Tire particles and its leachates: Impact on antibiotic resistance genes in coastal sediments. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
858101.0000Tire particles and its leachates: Impact on antibiotic resistance genes in coastal sediments. Tire particles (TPs), a significant group of microplastics, can be discharged into the coastal environments in various ways. However, our understanding of how TPs impact the antibiotic resistance and pathogenic risks of microorganisms in coastal sediments remains limited. In this study, we used metagenomics to investigate how TPs and their leachates could affect the prevalence of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their potential risks to the living creatures such as soil invertebrates and microorganisms in the coastal sediments. We discovered that TP addition significantly increased the abundance and diversity of ARGs and VFGs in coastal sediments, with raw TPs displayed higher impacts than TP leachates and TPs after leaching on ARGs and VFGs. With increasing TP exposure concentrations, the co-occurrence frequency of ARGs and mobile genetic elements (MGEs) in the same contig also increased, suggesting that TPs could enhance the dispersal risk of ARGs. Our metagenome-based binning analysis further revealed that exposure to TPs increased the abundance of potentially pathogenic antibiotic-resistant bacteria (PARB). In addition, chemical additives of TP leachates (e.g., Zn and N-cyclohexylformamide) significantly affected the changes of ARGs in the pore water. In summary, our study provides novel insights into the adverse effects of TP pollutions on aggravating the dissemination and pathogenic risks of ARGs and PARB in the coastal environment.202438147751
705310.9998Plastisphere showing unique microbiome and resistome different from activated sludge. Plastisphere (the biofilm on microplastics) in wastewater treatment plants (WWTPs) may enrich pathogens and antibiotic resistance genes (ARGs) which can cause risks to the ecological environment by discharging into receiving waters. However, the microbiome and resistome of plastisphere in activated sludge (AS) systems remain inconclusive. Here, metagenome was applied to investigate the microbial composition, functions and ARGs of the Polyvinyl chloride (PVC) plastisphere in lab-scale reactors, and revealed the effects of tetracycline (TC) and/or Cu(II) pressures on them. The results indicated that the plastisphere provided a new niche for microbiota showing unique functions distinct from the AS. Particularly, various potentially pathogenic bacteria tended to enrich in PVC plastisphere. Moreover, various ARGs were detected in plastisphere and AS, but the plastisphere had more potential ARGs hosts and a stronger correlation with ARGs. The ARGs abundances increased after exposure to TC and/or Cu(II) pressures, especially tetracycline resistance genes (TRGs), and the results further showed that TRGs with different resistance mechanisms were separately enriched in plastisphere and AS. Furthermore, the exogenous pressures from Cu(II) or/and TC also enhanced the association of potential pathogens with TRGs in PVC plastisphere. The findings contribute to assessing the potential risks of spreading pathogens and ARGs through microplastics in WWTPs.202236041613
705220.9998Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. Microplastics (MPs) and pharmaceuticals are common emerging pollutants in sewage, and their coexistence may have more negative effects on the environments. This study chose tetracycline (TC), ampicillin (AMP) and triclosan (TCS) to investigate the responses of antibiotic resistance genes (ARGs) and microbial communities on different MPs (polyvinyl chloride (PVC), polyethylene (PE)) biofilms (plastisphere). The adsorption capacity of three pharmaceuticals on PVC and PE decreased in the order of AMP > TC > TCS. PE was more conducive to microbial attachment than PVC. MPs led to the increase of the total copies of ARGs and mobile genetic elements (MGEs) in the sewage. Importantly, multidrug ARGs and MGEs were enriched on plastisphere. Furthermore, the co-occurrence of TC and MPs led to higher risks of spreading ARGs and MGEs. In addition, potential pathogenic bacteria Legionella, Mycobacterium, Neisseria and Arcobacter were more abundant on plastisphere than those in sewage, and these bacteria might be the hosts for ARGs and MGEs. This study showed that plastisphere could be repositories of ARGs and MGEs in sewage and accumulated potential pathogenic bacteria.202133454495
691630.9998Mobile genetic elements in potential host microorganisms are the key hindrance for the removal of antibiotic resistance genes in industrial-scale composting with municipal solid waste. During the municipal solid waste (MSW) composting, antibiotic resistance genes (ARGs) could be one of the concerns to hinder the application of MSW composting. However, the understanding of enrichment and dissemination of ARGs during the industrial-scale composting is still not clear. Hence, this study aimed to investigate the ARG distributions at different stages in an industrial-scale MSW composting plant. Seven target ARGs and four target mobile genetic elements (MGEs) and bacterial communities were investigated. The abundances of ARGs and MGEs increased during two aerobic thermophilic stages, but they decreased in most ARGs and MGEs after composting. Network analysis showed that potential host bacteria of ARGs were mainly Firmicutes and Actinobacteria. The reduction of potential host bacteria was important to remove ARGs. MGEs were an important factor hindering ARG removal. Water-extractable S and pH were two main physicochemical factors in the changes of microbial community and the abundance of ARGs.202031962245
750740.9998Impact of different organic matters on the occurrence of antibiotic resistance genes in activated sludge. The occurrence of antibiotic resistance genes (ARGs) in various environments has drawn worldwide attention due to their potential risks. Previous studies have reported that a variety of substances can enhance the occurrence and dissemination of ARGs. However, few studies have compared the response of ARGs under the stress of different organic matters in biological wastewater treatment systems. In this study, seven organic pollutants were added into wastewater treatment bioreactors to investigate their impacts on the ARG occurrence in activated sludge. Based on high-throughput sequencing, it was found that the microbial communities and ARG patterns were significantly changed in the activated sludge exposed to these organic pollutants. Compared with the non-antibiotic refractory organic matters, antibiotics not only increased the abundance of ARGs but also significantly changed the ARG compositions. The increase of Gram-negative bacteria (e.g., Archangium, Prosthecobacter and Dokdonella) carrying ARGs could be the main cause of ARG proliferation. In addition, significant co-occurrence relationships between ARGs and mobile genetic elements were also observed in the sludge samples, which may also affect the ARG diversity and abundance during the organic matter treatment in the bioreactors. Overall, these findings provide new information for better understanding the ARG occurrence and dissemination caused by organic pollutants in wastewater treatment systems.202336522059
681650.9998The impact of microplastics on antibiotic resistance genes, metal resistance genes, and bacterial community in aquaculture environment. Microplastics are emerging contaminants. However, their effects on antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and the structure and abundance of bacterial communities, particularly pathogens, in aquaculture environments remains poorly understood. Therefore, this study investigated the effect of microplastics of different sizes on the abundance and distribution of ARGs, MRGs, and bacterial communities in aquaculture environments. The results revealed that, compared with pond water, large microplastics harbored significantly higher ARG abundances, particularly for multidrug-resistant genes; notably, level-I- and -II-risk ARGs were more prevalent on microplastics, highlighting the potential for horizontal gene transfer. Microplastics also exhibited a propensity to aggregate pathogenic bacteria such as Brucella and Pseudomonas, which could pose direct risks to aquatic product safety and public health. Network and differential network analyses revealed significant correlations between bacterial genera and ARG/MRG abundance, particularly on microplastics. Therefore, our findings suggest that microplastics act as vectors for the spread of ARGs, MRGs, and pathogens in aquaculture, potentially leading to the formation of complexes of these materials that threaten ecosystem health and human well-being. This study provides critical insights into the need for targeted management strategies to mitigate microplastic pollution in aquaculture settings.202539987738
793160.9998The stress response of tetracycline resistance genes and bacterial communities under the existence of microplastics in typical leachate biological treatment system. Landfill leachate is an important source of microplastics (MPs) and antibiotic-resistance genes (ARGs). Here, in the presence of polystyrene MPs (PS-MPs) and polyethylene MPs (PE-MPs), the nitrogen and phosphorus removal effect and sludge structure performance were affected in an anaerobic-anoxic-aerobic system, a typical biological leachate treatment process. The abundance of tetracycline-resistance genes (tet genes) in biofilms on the two types of MP was significantly higher than that in the leachate and sludge, and the load on PE-MPs was higher than that on PS-MPs because of the porous structure of PE-MPs. Aging of the MPs increased their surface roughness and abundance of oxygen-containing functional groups and shaped the profile of ARGs in the MP biofilms. The biofilm biomass and growth rate on the two types of MP increased with the incubation time in the first 30 days, and was affected by environmental factors. Structural equation models and co-occurrence network analysis demonstrated that the MPs indirectly affected the spectrum of ARGs by affecting biofilm formation, and, to a lesser extent, had a direct impact on the selective enrichment of ARGs. We discuss the mechanisms of the relationships between MPs and ARGs in the leachate treatment system, which will have guiding significance for future research. Our data on the colonization of microorganisms and tet genes in MPs biofilms provide new evidence concerning the accumulation and transmission of these ARGs, and are important for understanding the mechanisms of MPs in spreading pollution.202439018858
858470.9997Microplastics enhance the prevalence of antibiotic resistance genes in mariculture sediments by enriching host bacteria and promoting horizontal gene transfer. Microplastics (MPs) and antibiotic resistance genes (ARGs) pose significant challenges to the One Health framework due to their intricate and multifaceted ecological and environmental impacts. However, the understanding of how MP properties influence ARG prevalence in mariculture sediments remains limited. Herein, the polystyrene (PS) and polyvinyl chloride (PVC) MPs with different sizes (20-120 μm and 0.5-2.0 mm) were selected to evaluate their impacts and underlying mechanisms driving ARGs dissemination. The results showed that PS and PVC MPs increased the relative abundance of ARGs by 1.41-2.50-fold and 2.01-2.84-fold, respectively, compared with control, particularly high-risk genes. The polymer type effect was identified as more influential than the size effect in driving the sediment resistome evolution. PVC shifted the microbial community assembly from stochastic to deterministic processes, thus enriching ARG host pathogens. Furthermore, the highly hydrophobic PS not only recruited the host bacteria colonization but also facilitated ARG exchange within the plastisphere. The exogenous additives released by PVC (e.g., heavy metals, bisphenol A, and tridecyl ester) and the particles synergistically promoted ARG conjugative transfer by inducing oxidative stress and enhancing cell membrane permeability. These findings revealed how MPs characteristics facilitated the spread of ARGs in marine benthic ecosystems, underscoring the importance of mitigating MPs pollution to maintain mariculture ecosystem health, prevent zoonotic diseases, and balance global mariculture with ecological health.202540052062
682080.9997Microcosm experiments deciphered resistome coalescence, risks and source-sink relationship of antibiotic resistance in the soil irrigated with reclaimed water. Reclaimed water is widely used in agriculture irrigation to alleviate water scarcity, whereas the dissemination of antibiotic resistance genes (ARGs) in the soil it introduces has attracted widespread attention. Currently, few studies have systematically elucidated the coalescence of the resistome originating from reclaimed water with the soil's native community. Also, the effects and mechanisms of irrigation on the dissemination of ARGs in soils have yet to be demonstrated. To address this gap, microcosm experiments have been conducted in this study to decipher the resistome coalescence, risks and source-sink relationship of ARGs in soils irrigated with reclaimed water. The results show 237 ARGs, 55 mobile genetic elements (MGEs) and 28 virulence factors were identified in the irrigated soils. Irrigation increased the abundance and diversity of ARGs in the soil by introducing antibiotic-resistant bacteria, altering the microbial community and facilitating horizontal transfer of ARGs via MGEs, and ultimately exacerbated resistome risks in the environment. Relatively, a larger volume of irrigation water led to a more complex propagation network of the resistome. Source apportionment analysis suggested reclaimed water contributed less than 15 % of ARGs in the irrigated soils, whereas its contribution proportion increased with a larger volume of irrigation water.202539874760
858290.9997Effects of freeze-thaw dynamics and microplastics on the distribution of antibiotic resistance genes in soil aggregates. This is the first study investigating the effects of freeze-thaw (FT) and microplastics (MPs) on the distribution of antibiotic resistance genes (ARGs) in soil aggregates (i.e., soil basic constituent and functional unit) via microcosm experiments. The results showed that FT significantly increased the total relative abundance of target ARGs in different aggregates due to the increase in intI1 and ARG host bacteria. However, polyethylene MPs (PE-MPs) hindered the increase in ARG abundance caused by FT. The host bacteria carrying ARGs and intI1 varied with aggregate size, and the highest number of hosts was observed in micro-aggregates (<0.25 mm). FT and MPs altered host bacteria abundance by affecting aggregate physicochemical properties and bacterial community and enhanced multiple antibiotic resistance via vertical gene transfer. Although the dominant factors affecting ARGs varied with aggregate size, intI1 was a co-dominant factor in various-sized aggregates. Furthermore, other than ARGs, FT, PE-MPs, and their integration promoted the proliferation of human pathogenic bacteria in aggregates. These findings suggested that FT and its integration with MPs significantly affected ARG distribution in soil aggregates. They amplified antibiotic resistance environmental risks, contributing to a profound understanding of soil antibiotic resistance in the boreal region.202337059196
7930100.9997Fates of extracellular and intracellular antibiotic resistance genes in activated sludge and plastisphere under sulfadiazine pressure. Microplastics, antibiotics, and antibiotic resistance genes (ARGs) represent prominent emerging contaminants that can potentially hinder the efficacy of biological wastewater treatment and pose health risks. Plastisphere as a distinct ecological niche for microorganisms, acts as a repository for ARGs and potential pathogenic bacteria. Nonetheless, the spread pattern of extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in plastisphere under antibiotic exposure was not yet known. This study aimed to investigate disparities in extracellular polymeric substances (EPS) production, extracellular and intracellular microbial community structures, as well as the transmission of eARGs and iARGs between activated sludge and plastisphere in an anaerobic/anoxic/oxic system under sulfadiazine (SDZ) exposure. SDZ was found to enhance EPS production in activated sludge and plastisphere. Interestingly, as SDZ removal efficiency increased, EPS content decreased in activated sludge and plastisphere collected from oxic zone, and continued to increase in plastisphere samples collected from anaerobic and anoxic zones. There were significant differences in microbial community structure between activated sludge and plastisphere, and the DNA fragments of potential pathogenic bacteria were detected in extracellular samples. SDZ exhibited a promoting effect on the propagation of eARGs, which were more abundant in the plastisphere than in activated sludge, thus heightening the risk of ARGs dissemination. Extracellular mobile genetic elements played a pivotal role in driving the spread of eARGs, while the microbial community induced the changes of iARGs. Potential pathogenic bacteria emerged as potential hosts for ARGs and mobile genetic elements within activated sludge and plastisphere, leading to more serious environmental threats.202337898001
7041110.9997Antibiotic and heavy metal resistance genes in sewage sludge survive during aerobic composting. Municipal sewage sludge has been generated in increasing amounts with the acceleration of urbanization and economic development. The nutrient rich sewage sludge can be recycled by composting that has a great potential to produce stabilized organic fertilizer and substrate for plant cultivation. However, little is known about the metals, pathogens and antibiotic resistance transfer risks involved in applying the composted sludge in agriculture. We studied changes in and relationships between heavy metal contents, microbial communities, and antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) in aerobic composting of sewage sludge. The contents of most of the analyzed heavy metals were not lower after composting. The bacterial α-diversity was lower, and the community composition was different after composting. Firmicutes were enriched, and Proteobacteria and potential pathogens in the genera Arcobacter and Acinetobacter were depleted in the composted sludge. The differences in bacteria were possibly due to the high temperature phase during the composting which was likely to affect temperature-sensitive bacteria. The number of detected ARGs, HMRGs and MGEs was lower, and the relative abundances of several resistance genes were lower after composting. However, the abundance of seven ARGs and six HMRGs remained on the same level after composting. Co-occurrence analysis of bacterial taxa and the genes suggested that the ARGs may spread via horizontal gene transfer during composting. In summary, even though aerobic composting is effective for managing sewage sludge and to decrease the relative abundance of potential pathogens, ARGs and HMRGs, it might include a potential risk for the dissemination of ARGs in the environment.202336608829
8579120.9997Microplastics and chemical leachates from plastic pipes are associated with increased virulence and antimicrobial resistance potential of drinking water microbial communities. There is increasing recognition of the potential impacts of microplastics (MPs) on human health. As drinking water is the most direct route of human exposure to MPs, there is an urgent need to elucidate MPs source and fate in drinking water distribution system (DWDS). Here, we showed polypropylene random plastic pipes exposed to different water quality (chlorination and heating) and environmental (freeze-thaw) conditions accelerated MPs generation and chemical leaching. MPs showed various morphology and aggregation states, and chemical leaches exhibited distinct profiles due to different physicochemical treatments. Based on the physiological toxicity of leachates, oxidative stress level was negatively correlated with disinfection by-products in the leachates. Microbial network analysis demonstrated exposure to leachates (under three treatments) undermined microbial community stability and increased the relative abundance and dominance of pathogenic bacteria. Leachate physical and chemical properties (i.e., MPs abundance, hydrodynamic diameter, zeta potential, total organic carbon, dissolved ECs) exerted significant (p < 0.05) effects on the functional genes related to virulence, antibiotic resistance and metabolic pathways. Notably, chlorination significantly increased correlations among pathogenic bacteria, virulence genes, and antibiotic resistance genes. Overall, this study advances the understanding of direct and indirect risks of these MPs released from plastic pipes in the DWDS.202437935064
6434130.9997Unraveling the role of microplastics in antibiotic resistance: Insights from long-read metagenomics on ARG mobility and host dynamics. As two emerging pollutants, microplastics (MPs) potentially serve as vectors for antibiotic resistance genes (ARGs) in aquatic environments, but the mechanisms driving ARG enrichment remain unclear. This study used long-read metagenomics to investigate ARG mobility and hosts dynamics within the biofilms of MPs and rocks in different water environments. We identified distinct enrichment patterns for microbial communities and ARGs, highlighting the significant role of horizontal gene transfer in ARG enrichment. Specifically, plasmid-encoded ARGs varied significantly among MP biofilms, rock biofilms, and water samples, while chromosome-encoded ARGs remained consistent across these environments, emphasizing the impact of plasmids on ARG enrichment. Despite this, 55.1 % of ARGs were on chromosomes, indicating that host organisms also play a crucial role. The related mechanisms driving ARG enrichment included enhanced cell adhesion, increased transmembrane transporter activity, and responses to environmental stressors, which led to an increased presence of plasmid-encoded ARGs on MP biofilms, facilitating more frequent horizontal gene transfer. Additionally, the diversity of hosts on MPs was notably lower compared to the water column, with specific bacteria, including Herbaspirillu, Limnohabitans, Polaromonas, Variovorax, Rubrivivax, and Thauera significantly driving ARG enrichment. This study highlights key mechanisms and bacterial taxa involved in ARG dynamics on MPs.202540056523
7577140.9997Microplastics can selectively enrich intracellular and extracellular antibiotic resistant genes and shape different microbial communities in aquatic systems. Microplastics (MPs), as emerging contaminants, are posing potential risks to environment, and animal and human health. The ubiquitous presence of MPs in natural ecosystems provides favorable platform to selectively adsorb antibiotic resistant genes (ARGs) and bacteria (ARB) and bacterial assemblages, especially in wastewater which is hotspot for MPs, ARGs and ARB. In this study, the selective capture of intracellular ARGs (iARGs), extracellular ARGs (eARGs), and bacterial assemblages by MPs with different materials (i.e. polyethylene, polyvinylchloride, and polyethylene terephthalate) and sizes (200 μm and 100 μm) was investigated. The results showed that iARGs (i.e. i-TetA, i-TetC, i-TetO, i-sul1), integron-integrase gene (intI1), and eARGs (i.e. e-TetA and e-bla(TEM)) were selectively enriched on MPs. Relative abundances of i-sul1, i-TetA, and intI1 were generally higher than that of i-TetC and i-TetO on all MPs. Moreover, MPs also have strong effects on the formation of microflora in wastewater, which resulted in different bacterial communities and functions in the wastewater and on the MPs. These findings suggested that MPs could affect the selective enrichment of ARB and ARGs in water environment.202235101514
6809150.9997High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system. The rapid construction of reservoir in river basin generates a river-reservoir system containing an environmental gradient from river system to reservoir system in modern aquatic environment worldwide. Profiles of antibiotic resistance genes (ARGs) in river-reservoir system is essential to better understand their dynamic mechanisms in aquatic eco-environment. In this study, we investigated the diversity, abundance, distribution of ARGs and mobile genetic elements (MGEs) in a representative river-reservoir system using high-throughput quantitative PCR, as well as ranked the factors (e.g. antibiotics, bacterial biomass, bacteria communities, and MGEs) influencing the patterns of ARGs based on structural equation models (SEMs). Seasonal variations in absolute abundance of ARGs and MGEs exhibited similar trends with local rainfall, suggesting that seasonal runoff induced by the rainfall potentially promote the absolute abundance of ARGs and MGEs. In contrast, environmental gradient played more important roles in the detected number, relative abundance, distribution pattern of ARGs and MGEs in the river-reservoir system. Moreover, environmental gradient also made the co-occurrence patterns associated with ARGs subtypes, MGEs and bacteria genera in river system different from those in reservoir system. The SEMs revealed that MGEs contributed the most to shape the ARG profiles. Overall, our findings provide novel insights into the mechanisms of environmental gradient on ARGs dynamics in river-reservoir system, probably via influencing the MGEs, antibiotics, pathogenic bacteria community and nonpathogenic bacteria community.201930447523
6830160.9997Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils. Terrestrial surface ecosystems are important sinks for antibiotic resistance genes (ARGs) due to the continuous discharge of contaminants from human-impacted ecosystems. However, the abundance and resistance types of ARGs and their influencing factors in terrestrial subsurface soils are not well known. In this study, we investigated the abundance and diversity of ARGs, and their correlations with metal resistance genes (MRGs), mobile genetic elements (MGEs), bacteria, and heavy metals in subsurface soils using high throughput quantitative PCR and metagenomic sequencing approaches. Abundant and diverse ARGs were detected with high spatial heterogeneity among sampling sites. Vertically, there was no significant difference in ARG profiles between the aquifer and non-aquifer soils. Heavy metals were key factors shaping ARG profiles in soils with high heavy metal contents, while they showed no significant effect in low contents. Moreover, heavy metals could trigger the proliferation of antibiotic resistance by increasing MGE abundance or influencing bacterial communities. Metagenomic analysis also revealed the widespread co-occurrence of ARGs and MRGs, with heavy metals possibly enhancing the co-selection of ARGs and MRGs in soils with high heavy metal contents. This study highlighted the heavy metal-driven co-selection of ARGs and revealed the occurrence of ARG pollution in terrestrial subsurface soils.202133858075
7005170.9997The mobility, host, and co-occurrence of antibiotic resistance genes in multi-type pig manure-soil systems: Metagenome assembly analysis. Antibiotic resistance genes (ARGs) pose significant threats to public health and environmental safety, yet the mobility and hosts of ARGs in animal manure-soil systems remain poorly understood. Here, we evaluated the environmental risks of tilmicosin (TIL) and investigated ARG profiles, mobility, and drivers in pig manure-soil systems using metagenomic assembly. TIL was effectively degraded during aerobic composting and fertilization via hydroxylation, demethylation, and deglycosylation. Notably, the total abundance of ARGs significantly decreased during aerobic composting and fertilization, and manure types affected the distribution and composition of ARGs in fertilized soils. There was a special correlation between the genetic location and type of ARGs. In addition, the results showed co-localization of some specific ARGs and mobile genetic elements (MGEs) (tetA-tetR- transposase; tetR-floR- Tn3 family). A significant correlation was found between Escherichia coli and multiple ARG types, especially multidrug ARGs. Microbial community was the dominant factor driving the variations of ARGs in pig manure-soil systems, followed by MGEs, environmental factors, and antibiotic concentration. This study advances the understanding on the environmental risk assessment of TIL and elucidates the key drivers of ARG dissemination in pig manure-soil systems, providing critical insights and actionable strategies for sustainable livestock management and environmental risk control.202540865323
6433180.9997Do microplastic biofilms promote the evolution and co-selection of antibiotic and metal resistance genes and their associations with bacterial communities under antibiotic and metal pressures? Microplastic (MP) biofilms with heterogeneous bacterial compositions and structure have become a hotspot of antibiotic resistance genes (ARGs) in aquatic environments. The evolutionary features of ARGs and their related factors including class 1 integron (intI1), metal resistance genes (MRGs), and bacterial communities in MP biofilms under exogenous pressures and how they compared with natural substrates (NS) are unclear. The individual and combined pressures of sulfamethoxazole, tetracycline, and zinc were used to drive the dynamic evolution of ARGs, intI1, MRGs, and bacterial communities in the MP and NS biofilms. The exogenous pressures from the combined selection of sulfamethoxazole, tetracycline, and zinc and their increasing concentrations both significantly enhanced the abundances of ARGs on the MP compared to the NS. Meanwhile, the selective pressures resulted in obvious dissimilarities between the MP and NS bacterial communities. The core bacterial taxa and the co-occurrence patterns of ARGs and bacterial genera in the biofilms of MP and NS were obviously different, and more potential ARG host bacteria selectively colonized the MP. Metal pressure also enhanced the enrichment of ARGs in the MP biofilms by promoting the spread of intI1 via the co-selection mechanism.202234597934
7039190.9997Profiles and key drivers of bacteria/phage co-mediated antibiotic resistance genes during swine manure composting amended with humic acid. Phages can promote the spread of antibiotic resistance genes (ARGs) in agricultural environments through transduction. However, studies on phage-mediated ARG profiles during composting have not been performed. This study investigated the effects of adding humic acid (HA) on the abundances of bacteria/phage co-mediated ARGs (b/pARGs) during swine manure composting and the key factors that affected the transmission of b/pARGs. The results showed that the addition of 5 % HA during composting could effectively reduce the absolute abundances of b/pARGs, inhibit the proliferation of pathogenic microorganisms (e.g., Corynebacterium and Streptococcus) that carried ARGs, and ultimately affect the fate of b/pARGs in the composting process by regulating key environmental factors to change the abundance of co-host bacteria. Overall, the findings of this study provided new information for understanding the main driving factors affecting the b/pARGs profile and provided a reference for the prevention and control of ARGs pollution during composting.202336774987