Different paths, same destination: Bisphenol A and its substitute induce the conjugative transfer of antibiotic resistance genes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
860701.0000Different paths, same destination: Bisphenol A and its substitute induce the conjugative transfer of antibiotic resistance genes. Antibiotic resistance genes are primarily spread through horizontal gene transfer in aquatic environments. Bisphenols, which are widely used in industry, are pervasive contaminants in such environments. This study investigated how environmentally relevant concentrations of bisphenol A and its substitute (bisphenol S, Bisphenol AP and Bisphenol AF) affect the spread of antibiotic resistance genes among Escherichia coli. As a result, bisphenol A and its three substitutes were found to promote the RP4 plasmid-mediated conjugative transfer of antibiotic resistance genes with different promotive efficiency. Particularly, bisphenol A and bisphenol S were found to induce more than double the incidence of conjugation at 0.1 nmol/L concentration. They therefore were selected as model compounds to investigate the involved mechanisms. Surprisingly, both slightly inhibited bacterial activity, but there was no significant increase in cell death. Bisphenols exposure changed the polymeric substances excreted by the bacteria, increased the permeability of their cell membranes, induced the secretion of antioxidant enzymes and generated reactive oxygen species. They also affected the expression of genes related to conjugative transfer by upregulating replication and DNA transfer genes and downregulating global regulatory genes. It should be noted that gene expression levels were higher in the BPS-exposed group than in the BPA-exposed group. The synthesis of bacterial metabolites and functional components was also significantly affected by bisphenols exposure. This research has helped to clarify the potential health risks of bisphenol contamination of aquatic environments.202439510271
860810.9998Bisphenols can promote antibiotic resistance by inducing metabolic adaptations and natural transformation. Whether bisphenols, as plasticizers, can influence bacterial uptake of antibiotic resistance genes (ARGs) in natural environment, as well as the underlying mechanism remains largely unknown. Our results showed that four commonly used bisphenols (bisphenol A, S, F, and AF) at their environmental relative concentrations can significantly promote transmission of ARGs by 2.97-3.56 times in Acinetobacter baylyi ADP1. Intriguingly, we observed ADP1 acquired resistance by integrating plasmids uptake and cellular metabolic adaptations other than through reactive oxygen species mediated pathway. Metabolic adaptations including upregulation of capsules polysaccharide biosynthesis and intracellularly metabolic enzymes, which enabled formation of thicker capsules for capturing free plasmids, and degradation of accumulated compounds. Simultaneously, genes encoding DNA uptake and translocation machinery were incorporated to enhance natural transformation of antibiotic resistance carrying plasmids. We further exposed aquatic fish to bisphenols for 120 days to monitor their long-term effects in aquatic environment, which showed that intestinal bacteria communities were dominated by a drug resistant microbiome. Our study provides new insight into the mechanism of enhanced natural transformation of ARGs by bisphenols, and highlights the investigations for unexpectedly-elevated antibiotic-resistant risks by structurally related environmental chemicals.202438554512
898220.9998Ampicillin Exposure and Glutathione Deficiency Synergistically Promote Conjugative Transfer of Plasmid-Borne Antibiotic Resistance Genes. Plasmid-mediated conjugation is an important pathway for the spread of antibiotic resistance genes (ARGs), posing a significant risk to global public health. It has been reported that the conjugative transfer of ARGs could be enhanced by oxidative stress. Whether endogenous glutathione (GSH), a major non-protein thiol compound involved in cellular redox homeostasis, influences conjugative transfer is unknown. In this study, we show that the deletion of the GSH biosynthesis gene gshA and ampicillin exposure synergistically promoted the conjugative transfer of plasmid RP4 bearing multiple ARGs from the soil bacterium Enterobacter sp. CZ-1 to Escherichia coli S17-1λπ in co-culture experiments and to diverse soil bacteria belonging to eight phyla, including some potential human pathogens, in a soil incubation experiment. The deletion of gshA increased ROS generation and cell membrane permeability, and upregulated the expression of the genes involved in intracellular oxidative stress regulation, membrane permeability, plasmid replication, and the SOS response process, especially under ampicillin exposure. These results suggest that endogenous GSH is an important factor affecting the spread of plasmid-borne ARGs. Exposure to antibiotics and environmental stresses that cause a depletion of endogenous GSH in vivo are likely to increase the risk of ARG dissemination in the environment.202540346915
677830.9998Bisphenol S Promotes the Transfer of Antibiotic Resistance Genes via Transformation. The antibiotic resistance crisis has seriously jeopardized public health and human safety. As one of the ways of horizontal transfer, transformation enables bacteria to acquire exogenous genes naturally. Bisphenol compounds are now widely used in plastics, food, and beverage packaging, and have become a new environmental pollutant. However, their potential relationship with the spread of antibiotic resistance genes (ARGs) in the environment remains largely unexplored. In this study, we aimed to assess whether the ubiquitous bisphenol S (BPS) could promote the transformation of plasmid-borne ARGs. Using plasmid pUC19 carrying the ampicillin resistance gene as an extracellular ARG and model microorganism E. coli DH5α as the recipient, we established a transformation system. Transformation assays revealed that environmentally relevant concentrations of BPS (0.1-10 μg/mL) markedly enhanced the transformation frequency of plasmid-borne ARGs into E. coli DH5α up to 2.02-fold. Fluorescent probes and transcript-level analyses suggest that BPS stimulated increased reactive oxygen species (ROS) production, activated the SOS response, induced membrane damage, and increased membrane fluidity, which weakened the barrier for plasmid transfer, allowing foreign DNA to be more easily absorbed. Moreover, BPS stimulates ATP supply by activating the tricarboxylic acid (TCA) cycle, which promotes flagellar motility and expands the search for foreign DNA. Overall, these findings provide important insight into the role of bisphenol compounds in facilitating the horizontal spread of ARGs and emphasize the need to monitor the residues of these environmental contaminants.202439337307
677640.9997Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic-resistance genes. Minerals and microorganisms are integral parts of natural environments, and they inevitably interact. Antibiotic-resistance genes (ARGs) significantly threaten modern healthcare. However, the effects of natural minerals on ARG propagation in aquatic systems are not fully understood. The present work studied the effects of natural sphalerite (NS) nanoparticles on the horizontal transfer of ARGs from Escherichia coli DH5α (CTX) (donor) to E. coli C600 (Sm) (recipient), and from E. coli DH5α (MCR) (donor) to E. coli C600 (Sm), and their underlying mechanisms. NS particles (0.5-50 mg L(-1)) induced an NS-concentration-dependent increase in conjugative transfer frequency. The underlying mechanisms associated with the facilitated ARG transfer included the production of intracellular reactive oxygen species, the SOS response, changes in bacterial cell morphology, and alteration of mRNA levels of bacterial cell membrane protein-related genes and genes associated with conjugative ARG transfer. The information herein offers new mechanistic understanding of risks of bacterial resistance resulting from NS.202031999971
860450.9997Reactive chlorine species inhibiting interspecies spread of antibiotic resistance via disrupting donor - Recipient cells and regulating plasmid conjugation genes. Current drinking water treatment plant (DWTP) disinfection technologies face limitations, allowing plasmid-mediated antibiotic resistance genes (ARGs) transfer to occur among viable but nonculturable (VBNC) bacteria, heightening the risk of antibiotic-resistant infections. While UV/Chlorine has been adopted to curb ARGs abundance, its impacts on the interspecies transfer of ARG-carrying plasmids remain hardly explored. This study investigated how reactive chlorine species (RCS) in the UV/Chlorine system inhibited the transfer of antibiotic resistance from antibiotic-resistant Escherichia coli (AR E. coli) to Bacillus subtilis (B.S) by inactivating both donor and recipient strains and regulating plasmid conjugation genes. RCS reduced plasmid transfer frequencies by 2.1-log and 3.2-log compared to UV or chlorine alone. By impairing (•)OH scavenging ability, it led to ROS accumulation in AR E. coli, disrupting cellular energy metabolism and DNA repair, ultimately causing DNA degradation and membrane damage, resulting in AR E. coli inactivation rather than entering the VBNC state. Additionally, RCS induced structural and intracellular disruption in B.S, compromising its capacity for plasmid uptake and stable maintenance. Finally, RCS inhibited plasmid horizontal transfer while enhancing vertical transfer, with its damage to outer membrane proteins further restricting interspecies plasmid conjugation transfer. This study provides novel insights for DWTPs to better control ARGs interspecies transfer and improve drinking water safety.202540505407
850660.9997Extracellular Polymeric Substances Acting as a Permeable Barrier Hinder the Lateral Transfer of Antibiotic Resistance Genes. Antibiotic resistance genes (ARGs) in bacteria are emerging contaminants as their proliferation in the environment poses significant threats to human health. It is well recognized that extracellular polymeric substances (EPS) can protect microorganisms against stress or damage from exogenous contaminants. However, it is not clear whether EPS could affect the lateral transfer of ARGs into bacteria, which is one of the major processes for the dissemination of ARGs. This study investigated the lateral transfer of ARGs carried by plasmids (pUC19, pHSG298, and pHSG396) into competent Escherichia coli cells with and without EPS. Transformant numbers and transformation efficiency for E. coli without EPS were up to 29 times of those with EPS at pH 7.0 in an aqueous system. The EPS removal further increased cell permeability in addition to the enhanced cell permeability by Ca(2+), which could be responsible for the enhanced lateral transfer of ARGs. The fluorescence quenching experiments showed that EPS could strongly bind to plasmid DNA in the presence of Ca(2+) and the binding strength (LogK (A) = 10.65-15.80 L mol(-1)) between EPS and plasmids was positively correlated with the enhancement percentage of transformation efficiency resulting from the EPS removal. X-ray photoelectron spectroscopy (XPS) analyses and model computation further showed that Ca(2+) could electrostatically bind with EPS mainly through the carboxyl group, hydroxyl group, and RC-O-CR in glucoside, thus bridging the plasmid and EPS. As a result, the binding of plasmids with EPS hindered the lateral transfer of plasmid-borne ARGs. This study improved our understanding on the function of EPS in controlling the fate and transport of ARGs on the molecular and cellular scales.201931057498
677570.9997Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. The spread of antibiotic resistance has become a major concern for public health. As emerging contaminants, various metallic nanoparticles (NPs) and ionic heavy metals have been ubiquitously detected in various environments. Although previous studies have indicated NPs and ionic heavy metals could exhibit co-selection effects for antibiotic resistance, little is known about whether and how they could promote antibiotic resistance spread via horizontal gene transfer across bacterial genera. This study, we report both CuO NPs and copper ions (Cu(2+)) could stimulate the conjugative transfer of multiple-drug resistance genes. When exposing bacteria to CuO NPs or Cu(2+) at environmental-relevant and sub-inhibitory concentrations (e.g., 1-100 μmol/L), conjugation frequencies of plasmid-encoded antibiotic resistance genes across genera (i.e., from Escherichia coli to Pseudomonas putida) were significantly enhanced (p < 0.05). The over-production of reactive oxygen species played a crucial role in promoting conjugative transfer. Genome-wide RNA and protein sequencing suggested expressional levels of genes and proteins related to oxidative stress, cell membrane permeability, and pilus generation were significantly up-regulated under CuO NPs and Cu(2+) exposure (p < 0.05). This study provides insights in the contributions of NPs and heavy metals on the spread of antibiotic resistance.201931158594
898180.9997Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation. The stress response of antibiotic-resistant bacteria (ARB) and the spread of antibiotic resistance genes (ARGs) pose a serious threat to the aquatic environment and human beings. This study mainly explored the effect of the heterogeneous photocatalytic oxidation (UVA-TiO(2) system) on the stress response mechanism of ARB with different antibiotic resistance action targets, including the cell wall, proteins, DNA, RNA, folate and the cell membrane. Results indicate that the stress response mechanism of tetracycline- and sulfamethoxazole-resistant E. coli DH5α, which targets the synthesis of protein and folate, could rapidly induce global regulators by the overexpression of relative antibiotic resistance action target genes. Different stress response systems were mediated via cross-protection mechanism, causing stronger tolerance to an adverse environment than other ARB. Moreover, the photocatalytic inactivation mechanism of bacterial cells and a graded response of cellular stress mechanism caused differences in the intensity of the stress mechanism of antibiotic resistance action targets. E. coli DH5α resistant to cefotaxime and polymyxin, targeting synthesis of the cell wall and cell membrane, respectively, could confer greater advantages to bacterial survival and higher conjugative transfer frequency than E. coli DH5α resistant to nalidixic acid and rifampicin, which target the synthesis of DNA and RNA, respectively. This new perspective provides detailed information on the practical application of photocatalytic oxidation for inactivating ARB and hampering the spreading of ARGs in the aquatic environment.202235453030
677790.9997Unveiling the role of uranium in enhancing the transformation of antibiotic resistance genes. Transformation represents one of the most important pathways for the horizontal transfer of antibiotic resistance genes (ARGs), which enables competent bacteria to acquire extracellular ARGs from the surrounding environment. Both heavy metals and irradiation have been demonstrated to influence the bacterial transformation process. However, the impact of ubiquitously occurring radioactive heavy metals on the transformation of ARGs remains largely unknown. Here, we showed that a representative radioactive nuclide, uranium (U), at environmental concentrations (0.005-5 mg/L), improved the transformation frequency of resistant plasmid pUC19 into Escherichia coli by 0.10-0.85-fold in a concentration-dependent manner. The enhanced ARGs transformation ability under U stress was demonstrated to be associated with reactive oxygen species (ROS) overproduction, membrane damage, and up-regulation of genes related to DNA uptake and recombination. Membrane permeability and ROS production were the predominant direct and indirect factors affecting transformation ability, respectively. Our findings provide valuable insight into the underlying mechanisms of the impacts of U on the ARGs transformation process and highlight concerns about the exacerbated spread of ARGs in radioactive heavy metal-contaminated ecosystems, especially in areas with nuclear activity or accidents.202439208634
8526100.9997Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics. Recently micro/nanoplastics (MNPs) have raised intensive concerns due to their possible enhancement effect on the dissemination of antibiotic genes. Unfortunately, data is still lacking to verify the effect. In the study, the influence of polystyrene MNPs on the conjugative gene transfer was studied by using E. coli DH5ɑ with RP4 plasmid as the donor bacteria and E. coli K12 MG1655 as the recipient bacteria. We found that influence of MNPs on gene transfer was size-dependent. Small MNPs (10 nm in radius) caused an increase and then a decrease in gene transfer efficiency with their concentration increasing. Moderate-sized MNPs (50 nm in radius) caused an increase in gene transfer efficiency. Large MNPs (500 nm in radius) had almost no influence on gene transfer. The gene transfer could be further enhanced by optimizing mating time and mating ratio. Scavenging reactive oxygen species (ROS) production did not affect the cell membrane permeability, indicating that the increase in cell membrane permeability was not related to ROS production. The mechanism of the enhanced gene transfer efficiency was attributed to a combined effect of the increased ROS production and the increased cell membrane permeability, which ultimately regulated the expression of corresponding genes.202235278945
8513110.9997Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. The bacterial infection that involves antimicrobial resistance is a rising global threat to public health. Chlorine-based water disinfection processes can inactivate antibiotic resistant bacteria. However, at the same time, these processes may cause the release of antibiotic resistance genes into the water as free DNA, and consequently increase the risk to disseminate antibiotic resistance via natural transformation. Presently, little is known about the contribution of residual chlorine affecting the transformation of extracellular antibiotic resistance genes (ARGs). This study investigates whether chloramine and free chlorine promote the transformation of ARGs and how this may occur. We reveal that both chloramine and free chlorine, at practically relevant concentrations, significantly stimulated the transformation of plasmid-encoded ARGs by the recipient Acinetobacter baylyi ADP1, by up to a 10-fold increase. The underlying mechanisms underpinning the increased transformations were revealed. Disinfectant exposure induced a series of cell responses, including increased levels of reactive oxygen species (ROS), bacterial membrane damage, ROS-mediated DNA damage, and increased stress response. These effects thus culminated in the enhanced transformation of ARGs. This promoted transformation was observed when exposing disinfectant-pretreated A. baylyi to free plasmid. In contrast, after pretreating free plasmid with disinfectants, the transformation of ARGs decreased due to the damage of plasmid integrity. These findings provide important insight on the roles of disinfectants affecting the horizontal transfer of ARGs, which could be crucial in the management of antibiotic resistance in our water systems.202133941886
6774120.9997Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Antibiotic resistance in bacteria is a growing threat to global human health. Horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) is recognized as the primary contributor to antibiotic resistance dissemination. Silver nanoparticles (AgNPs) are widely used in personal care products as antimicrobial agents. While heavy metals are known to induce antibiotic resistance in bacteria, it is not known whether AgNPs in the environment can stimulate the HGT of ARGs. Here, we report that both AgNPs and ionic silver Ag(+), at environmentally relevant and sub-lethal concentrations, facilitate the conjugative transfer of plasmid-borne ARGs across bacterial genera (from the donor Escherichia coli K-12 LE392 to the recipient Pseudomonas putida KT2440). The underlying mechanisms of the Ag(+)- or AgNPs-promoted HGT were unveiled by detecting oxidative stress and cell membrane permeability, combined with genome-wide RNA sequencing and proteomic analyses. It was found that both Ag(+) and AgNPs exposure induced various bacterial responses that included reactive oxygen species (ROS) generation, membrane damage and the SOS response. This study exposes the potential ecological risks of environmental levels of AgNPs and Ag(+) for promoting the spread of ARGs and highlights concerns regarding the management of nanoparticles and heavy metals.202031783256
8524130.9997Tebuconazole exacerbates co-occurrence and horizontal transfer of antibiotic resistance genes. As one of the most widely used pesticides in the global fungicide market, tebuconazole has become heavily embedded in soil along with antibiotic resistance genes (ARGs). However, it remains unclear whether the selective pressure produced by tebuconazole affects ARGs and their horizontal transfer. In this experiment, we simulated a tebuconazole-contaminated soil ecosystem and observed changes in the abundance of ARGs and mobile genetic element (MGEs) due to tebuconazole exposure. We also established a plasmid RP4-mediated conjugative transfer system to investigate in depth the impact of tebuconazole on the horizontal transfer of ARGs and its mechanism of action. The results showed that under tebuconazole treatment at concentrations ranging from 0 to 10 mg/L, there was a gradual increase in the frequency of plasmid conjugative transfer, peaking at 10 mg/L which was 7.93 times higher than that of the control group, significantly promoting horizontal transfer of ARGs. Further analysis revealed that the conjugative transfer system under tebuconazole stress exhibited strong ability to form biofilm, and the conjugative transfer frequency ratio of biofilm to planktonic bacteria varied with the growth cycle of biofilm. Additionally, scanning electron microscopy and flow cytometry demonstrated increased cell membrane permeability in both donor and recipient bacteria under tebuconazole stress, accompanied by upregulation of ompA gene expression controlling cell membrane permeability. Furthermore, enzyme activity assays indicated significant increases in CAT, SOD activity, and GSH content in recipient bacteria under tebuconazole stress. Moreover, expression levels of transmembrane transporter gene trfAp as well as genes involved in oxidative stress and SOS response were found to be correlated with the frequency of plasmid conjugative transfer.202439277355
6781140.9997Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression. Due to the significant public health risks, there is substantial scientific interest in the increasing abundance of antibiotic-resistance bacteria (ARB) and the spread of antibiotic-resistance genes (ARGs) in aquatic environments. To clearly understand the mechanism of ARG transfer, this study examined the conjugative transfer of genes encoding resistance to cephalosporin (bla(CTX)) and polymyxin (mcr-1) from two antibiotic-resistant donor strains, namely E. coli DH5α (CTX) and E. coli DH5α (MCR), and to a streptomycin-resistant receptor strain (E. coli C600 (Sm)). Conjugative transfer was specifically studied under different light irradiation conditions including visible light (VL), simulated sunlight (SS) and ultraviolet light (UV(254nm)). Results show that the conjugative transfer frequency was not affected by VL irradiation, while it was slightly improved (2-10 fold) by SS irradiation and extremely accelerated (up to 100 fold) by UV irradiation. Furthermore, this study also explored the link between ARG transfer and stress conditions. This was done by studying physiological and biochemical changes; oxidative stress response; and functional gene expression of co-cultured AR-E. coli strains under stress conditions. When correlated with the transfer frequency results, we found that VL irradiation did not affect the physiological and biochemical characteristics of the bacteria, or induce oxidative stress and gene expression. For SS irradiation, oxidative stress occurred slowly, with a slight increase in the expression of target genes in the bacterial cells. In contrast, UV irradiation, rapidly inactivated the bacteria, the degree of oxidative stress was very severe and the expression of the target genes was markedly up-regulated. Our study could provide new insight into the underlying mechanisms and links between accelerated conjugative transfer and oxidative stress, as well as the altered expression of genes relevant to conjugation and other stress responses in bacterial cells.201930465986
8605150.9997Exposure to bisphenol compounds accelerates the conjugative transfer of antibiotic resistance plasmid. Antimicrobial resistance poses the most formidable challenge to public health, with plasmid-mediated horizontal gene transfer playing a pivotal role in its global spread. Bisphenol compounds (BPs), a group of environmental contaminants with endocrine-disrupting properties, are extensively used in various plastic products and can be transmitted to food. However, the impact of BPs on the plasmid-mediated horizontal transfer of antibiotic resistance genes (ARGs) has not yet been elucidated. Herein, we demonstrate that BPs could promote the conjugative transfer frequency of RP4-7 and clinically multidrug-resistant plasmids. Furthermore, the promoting effect of BPs on the plasmid transfer was also confirmed in a murine model. Microbial diversity analysis of transconjugants indicated an increase in α diversity in the BPAF-treated group, along with the declined richness of some beneficial bacteria and elevated richness of Faecalibaculum rodentium, which might serve as an intermediate repository for resistance plasmids. The underlying mechanisms driving the enhanced conjugative transfer upon BPAF treatment include exacerbated oxidative stress, disrupted membrane homeostasis, augmented energy metabolism, and the increased expression of conjugation-related genes. Collectively, our findings highlight the potential risk associated with the exacerbated dissemination of AMR both in vitro and in vivo caused by BPs exposure.202439278585
6772160.9997Disinfectants facilitate the transformation of exogenous antibiotic resistance genes via multiple pathways. The prevalence and spread of multidrug-resistant (MDR) bacteria pose a global challenge to public health. Natural transformation is one of the essential ways for horizontal transfer of antibiotic resistance genes (ARGs). Although disinfectants are frequently used during COVID-19, little is known about whether these disinfectants are associated with the transformation of plasmid-borne ARGs. In our study, we assessed the effect of some disinfectants on bacterial transformation using resistance plasmids as extracellular DNA and E. coli DH5α as the recipient bacteria. The results showed that these disinfectants at environmentally relevant concentrations, including benzalkonium bromide (BB), benzalkonium chloride (BC) and polyhexamethylene guanidine hydrochloride (PHMG), significantly enhanced the transformation of plasmid-encoded ARGs. Furthermore, we investigated the mechanisms underlying the promotive effect of disinfectants on transformation. We revealed that the addition of disinfectants significantly increased the membrane permeability and promoted membrane-related genes expression. Moreover, disinfectants led to the boosted bacterial respiration, ATP production and flagellum motility, as well as increased expression of bacterial secretion system-related genes. Together, our findings shed insights into the spread of ARGs through bacterial transformation and indicate potential risks associated with the widespread use of disinfectants.202336857920
8508170.9997Phenolic compounds promote the horizontal transfer of antibiotic resistance genes in activated sludge. Phenolic compounds are common organic pollutants in wastewater. During the wastewater treatment process, these compounds may influence the microbial community structure and functions. However, the impact of the phenolic compounds in the wastewater treatment plants on the horizontal transfer of antibiotic resistance genes (ARGs) has not been well assessed. In this study, we investigated the horizontal transfer of ARGs under the stress of phenolic compounds. The results showed that in pure culture bacteria system, p-nitrophenol (PNP), p-aminophenol (PAP) and phenol (PhOH) (10-100 mg/L) can significantly increase the horizontal transfer frequency of ARGs by 2.2-4.6, 3.6-9.4 and 1.9-9.0 fold, respectively. And, the RP4 plasmid transfer from Escherichia coli HB101 (E. coli HB101) to the bacteria in activated sludge increased obviously under the stress of phenolic compounds. Further investigation revealed that the PNP and PhOH at the concentration of 10-100 mg/L increased the production of reactive oxygen species and the permeability of cell membrane in the donor and recipient, which could be the causes of horizontal transfer of RP4 plasmid. In addition, it was also found that PNP, PAP and PhOH stress inhibit the expression of the global regulatory genes korB and trbA in the RP4 plasmid, and increase the expression level of the traF gene, thereby promoting the conjugative transfer of the RP4 plasmid. Taken together, these results improved our understanding of the horizontal transfer of ARGs under the stress of phenolic compounds and provided basic information for management of the systems that treat wastewater containing phenolic compounds.202134392203
6771180.9997Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. The dissemination of antibiotic resistance mediated by horizontal transfer of antibiotic resistance genes (ARGs) is exacerbating the global antibiotic crisis. Currently, little is known about whether non-antibiotic, anti-microbial (NAAM) chemicals are associated with the dissemination of ARGs in the environment. In this study, we aimed to evaluate whether a ubiquitous NAAM chemical, triclosan (TCS), is able to promote the transformation of plasmid-borne antibiotic resistance genes (ARGs). By using the plasmid pUC19 carrying ampicillin resistance genes as the extracellular ARG and a model microorganism Escherichia coli DH5ɑ as the recipient, we found that TCS at environmentally detected concentrations (0.2 μg/L to 20 μg/L) significantly enhanced the transformation of plasmid-borne ARGs into E. coli DH5ɑ for up to 1.4-fold. The combination of phenotypic experiments, genome-wide RNA sequencing and proteomic analyses revealed that TCS exposure stimulated the reactive oxygen species (ROS) production for 1.3- to 1.5-fold, induced bacterial membrane damage and up-regulated the translation of outer membrane porin. Moreover, general secretion system Sec (1.4-fold), twin arginine translocation system Tat (1.2-fold) and type IV pilus secretion systems (2.5-fold) were enhanced by TCS, which might contribute to the DNA searching/capture by pilus. Together, TCS might increase the transformation frequency of ARGs into E. coli DH5ɑ by ROS over-production, damaging cell membrane barrier, mediating the pilus capture of plasmid and the translocation of plasmid via cell membrane channels. This study reports that TCS could accelerate the transformation of extracellular ARGs to competent bacteria at environmentally relevant concentrations. The findings advance our understanding of the fate of ARGs in ecosystems and call for risk assessments of NAAM chemicals on disseminating antibiotic resistance.202032019018
8525190.9997Low-intensity ultrasound promotes the horizontal transfer of resistance genes mediated by plasmids in E. coli. Widespread of pathogenic bacteria resistant to antibiotics has become a worldwide public health concern. Conjugative transfer between bacteria is an important mechanism for the horizontal transfer of antibiotic resistance genes. Ultrasound has been widely applied in many fields, but the effect of ultrasound on horizontal transfer of antibiotic-resistant genes is still not clear. We discovered that low-intensity (≤ 0.05 W/cm(2)) ultrasound had no effect on bacterial growth and survival rates, but increased the permeability of cell membrane, and consequentially elevated the transfer rates of plasmid. Low-intensity  ultrasound enhanced conjugation between bacteria, induced expression of conjugation genes TrpBp and TrfAp, and inhibited expression of global regulatory genes KorA, KorB, TrbA, and TrbK. In conclusion, low-intensity ultrasound promoted horizontal transfer of antibiotic-resistant genes by enhancing conjugation and regulating expression of horizontal transfer-related genes.201829692961