipartite network, we further found that phages directly mediated the horizontal transfer of CRGs among bacteria, facilitating the spread of CRGs in the bacterial community. Moreover, the 4 CRGs related to cell wall repair, redox balance regulation, and efflux pumps that were carried by the phages but lacking in the hosts suggest the potential compensatory effects of the phage for the chlorine resistance of their hosts. Our findings reveal the important role of phages in improving the resistance of bacterial communities to chlorine disinfectants, providing a new perspective on the co-evolution of phages and bacteria to adapt to environments. | 2025 | 40245807 |
| 9002 | 9 | 0.9995 | Bacterial strategies to inhabit acidic environments. Bacteria can inhabit a wide range of environmental conditions, including extremes in pH ranging from 1 to 11. The primary strategy employed by bacteria in acidic environments is to maintain a constant cytoplasmic pH value. However, many data demonstrate that bacteria can grow under conditions in which pH values are out of the range in which cytoplasmic pH is kept constant. Based on these observations, a novel notion was proposed that bacteria have strategies to survive even if the cytoplasm is acidified by low external pH. Under these conditions, bacteria are obliged to use acid-resistant systems, implying that multiple systems having the same physiological role are operating at different cytoplasmic pH values. If this is true, it is quite likely that bacteria have genes that are induced by environmental stimuli under different pH conditions. In fact, acid-inducible genes often respond to another factor(s) besides pH. Furthermore, distinct genes might be required for growth or survival at acid pH under different environmental conditions because functions of many systems are dependent on external conditions. Systems operating at acid pH have been described to date, but numerous genes remain to be identified that function to protect bacteria from an acid challenge. Identification and analysis of these genes is critical, not only to elucidate bacterial physiology, but also to increase the understanding of bacterial pathogenesis. | 2000 | 12483574 |
| 4275 | 10 | 0.9995 | Antibiotic resistance and its cost: is it possible to reverse resistance? Most antibiotic resistance mechanisms are associated with a fitness cost that is typically observed as a reduced bacterial growth rate. The magnitude of this cost is the main biological parameter that influences the rate of development of resistance, the stability of the resistance and the rate at which the resistance might decrease if antibiotic use were reduced. These findings suggest that the fitness costs of resistance will allow susceptible bacteria to outcompete resistant bacteria if the selective pressure from antibiotics is reduced. Unfortunately, the available data suggest that the rate of reversibility will be slow at the community level. Here, we review the factors that influence the fitness costs of antibiotic resistance, the ways by which bacteria can reduce these costs and the possibility of exploiting them. | 2010 | 20208551 |
| 8249 | 11 | 0.9995 | Biocontrol Traits Correlate With Resistance to Predation by Protists in Soil Pseudomonads. Root-colonizing bacteria can support plant growth and help fend off pathogens. It is clear that such bacteria benefit from plant-derived carbon, but it remains ambiguous why they invest in plant-beneficial traits. We suggest that selection via protist predation contributes to recruitment of plant-beneficial traits in rhizosphere bacteria. To this end, we examined the extent to which bacterial traits associated with pathogen inhibition coincide with resistance to protist predation. We investigated the resistance to predation of a collection of Pseudomonas spp. against a range of representative soil protists covering three eukaryotic supergroups. We then examined whether patterns of resistance to predation could be explained by functional traits related to plant growth promotion, disease suppression and root colonization success. We observed a strong correlation between resistance to predation and phytopathogen inhibition. In addition, our analysis highlighted an important contribution of lytic enzymes and motility traits to resist predation by protists. We conclude that the widespread occurrence of plant-protective traits in the rhizosphere microbiome may be driven by the evolutionary pressure for resistance against predation by protists. Protists may therefore act as microbiome regulators promoting native bacteria involved in plant protection against diseases. | 2020 | 33384680 |
| 9730 | 12 | 0.9995 | At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance. Environmental influences on antibiotic activity and resistance can wreak havoc with in vivo antibiotic efficacy and, ultimately, antimicrobial chemotherapy. In nature, bacteria encounter a variety of metal ions, particularly copper (Cu) and zinc (Zn), as contaminants in soil and water, as feed additives in agriculture, as clinically-used antimicrobials, and as components of human antibacterial responses. Importantly, there is a growing body of evidence for Cu/Zn driving antibiotic resistance development in metal-exposed bacteria, owing to metal selection of genetic elements harbouring both metal and antibiotic resistance genes, and metal recruitment of antibiotic resistance mechanisms. Many classes of antibiotics also form complexes with metal cations, including Cu and Zn, and this can hinder (or enhance) antibiotic activity. This review highlights the ways in which Cu/Zn influence antibiotic resistance development and antibiotic activity, and in so doing impact in vivo antibiotic efficacy. | 2017 | 28526548 |
| 6480 | 13 | 0.9995 | Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Antibiotics play a key role in the management of infectious diseases in humans, animals, livestock, and aquacultures all over the world. The release of increasing amount of antibiotics into waters and soils creates a potential threat to all microorganisms in these environments. This review addresses issues related to the fate and degradation of antibiotics in soils and the impact of antibiotics on the structural, genetic and functional diversity of microbial communities. Due to the emergence of bacterial resistance to antibiotics, which is considered a worldwide public health problem, the abundance and diversity of antibiotic resistance genes (ARGs) in soils are also discussed. When antibiotic residues enter the soil, the main processes determining their persistence are sorption to organic particles and degradation/transformation. The wide range of DT50 values for antibiotic residues in soils shows that the processes governing persistence depend on a number of different factors, e.g., physico-chemical properties of the residue, characteristics of the soil, and climatic factors (temperature, rainfall, and humidity). The results presented in this review show that antibiotics affect soil microorganisms by changing their enzyme activity and ability to metabolize different carbon sources, as well as by altering the overall microbial biomass and the relative abundance of different groups (i.e., Gram-negative bacteria, Gram-positive bacteria, and fungi) in microbial communities. Studies using methods based on analyses of nucleic acids prove that antibiotics alter the biodiversity of microbial communities and the presence of many types of ARGs in soil are affected by agricultural and human activities. It is worth emphasizing that studies on ARGs in soil have resulted in the discovery of new genes and enzymes responsible for bacterial resistance to antibiotics. However, many ambiguous results indicate that precise estimation of the impact of antibiotics on the activity and diversity of soil microbial communities is a great challenge. | 2019 | 30906284 |
| 9731 | 14 | 0.9995 | Towards an understanding of the genetics of bacterial metal resistance. Many bacteria show great promise for use in metal recovery. However, the genetics of metal-leaching, accumulation-resistance, and oxidation/reduction mechanisms of these bacteria is still an area of research in its infancy. The introduction of such genes into bacteria of economic importance would have application in biomining and environmental bioremediation. | 1991 | 1366923 |
| 7637 | 15 | 0.9995 | High-sugar, high-fat, and high-protein diets promote antibiotic resistance gene spreading in the mouse intestinal microbiota. Diet can not only provide nutrition for intestinal microbiota, it can also remodel them. However, is unclear whether and how diet affects the spread of antibiotic resistance genes (ARGs) in the intestinal microbiota. Therefore, we employed selected high-sugar, high-fat, high-protein, and normal diets to explore the effect. The results showed that high-sugar, high-fat, and high-protein diets promoted the amplification and transfer of exogenous ARGs among intestinal microbiota, and up-regulated the expression of trfAp and trbBp while significantly altered the intestinal microbiota and its metabolites. Inflammation-related products were strongly correlated with the spread of ARGs, suggesting the intestinal microenvironment after diet remodeling might be conducive to the spreading of ARGs. This may be attributed to changes in bacterial membrane permeability, the SOS response, and bacterial composition and diversity caused by diet-induced inflammation. In addition, acceptor bacteria (zygotes) screened by flow cytometry were mostly Proteobacteria, Firmicutes and Actinobacteria, and most were derived from dominant intestinal bacteria remodeled by diet, indicating that the transfer of ARGs was closely linked to diet, and had some selectivity. Metagenomic results showed that the gut resistance genome could be affected not only by diet, but by exogenous antibiotic resistant bacteria (ARB). Many ARG markers coincided with bacterial markers in diet groups. Therefore, dominant bacteria in different diets are important hosts of ARGs in specific dietary environments, but the many pathogenic bacteria present may cause serious harm to human health. | 2022 | 35030982 |
| 6479 | 16 | 0.9995 | Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Antibiotics are used in animal livestock production for therapeutic treatment of disease and at subtherapeutic levels for growth promotion and improvement of feed efficiency. It is estimated that approximately 75% of antibiotics are not absorbed by animals and are excreted in waste. Antibiotic resistance selection occurs among gastrointestinal bacteria, which are also excreted in manure and stored in waste holding systems. Land application of animal waste is a common disposal method used in the United States and is a means for environmental entry of both antibiotics and genetic resistance determinants. Concerns for bacterial resistance gene selection and dissemination of resistance genes have prompted interest about the concentrations and biological activity of drug residues and break-down metabolites, and their fate and transport. Fecal bacteria can survive for weeks to months in the environment, depending on species and temperature, however, genetic elements can persist regardless of cell viability. Phylogenetic analyses indicate antibiotic resistance genes have evolved, although some genes have been maintained in bacteria before the modern antibiotic era. Quantitative measurements of drug residues and levels of resistance genes are needed, in addition to understanding the environmental mechanisms of genetic selection, gene acquisition, and the spatiotemporal dynamics of these resistance genes and their bacterial hosts. This review article discusses an accumulation of findings that address aspects of the fate, transport, and persistence of antibiotics and antibiotic resistance genes in natural environments, with emphasis on mechanisms pertaining to soil environments following land application of animal waste effluent. | 2009 | 19398507 |
| 8953 | 17 | 0.9995 | Evolution of antibiotic resistance impacts optimal temperature and growth rate in Escherichia coli and Staphylococcus epidermidis. AIMS: Bacterial response to temperature changes can influence their pathogenicity to plants and humans. Changes in temperature can affect cellular and physiological responses in bacteria that can in turn affect the evolution and prevalence of antibiotic-resistance genes. Yet, how antibiotic-resistance genes influence microbial temperature response is poorly understood. METHODS AND RESULTS: We examined growth rates and physiological responses to temperature in two species-E. coli and Staph. epidermidis-after evolved resistance to 13 antibiotics. We found that evolved resistance results in species-, strain- and antibiotic-specific shifts in optimal temperature. When E. coli evolves resistance to nucleic acid and cell wall inhibitors, their optimal growth temperature decreases, and when Staph. epidermidis and E. coli evolve resistance to protein synthesis and their optimal temperature increases. Intriguingly, when Staph. epidermidis evolves resistance to Teicoplanin, fitness also increases in drug-free environments, independent of temperature response. CONCLUSION: Our results highlight how the complexity of antibiotic resistance is amplified when considering physiological responses to temperature. SIGNIFICANCE: Bacteria continuously respond to changing temperatures-whether through increased body temperature during fever, climate change or other factors. It is crucial to understand the interactions between antibiotic resistance and temperature. | 2022 | 36070219 |
| 9001 | 18 | 0.9995 | Bacterial Methionine Metabolism Genes Influence Drosophila melanogaster Starvation Resistance. Animal-associated microorganisms (microbiota) dramatically influence the nutritional and physiological traits of their hosts. To expand our understanding of such influences, we predicted bacterial genes that influence a quantitative animal trait by a comparative genomic approach, and we extended these predictions via mutant analysis. We focused on Drosophila melanogaster starvation resistance (SR). We first confirmed that D. melanogaster SR responds to the microbiota by demonstrating that bacterium-free flies have greater SR than flies bearing a standard 5-species microbial community, and we extended this analysis by revealing the species-specific influences of 38 genome-sequenced bacterial species on D. melanogaster SR. A subsequent metagenome-wide association analysis predicted bacterial genes with potential influence on D. melanogaster SR, among which were significant enrichments in bacterial genes for the metabolism of sulfur-containing amino acids and B vitamins. Dietary supplementation experiments established that the addition of methionine, but not B vitamins, to the diets significantly lowered D. melanogaster SR in a way that was additive, but not interactive, with the microbiota. A direct role for bacterial methionine metabolism genes in D. melanogaster SR was subsequently confirmed by analysis of flies that were reared individually with distinct methionine cycle Escherichia coli mutants. The correlated responses of D. melanogaster SR to bacterial methionine metabolism mutants and dietary modification are consistent with the established finding that bacteria can influence fly phenotypes through dietary modification, although we do not provide explicit evidence of this conclusion. Taken together, this work reveals that D. melanogaster SR is a microbiota-responsive trait, and specific bacterial genes underlie these influences.IMPORTANCE Extending descriptive studies of animal-associated microorganisms (microbiota) to define causal mechanistic bases for their influence on animal traits is an emerging imperative. In this study, we reveal that D. melanogaster starvation resistance (SR), a model quantitative trait in animal genetics, responds to the presence and identity of the microbiota. Using a predictive analysis, we reveal that the amino acid methionine has a key influence on D. melanogaster SR and show that bacterial methionine metabolism mutants alter normal patterns of SR in flies bearing the bacteria. Our data further suggest that these effects are additive, and we propose the untested hypothesis that, similar to bacterial effects on fruit fly triacylglyceride deposition, the bacterial influence may be through dietary modification. Together, these findings expand our understanding of the bacterial genetic basis for influence on a nutritionally relevant trait of a model animal host. | 2018 | 29934334 |
| 7522 | 19 | 0.9995 | Plants select antibiotic resistome in rhizosphere in early stage. Knowledge of the dissemination and emergence of antibiotic resistance genes (ARGs) in the plant rhizosphere is essential for evaluating the risk of the modern ARGs in soil planetary health. However, little is known about the selection mechanism in the plant rhizosphere. Here, we firstly analyzed the dynamic changes in the rhizosphere antibiotic resistome during the process of three passage enrichment of the rhizosphere microbiome in Arabidopsis thaliana (Col-0) and found evidence that plants directionally enriched levels of beneficial functional bacteria with many ARGs. Using the metagenome, we next evaluated the enrichment potential of the resistome in four common crops (barley, indica rice, japonica rice, and wheat) and found that the wheat rhizosphere harbored more abundant ARGs. Therefore, we finally cultivated the rhizosphere microbiome of wheat for three generations and found that approximately 60 % of ARGs were associated with beneficial bacteria enriched in the wheat rhizosphere, which might enter the soil food web and threaten human health, despite also performing beneficial functions in the plant rhizosphere. Our study provides new insights into the dissemination of ARGs in the plant rhizosphere, and the obtained data may be useful for sustainable and ecologically safe agricultural development. | 2023 | 36461576 |