Sustainable material platforms for multi-log removal of antibiotic-resistant bacteria and genes from wastewater: A review. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
855201.0000Sustainable material platforms for multi-log removal of antibiotic-resistant bacteria and genes from wastewater: A review. Antibiotic-resistant bacteria (ARB) and the associated resistance genes (ARGs) are now recognized as emerging contaminants that can disseminate via wastewater streams, posing significant risks to both human and ecosystem health. Conventional physicochemical treatment approaches (e.g., chlorination, ozonation, advanced oxidation processes) typically suppress these contaminants but may also result in the formation of hazardous by-products. This critical review comprehensibly evaluates bio-based and other sustainable materials designed for the removal of ARB and ARGs from aqueous environments. The materials are systematically categorized into (i) biopolymers and their composites (chitosan, alginate, cellulose), (ii) carbon-rich adsorbents and (photo-)catalysts (biochar, activated carbon, graphene), (iii) metal- and semiconductor-based nanomaterials, and (iv) nature-based treatment solutions (constructed wetlands, soil-aquifer treatment, clay sorbents). Observed log-reduction value range from 2 to 7 for ARB with platforms such as zinc oxide/activated-carbon alginate beads, Fe/N-doped biochars, and graphene-supramolecular-porphyrin hybrids demonstrating high multifunctional efficacy. Mechanistic studies reveal that removal involves synergistic adsorption, photodynamic or Fenton-like oxidation, cell-membrane disruption, and inhibition of horizontal gene transfer. This review emphasizes the advancing potential of sustainable material solutions for mitigating antibiotic resistance and highlights the urgent need to develop scalable, environmentally sustainable treatment methods for protecting water resources and public health.202540763861
855510.9997Combating Antibiotic Resistance in Persulfate-Based Advanced Oxidation Processes: Activation Methods and Energy Consumption. Antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) have become increasing concerning issues, threatening human health. Persulfate-based advanced oxidation processes (PS-AOPs), due to their remarkable potential in combating antibiotic resistance, have garnered significant attention in the field of disinfection in recent years. In this review, we systematically evaluated the efficacy and underlying mechanism of PS integration with various activation methods for the elimination of ARB/ARGs. These approaches encompass physical methods, catalyst activation, and hybrid techniques with photocatalysis, ozonation, and electrochemistry. Additionally, we employed Chick's model and electrical energy per log order (EE/O) to assess the performance and energy efficiency, respectively. This review aims at providing a guide for future investigation on PS-AOPs for antibiotic resistance control.202539864723
854820.9997Persulfate salts to combat bacterial resistance in the environment through antibiotic degradation and biofilm disruption. Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have become a critical topic among researchers because of the excessive use of antibiotics in human and animal health care. Globally, it poses a serious threat to human health and the environment. Antibiotics are often poorly metabolized, with 30-90 % excreted into the environment, contaminating aquatic and ground ecosystems, and fostering resistance. Advanced oxidation processes (AOPs), particularly sulfate radical-based AOPs (SR-AOPs), offer promising solutions for degrading antibiotics and resistant biofilms. Persulfate (PS) and Peroxymonosulfate (PMS) are key oxidants in these processes, generating sulfate and hydroxyl radicals when activated by heat, UV light, or transition metals. PS with a redox potential of E°=2.01 V is an affordable and effective oxidant. However, PS requires activation for the degradation of contaminants. PMS is stable across a broad pH range and produces both sulfate and hydroxyl radicals, allowing it to function independently without activation. Thus, PMS serving as a versatile agent for environmental treatment. This review broadly describes the degradation mechanisms of different classes of antibiotics and biofilms. Despite these promising developments, SR-AOPs still face challenges in managing complex wastewater systems, which often contain multiple pollutants. Moreover, gaps remain in understanding of the toxicity of reaction intermediates and in optimizing the large-scale application of these processes. Future research should focus on the in-situ generation of sulfate radicals, combining different activation methods to enhance degradation efficiency, and developing sustainable and cost-effective approaches for large-scale wastewater treatment.202540532556
855430.9996Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater. This review explores the potential of nanomaterial-enhanced hybrid disinfection methods as effective strategies for addressing the growing challenge of multidrug-resistant (MDR) bacteria and antibiotic resistance genes (ARGs) in wastewater treatment. By integrating hybrid nanocomposites and nanomaterials, natural biocides such as terpenes, and ultrasonication, this approach significantly enhances disinfection efficiency compared to conventional methods. The review highlights the mechanisms through which hybrid nanocomposites and nanomaterials generate reactive oxygen species (ROS) under blue LED irradiation, effectively disrupting MDR bacteria while improving the efficacy of natural biocides through synergistic interactions. Additionally, the review examines critical operational parameters-such as light intensity, catalyst dosage, and ultrasonication power-that optimize treatment outcomes and ensure the reusability of hybrid nanocomposites and other nanomaterials without significant loss of photocatalytic activity. Furthermore, this hybrid method shows promise in degrading ARGs, thereby addressing both microbial and genetic pollution. Overall, this review underscores the need for innovative wastewater treatment solutions that are efficient, sustainable, and scalable, contributing to the global fight against antimicrobial resistance.202439591087
855340.9996Unveiling the power of nanotechnology: a novel approach to eliminating antibiotic-resistant bacteria and genes from municipal effluent. The increasing global population and declining freshwater resources have heightened the urgency of ensuring safe and accessible water supplies.Query The persistence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in municipal effluents poses a significant public health threat, exacerbated by the widespread use of antibiotics and the inadequate removal of contaminants in wastewater treatment facilities. Conventional treatment methods often fail to eliminate these emerging pollutants, facilitating their entry into agricultural systems and natural water bodies, thereby accelerating the spread of antimicrobial resistance. To address these challenges, interdisciplinary strategies in water treatment are essential. Nanotechnology has emerged as a promising approach due to its unique physicochemical properties, biocompatibility, and high efficiency in detecting and removing biological and chemical contaminants. Various nanomaterials, including graphene-based structures, Carbon nanotubes (CNTs), noble metal nanoparticles (gold (Au) and silver (Ag)), silicon and chitosan-based nanomaterials, as well as titanium and Zinc oxide (ZnO) nanomaterials, demonstrate potent antimicrobial effects. Moreover, nanosensors and photocatalysts utilizing these nanomaterials enable precise detection and effective degradation of ARB and ARGs in wastewater. This review examines the mechanisms by which nanotechnology-based materials can mitigate the risks associated with antibiotic resistance in urban effluents, focusing on their applications in pathogen detection, pollutant removal, and wastewater treatment. By integrating nanotechnology into existing treatment frameworks, we can significantly enhance the efficiency of water purification processes, ultimately contributing to global water security and the protection of public health.202540512401
854950.9995Current perspectives on microalgae and extracellular polymers for reducing antibiotic resistance genes in livestock wastewater. Antibiotic resistance genes (ARGs) in livestock wastewater resulting from excessive antibiotics used in animal farming pose significant environmental and public health risks. Conventional treatment methods are often costly, inefficient, and may inadvertently promote ARG transmission. Microalgae, with their long genetic distance from bacteria and strong ability to utilize wastewater nutrients, offer a sustainable solution for ARG mitigation. This review studied the abundance and characterization of ARGs in livestock wastewater, highlighted microalgal-based removal mechanisms of ARGs, including phagocytosis, competition, and absorption by extracellular polymeric substances (EPS), and explored factors influencing their efficacy. Notably, the microalgae-EPS system reduced ARGs by 0.62-3.00 log, demonstrating significant potential in wastewater treatment. Key challenges, such as optimizing algal species, understanding EPS-ARG interactions, targeted reduction of host bacteria, and scaling technologies, were discussed. This work provides critical insights for advancing microalgal-based strategies for ARG removal, promoting environmentally friendly and efficient wastewater management.202540324729
854760.9995Molecular level removal of antibiotic resistant bacteria and genes: A review of interfacial chemical in advanced oxidation processes. As a kind of novel and persistent environmental pollutants, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been frequently detected in different aquatic environment, posing potential risks to public health and ecosystems, resulting in a biosecurity issue that cannot be ignored. Therefore, in order to control the spread of antibiotic resistance in the environment, advanced oxidation technology (such as Fenton-like, photocatalysis, electrocatalysis) has become an effective weapon for inactivating and eliminating ARB and ARGs. However, in the process of advanced oxidation technology, studying and regulating catalytic active sites at the molecular level and studying the adsorption and surface oxidation reactions between catalysts and ARGs can achieve in-depth exploration of the mechanism of ARGs removal. This review systematically reveals the catalytic sites and related mechanisms of catalytic antagonistic genes in different advanced oxidation processes (AOPs) systems. We also summarize the removal mechanism of ARGs and how to reduce the spread of ARGs in the environment through combining a variety of characterization methods. Importantly, the potential of various catalysts for removing ARGs in practical applications has also been recognized, providing a promising approach for the deep purification of wastewater treatment plants.202438447374
855770.9995Efficient inactivation of antibiotic resistant bacteria by iron-modified biochar and persulfate system: Potential for controlling antimicrobial resistance spread and mechanism insights. Antimicrobial resistance (AMR) is a critical global health threat, further intensified by the widespread dissemination of plasmid-encoded antibiotic resistance genes (ARGs), which poses a significant challenge to the "One Health" concept. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as effective disinfection methods, capable of degrading antibiotics, inactivating bacteria, and eliminating ARGs, whereas their efficacy towards blocking ARGs horizontal transfer remains elusive. This work constructed a series of Fe-modified soybean straw biochar (FeSSB) as persulfate (PS) activators through Fe-modification and temperature regulation. Among the tested systems, FeSSB800/PS achieved complete inactivation of antibiotic resistant bacteria (ARB) with a 7.04-log reduction within 60 min, outperforming others. FeSSB800, featuring the highest exposed-Fe(II) sites, most CO groups, and lowest charge transfer resistance, obtaining optimal PS activation and reactive species generation, which caused irreversible damage to ARB cells and significantly inhibited the transformation and conjugation efficiency of plasmid RP4. The inhibition mechanism is driven by the aggressive action of free radicals, which injure cell envelopes, induce oxidative stress, disrupt ATP synthesis, and alter intercellular adhesion. These findings underscore the potential of PS-AOPs as a promising strategy to mitigate AMR by simultaneously inactivating ARB and impeding ARGs dissemination.202540203758
855080.9995Advances and solutions in biological treatment for antibiotic wastewater with resistance genes: A review. Biological treatment represents a fundamental component of wastewater treatment plants (WWTPs). The transmission of antibiotic resistance bacteria (ARB) and resistance genes (ARGs) occurred through the continuous migration and transformation, attributed to the residual presence of antibiotics in WWTPs effluent, posing a significant threat to the entire ecosystem. It is necessary to propose novel biological strategies to address the challenge of refractory contaminants, such as antibiotics, ARGs and ARB. This review summarizes the occurrence of antibiotics in wastewater, categorized by high and low concentrations. Additionally, current biological treatments used in WWTPs, such as aerobic activated sludge, anaerobic digestion, sequencing batch reactor (SBR), constructed wetland, membrane-related bioreactors and biological aerated filter (BAF) are introduced. In particular, because microorganisms are the key to those biological treatments, the effect of high and low concentration of antibiotics on microorganisms are thoroughly discussed. Finally, solutions involving functional bacteria, partial nitrification (PN)-Anammox and lysozyme embedding are suggested from the perspective of the entire biological treatment process. Overall, this review provides valuable insights for the simultaneous removal of antibiotics and ARGs in antibiotics wastewater.202439121628
649990.9994From Conventional Disinfection to Antibiotic Resistance Control-Status of the Use of Chlorine and UV Irradiation during Wastewater Treatment. Extensive use of antibiotics for humans and livestock has led to an enhanced level of antibiotic resistance in the environment. Municipal wastewater treatment plants are regarded as one of the main sources of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the aquatic environment. A significant amount of research has been carried out to understand the microbiological quality of wastewater with respect to its antibiotic resistance potential over the past several years. UV disinfection has primarily been used to achieve disinfection, including damaging DNA, but there has been an increasing use of chlorine and H(2)O(2)-based AOPs for targeting genes, including ARGs, considering the higher energy demands related to the greater UV fluences needed to achieve efficient DNA damage. This review focuses on some of the most investigated processes, including UV photolysis and chlorine in both individual and combined approaches and UV advanced oxidation processes (AOPs) using H(2)O(2). Since these approaches have practical disinfection and wastewater treatment applications globally, the processes are reviewed from the perspective of extending their scope to DNA damage/ARG inactivation in full-scale wastewater treatment. The fate of ARGs during existing wastewater treatment processes and how it changes with existing treatment processes is reviewed with a view to highlighting the research needs in relation to selected processes for addressing future disinfection challenges.202235162659
7600100.9994Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been recognized as one of the biggest public health issues of the 21st century. Both ARB and ARGs have been determined in water after treatment with conventional disinfectants. Ultraviolet (UV) technology has been seen growth in application to disinfect the water. However, UV method alone is not adequate to degrade ARGs in water. Researchers are investigating the combination of UV with other oxidants (chlorine, hydrogen peroxide (H(2)O(2)), peroxymonosulfate (PMS), and photocatalysts) to harness the high reactivity of produced reactive species (Cl·, ClO·, Cl(2)·(-), ·OH, and SO(4)·(-)) in such processes with constituents of cell (e.g., deoxyribonucleic acid (DNA) and its components) in order to increase the degradation efficiency of ARGs. This paper briefly reviews the current status of different UV-based treatments (UV/chlorination, UV/H(2)O(2), UV/PMS, and UV-photocatalysis) to degrade ARGs and to control horizontal gene transfer (HGT) in water. The review also provides discussion on the mechanism of degradation of ARGs and application of q-PCR and gel electrophoresis to obtain insights of the fate of ARGs during UV-based treatment processes.201932133212
8551110.9994Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems. The use, overuse, and improper use of antibiotics have resulted in higher levels of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), which have profoundly disturbed the equilibrium of the environment. Furthermore, once antibiotic agents are excreted in urine and feces, these substances often can reach wastewater treatment plants (WWTPs), in which improper treatments have been highlighted as the main reason for stronger dissemination of antibiotics, ARB, and ARGs to the receiving bodies. Hence, achieving better antibiotic removal capacities in WWTPs is proposed as an adequate approach to limit the spread of antibiotics, ARB, and ARGs into the environment. In this review, we highlight hospital wastewater (WW) as a critical hotspot for the dissemination of antibiotic resistance due to its high level of antibiotics and pathogens. Hence, monitoring the composition and structure of the bacterial communities related to hospital WW is a key factor in controlling the spread of ARGs. In addition, we discuss the advantages and drawbacks of the current biological WW treatments regarding the antibiotic-resistance phenomenon. Widely used conventional activated sludge technology has proved to be ineffective in mitigating the dissemination of ARB and ARGs to the environment. However, aerobic granular sludge (AGS) technology is a promising technology-with broad adaptability and excellent performance-that could successfully reduce antibiotics, ARB, and ARGs in the generated effluents. We also outline the main operational parameters involved in mitigating antibiotics, ARB, and ARGs in WWTPs. In this regard, WW operation under long hydraulic and solid retention times allows better removal of antibiotics, ARB, and ARGs independently of the WW technology employed. Finally, we address the current knowledge of the adsorption and degradation of antibiotics and their importance in removing ARB and ARGs. Notably, AGS can enhance the removal of antibiotics, ARB, and ARGs due to the complex microbial metabolism within the granular biomass.202438086508
8503120.9994Dual-pathway inhibition of antibiotic resistance genes by ferrate (Fe(VI)): Oxidative inactivation and genetic mobility impairment in anaerobically digested sludge. Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) are emerging environmental contaminants that threaten public health, highlighting the urgent need for effective control strategies. Ferrate (Fe(VI)), a strong and eco-friendly oxidant, shows great potential for this purpose. This study systematically evaluated the efficacy of Fe(VI) in mitigating ARGs and ARB in anaerobically digested sludge, with a particular focus on elucidating the underlying mechanisms by which Fe(VI) effects ARGs dissemination through both vertical gene transfer (VGT) and horizontal gene transfer (HGT). Result shows that Fe(VI) doses of 20 and 60 mg/g-TS reduce ARGs by 9.75 % and 19.12 %, respectively, while inactivating up to 24.7 % of ARB at the higher dose. Pathogenic ARB, such as Escherichia coli and Shigella sonnei, are preferentially removed, with abundances decrease by 63.7 % and 28.0 %. Mechanistically, the structural disruption of bacterial cells caused by Fe(VI) in anaerobically digested sludge, as indicated by a 29 % reduction in extracellular polymeric substances and a 23.7 % increase in cell membrane permeability. Subsequently, a marked release of intracellular ARGs into the extracellular environment is also observed, where they are likely subjected to degradation by Fe(VI). This oxidative killing accounts for the observed ARB decrease, thereby limiting the VGT of ARGs. In addition, Fe(VI) impairs the HGT of ARGs by diminishing their mobility potential, reflected in the reduced co-occurence with mobile genetic elements. Meanwhile, sludge bacterial competence for DNA uptake and recombination is markedly reduced, as evidenced by a 9.8 % decline in the abundance of related functional genes. These findings demonstrate that Fe(VI) effectively inhibits the dissemination of ARGs by targeting both primary transmission pathways. It suppresses VGT, thereby reducing the inheritance of ARB within populations, and limits HGT, curbing the spread of mobile ARGs among competent species. By disrupting these two critical routes, Fe(VI) shows strong potential as an effective strategy for mitigating ARGs propagation in sludge systems.202541138327
6498130.9994Does light-based tertiary treatment prevent the spread of antibiotic resistance genes? Performance, regrowth and future direction. The common occurrence of antibiotic-resistance genes (ARGs) originating from pathogenic and facultative pathogenic bacteria pose a high risk to aquatic environments. Low removal of ARGs in conventional wastewater treatment processes and horizontal dissemination of resistance genes between environmental bacteria and human pathogens have made antibiotic resistance evolution a complex global health issue. The phenomenon of regrowth of bacteria after disinfection raised some concerns regarding the long-lasting safety of treated waters. Despite the inactivation of living antibiotic-resistant bacteria (ARB), the possibility of transferring intact and liberated DNA containing ARGs remains. A step in this direction would be to apply new types of disinfection methods addressing this issue in detail, such as light-based advanced oxidation, that potentially enhance the effect of direct light interaction with DNA. This study is devoted to comprehensively and critically review the current state-of-art for light-driven disinfection. The main focus of the article is to provide an insight into the different photochemical disinfection methods currently being studied worldwide with respect to ARGs removal as an alternative to conventional methods. The systematic comparison of UV/chlorination, UV/H(2)O(2), sulfate radical based-AOPs, photocatalytic processes and photoFenton considering their mode of action on molecular level, operational parameters of the processes, and overall efficiency of removal of ARGs is presented. An in-depth discussion of different light-dependent inactivation pathways, influence of DBP and DOM on ARG removal and the potential bacterial regrowth after treatment is presented. Based on presented revision the risk of ARG transfer from reactivated bacteria has been evaluated, leading to a future direction for research addressing the challenges of light-based disinfection technologies.202235031375
8546140.9993A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Emerging organic contaminants (EOCs) include a diverse group of chemical compounds, such as pharmaceuticals and personal care products (PPCPs), pesticides, hormones, surfactants, flame retardants and plasticizers. Many of these compounds are not significantly removed in conventional wastewater treatment plants and are discharged to the environment, presenting an increasing threat to both humans and natural ecosystems. Recently, antibiotics have received considerable attention due to growing microbial antibiotic-resistance in the environment. Constructed wetlands (CWs) have proven effective in removing many EOCs, including different antibiotics, before discharge of treated wastewater into the environment. Wastewater treatment systems that couple conventional treatment plants with constructed and natural wetlands offer a strategy to remove EOCs and reduce antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) far more efficiently than conventional treatment alone. This review presents as overview of the current knowledge on the efficiency of different wetland systems in reducing EOCs and antibiotic resistance.202032247686
7601150.9993Evaluating the Impact of Cl(2)(•-) Generation on Antibiotic-Resistance Contamination Removal via UV/Peroxydisulfate. The removal of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) using sulfate anion radical (SO(4)(•-))-based advanced oxidation processes has gained considerable attention recently. However, immense uncertainties persist in technology transfer. Particularly, the impact of dichlorine radical (Cl(2)(•-)) generation during SO(4)(•-)-mediated disinfection on ARB/ARGs removal remains unclear, despite the Cl(2)(•-) concentration reaching levels notably higher than those of SO(4)(•-) in certain SO(4)(•-)-based procedures applied to secondary effluents, hospital wastewaters, and marine waters. The experimental results of this study reveal a detrimental effect on the disinfection efficiency of tetracycline-resistant Escherichia coli (Tc-ARB) during SO(4)(•-)-mediated treatment owing to Cl(2)(•-) generation. Through a comparative investigation of the distinct inactivation mechanisms of Tc-ARB in the Cl(2)(•-)- and SO(4)(•-)-mediated disinfection processes, encompassing various perspectives, we confirm that Cl(2)(•-) is less effective in inducing cellular structural damage, perturbing cellular metabolic activity, disrupting antioxidant enzyme system, damaging genetic material, and inducing the viable but nonculturable state. Consequently, this diminishes the disinfection efficiency of SO(4)(•-)-mediated treatment owing to Cl(2)(•-) generation. Importantly, the results indicate that Cl(2)(•-) generation increases the potential risk associated with the dark reactivation of Tc-ARB and the vertical gene transfer process of tetracycline-resistant genes following SO(4)(•-)-mediated disinfection. This study underscores the undesired role of Cl(2)(•-) for ARB/ARGs removal during the SO(4)(•-)-mediated disinfection process.202438477971
6501160.9993Post-treatment disinfection technologies for sustainable removal of antibiotic residues and antimicrobial resistance bacteria from hospital wastewater. The World Health Organization (WHO) has identified antimicrobial resistance bacteria and its spread as one of the most serious threats to public health and the environment in the twenty-first century. Different treatment scenarios are found in several countries, each with their own regulations and selection criteria for the effluent quality and management practices of hospital wastewater. To prevent the spread of disease outbreaks and other environmental threats, the development of sustainable treatment techniques that remove all antibiotics and antimicrobial resistant bacteria and genes should be required. Although few research based articles published focusing this issues, explaining the drawbacks and effectiveness of post-treatment disinfection strategies for eliminating antibiotic residues and antimicrobial resistance from hospital wastewater is the reason of this review. The application of conventional activated sludge (CAS) in large scale hospital wastewater treatments poses high energy supply needs for aeration, capital and operational costs. Membrane bioreactors (MBR) have also progressively replaced the CAS treatment systems and achieved better treatment potential, but membrane fouling, energy cost for aeration, and membrane permeability loss restrict their performance at large scale operations. In addition, the membrane process alone doesn't completely remove/degrade these micropollutants; as a substitute, the pollutants are being concentrated in a smaller volume, which requires further post-treatment. Therefore, these drawbacks should be solved by developing advanced techniques to be integrated into any of these or other secondary wastewater treatment systems, aiming for the effective removal of these micropollutants. The purpose of this paper is to review the performances of post-treatment disinfection technologies in the removal of antibiotics, antimicrobial resistant bacteria and their gens from hospital wastewater. The performance of advanced disinfection technologies (such as granular and powered activated carbon adsorption, ozonation, UV, disinfections, phytoremediation), and other integrated post-treatment techniques are primarily reviewed. Besides, the ecotoxicology and public health risks of hospital wastewater, and the development, spreading and mechanisms of antimicrobial resistant and the protection of one health are also highlighted.202337123966
6503170.9993The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater. An upsurge in the study of antibiotic resistance in the environment has been observed in the last decade. Nowadays, it is becoming increasingly clear that urban wastewater is a key source of antibiotic resistance determinants, i.e. antibiotic-resistant bacteria and antibiotic resistance genes (ARB&ARGs). Urban wastewater reuse has arisen as an important component of water resources management in the European Union and worldwide to address prolonged water scarcity issues. Especially, biological wastewater treatment processes (i.e. conventional activated sludge), which are widely applied in urban wastewater treatment plants, have been shown to provide an ideal environment for the evolution and spread of antibiotic resistance. The ability of advanced chemical oxidation processes (AOPs), e.g. light-driven oxidation in the presence of H(2)O(2), ozonation, homogeneous and heterogeneous photocatalysis, to inactivate ARB and remove ARGs in wastewater effluents has not been yet evaluated through a systematic and integrated approach. Consequently, this review seeks to provide an extensive and critical appraisal on the assessment of the efficiency of these processes in inactivating ARB and removing ARGs in wastewater effluents, based on recent available scientific literature. It tries to elucidate how the key operating conditions may affect the process efficiency, while pinpointing potential areas for further research and major knowledge gaps which need to be addressed. Also, this review aims at shedding light on the main oxidative damage pathways involved in the inactivation of ARB and removal of ARGs by these processes. In general, the lack and/or heterogeneity of the available scientific data, as well as the different methodological approaches applied in the various studies, make difficult the accurate evaluation of the efficiency of the processes applied. Besides the operating conditions, the variable behavior observed by the various examined genetic constituents of the microbial community, may be directed by the process distinct oxidative damage mechanisms in place during the application of each treatment technology. For example, it was shown in various studies that the majority of cellular damage by advanced chemical oxidation may be on cell wall and membrane structures of the targeted bacteria, leaving the internal components of the cells relatively intact/able to repair damage. As a result, further in-depth mechanistic studies are required, to establish the optimum operating conditions under which oxidative mechanisms target internal cell components such as genetic material and ribosomal structures more intensively, thus conferring permanent damage and/or death and preventing potential post-treatment re-growth.201829153875
7604180.9993Combined applications of UV and chlorine on antibiotic resistance control: A critical review. Environmental health problems caused by antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have become a global concern. ARB and ARGs have been continuously detected in various water environments, which pose a new challenge for water quality safety assurance. Disinfection is a key water treatment process to eliminate pathogenic microorganisms in water, and combined chlorine and UV processes (the UV/Cl(2) process, the UV-Cl(2) process, and the Cl(2)-UV process) are considered potential disinfection methods to control antibiotic resistance. This review documented the efficacy and mechanism of combined UV and chlorine processes for the control of antibiotic resistance, as well as the effects of chlorine dose, solution pH, UV wavelength, and water matrix on the effectiveness of the processes. There are knowledge gaps in research on the combined chlorine and UV processes for antibiotic resistance control, in particular the UV-Cl(2) process and the Cl(2)-UV process. In addition, changes in the structure of microbial communities and the distribution of ARGs, which are closely related to the spread of antibiotic resistance in the water, induced by combined processes were also addressed. Whether these changes could lead to the re-transmission of antibiotic resistance and harm human health may need to be further evaluated.202438072103
8613190.9993Insights into the role of extracellular polymeric substances (EPS) in the spread of antibiotic resistance genes. Antibiotic resistance genes (ARG) are prevalent in aquatic environments. Discharge from wastewater treatment plants is an important point source of ARG release into the environment. It has been reported that biological treatment processes may enhance rather than remove ARG because of their presence in sludge. Attenuation of ARG in biotechnological processes has been studied in depth, showing that many microorganisms can secrete complex extracellular polymeric substances (EPS). These EPS can serve as multifunctional elements of microbial communities, involving aspects, such as protection, structure, recognition, adhesion, and physiology. These aspects can influence the interaction between microbial cells and extracellular ARG, as well as the uptake of extracellular ARG by microbial cells, thus changing the transformative capability of extracellular ARG. However, it remains unclear whether EPS can affect horizontal ARG transfer, which is one of the main processes of ARG dissemination. In light of this knowledge gap, this review provides insight into the role of EPS in the transmission of ARGs; furthermore, the mechanism of ARG spread is analyzed, and the molecular compositions and functional properties of EPS are summarized; also, how EPS influence ARG mitigation is addressed, and factors impacting how EPS facilitate ARG during wastewater treatment are summarized. This review provides comprehensive insights into the role of EPS in controlling the transport and fate of ARG during biodegradation processes at the mechanistic level.202438169168