# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8532 | 0 | 1.0000 | Simultaneous volatile fatty acids promotion and antibiotic resistance genes reduction in fluoranthene-induced sludge alkaline fermentation: Regulation of microbial consortia and cell functions. The impact and mechanism of fluoranthene (Flr), a typical polycyclic aromatic hydrocarbon highly detected in sludge, on alkaline fermentation for volatile fatty acids (VFAs) recovery and antibiotic resistance genes (ARGs) transfer were studied. The results demonstrated that VFAs production increased from 2189 to 4272 mg COD/L with a simultaneous reduction of ARGs with Flr. The hydrolytic enzymes and genes related to glucose and amino acid metabolism were provoked. Also, Flr benefited for the enrichment of hydrolytic-acidifying consortia (i.e., Parabacteroides and Alkalibaculum) while reduced VFAs consumers (i.e., Rubrivivax) and ARGs potential hosts (i.e., Rubrivivax and Pseudomonas). Metagenomic analysis indicated that the genes related to cell wall synthesis, biofilm formation and substrate transporters to maintain high VFAs-producer activities were upregulated. Moreover, cell functions of efflux pump and Type IV secretion system were suppressed to inhibit ARGs proliferation. This study provided intrinsic mechanisms of Flr-induced VFAs promotion and ARGs reduction during alkaline fermentation. | 2024 | 38266788 |
| 8540 | 1 | 0.9992 | Metagenomic insights into the mechanism for the rapid enrichment and high stability of Candidatus Brocadia facilitated by Fe(Ⅲ). The rapid enrichment of anammox bacteria and its fragile resistance to adverse environment are the critical problems facing of anammox processes. As an abundant component in anammox bacteria, iron has been proved to promote the activity and growth of anammox bacteria in the mature anammox systems, but the functional and metabolic profiles in Fe(III) enhanced emerging anammox systems have not been evaluated. Results indicated that the relative abundance of functional genes involved in oxidative phosphorylation, nitrogen metabolism, cofactors synthesis, and extracellular polymers synthesis pathways was significantly promoted in the system added with 5 mg/L Fe(III) (R5). These enhanced pathways were crucial to energy generation, nitrogen removal, cell activity and proliferation, and microbial self-defense, thereby accelerating the enrichment of anammox bacteria Ca. Brocadia and facilitating their resistance to adverse environments. Microbial community analysis showed that the proportion of Ca. Brocadia in R5 also increased to 64.42 %. Hence, R5 could adapt rapidly to the increased nitrogen loading rate and increase the nitrogen removal rate by 108 % compared to the system without Fe(III) addition. However, the addition of 10 and 20 mg/L Fe(III) showed inhibitory effects on the growth and activity of anammox bacteria, which exhibited the lower relative abundance of Ca. Brocadia and unstable or even collapsed nitrogen removal performance. This study not only clarified the concentration range of Fe(III) that promoted and inhibited the enrichment of anammox bacteria, but also deepened our understanding of the functional and metabolic mechanisms underlying enhanced enrichment of anammox bacteria by Fe(III), providing a potential strategy to hasten the start-up of anammox from conventional activated sludge. | 2024 | 38309072 |
| 8541 | 2 | 0.9992 | Insights into the response of anammox process to oxytetracycline: Impacts of static magnetic field. The long-term effects of oxytetracycline (OTC) with a high concentration on the anaerobic ammonium oxidation (Anammox) process were evaluated, and the role of static magnetic field (SMF) was further explored. The stress of OTC at 50 mg/L had little effect on the nitrogen removal of anammox process at the first 16 days. With the continuous addition of OTC and the increase of nitrogen loading, the OTC inhibited the nitrogen removal and anammox activity severely. During the 32 days of recovery period without OTC addition, the nitrogen removal was further deteriorated, indicating the inhibition of OTC on anammox activity was irreversible and persistent. The application of SMF alleviated the inhibition of OTC on anammox to some extent, and the specific anammox activity was enhanced by 47.1% compared to the system without SMF during the OTC stress stage. Antibiotic efflux was the major resistance mechanism in the anammox process, and tetA, tetG and rpsJ were the main functional antibiotic resistance genes. The addition of OTC weakened the metabolic interactions between the anammox bacteria and the symbiotic bacteria involved in the metabolism of cofactors and secondary metabolites, leading to the poor anammox activity. The adaptability of microbes to the OTC stress was improved by the application of SMF, which can enhance the metabolic pathways related to bacterial growth and resistance to environmental stress. | 2023 | 37586490 |
| 7968 | 3 | 0.9992 | Induced ciprofloxacin biotransformation and antibiotic-resistance genes control in sulfate-reducing microbial fuel cells: Strategy and mechanism. Ciprofloxacin-containing saline wastewater treatment gains increasing attentions, due to the problems of limited degradation and spreading risk of antibiotic-resistance genes (ARGs). Sulfate reduction is a cost-efficient technology for simultaneous sulfate and antibiotic removal. The microbial fuel cell enhances removal of antibiotics and reduces spreading risk of ARGs in effluents, however, the biotransformation of ciprofloxacin (CIP) in sulfate-reducing microbial fuel cell (SR-MFC) remains unclear. Thus, a SR-MFC is established in this study for treatment of CIP-containing saline wastewater, which achieves simultaneous removal of CIP (50.2%), sulfate (85.1%), and ARGs (17.0%). The Desulfovibrio sp. bacteria become dominant in free biomass (58.8%) and biofilm (73.6%) after CIP exposing, respectively. The CIP can be utilized in prior to lactate for sulfate reduction, while the energy production is initially contributed to sulfate reduction followed by sulfide oxidation. Notably, the expression of ARGs declines probably due to enhanced biotransformation and limited adsorption (2.6%) of CIP on biomass after CIP addition. Long-term exposure to CIP enriches the ARGs of antibiotic efflux pump, implying some CIP is pumped out from intracellular to extracellular. A novel degradation pathway attacking the N15 site in piperazine may be the major and environmental-friendly biotransformation reaction, where the enzyme of ammonia-lyase and acetyltransferase are involved in. To our best knowledge, this is the first report of the novel pathway in bacterial CIP degradation system, which is known as fungal CIP biotransformation pathway. This study provides insights for CIP biotransformation in SR-MFC, and the operational strategy for antibiotic-containing saline wastewater treatment with ARGs control. | 2025 | 40058044 |
| 7958 | 4 | 0.9992 | Microbial response and recovery strategy of the anammox process under ciprofloxacin stress from pure strain and consortia perspectives. Ciprofloxacin (CIP) poses a high risk of resistance development in water environments. Therefore, comprehensive effects and recovery strategies of CIP in anaerobic ammonia oxidation (anammox) process were systematically elucidated from consortia and pure strains perspectives. The anammox consortia was not significantly affected by the stress of 10 mg L(-1) CIP, while the higher concentration (20 mg L(-1)) of CIP caused a dramatic reduction in the nitrogen removal performance of anammox system. Simultaneously, the abundances of dominant functional bacteria and corresponding genes also significantly decreased. Such inhibition could not be mitigated by the recovery strategy of adding hydrazine and hydroxylamine. Reducing nitrogen load rate from 5.1 to 1.4 kg N m(-3) d(-)(1) promoted the restoration of three reactors. In addition, the robustness and recovery of anammox systems was evaluated using starvation and shock strategies. Simultaneously, antibiotic resistance genes and key metabolic pathways of anammox consortia were upregulated, such as carbohydrate and energy metabolisms. In addition, 11 pure stains were isolated from the anammox system and identified through phylogenetic analysis, 40 % of which showed multidrug resistance, especially Pseudomonas. These findings provide deep insights into the responding mechanism of anammox consortia to CIP stress and promote the application of anammox process for treating wastewater containing antibiotics. | 2024 | 38554504 |
| 8544 | 5 | 0.9991 | Closed fixed-bed bacteria-algae biofilm reactor: A promising solution for phenol containing wastewater treatment and resource transformation. This study focuses on treating phenolic wastewater with a novel closed fixed-bed bacteria-algae biofilm reactor (CF-BABR) to enhance resource transformation for phenolic substances. The CF-BABR showed strong impact - load resistance and stable degradation efficiency, fully degrading phenolic compounds at concentrations from 0 to 150 mg/L. From the inflow to the outflow, the effective sequences, abundance, and diversity of bacteria decreased. Chlorobaculum was the dominant bacterium for phenolic pollutant degradation. The abundance of fungi decreased gradually, while their diversity increased. Kalenjinia and Cutaneotrichosporon played a synergistic role in reducing pollutant toxicity. The high - concentration pollutants at the influent led to a higher abundance of microalgal communities, and Scenedesmaceae became the most dominant algal family, which was positively correlated with the degradation of phenolic compounds. Functional gene prediction indicated that the abundance of functional genes in bacteria decreased overall along the wastewater flow. Carbohydrate metabolism and amino acid metabolism were the most active secondary pathways. In fungi, the predicted gene functions had the highest abundance in the upstream region. Metabolic intermediates such as organic acids and derivatives, lipids and lipid - like molecules, and carboxylic acids and derivatives demonstrated the degradation effect of CF-BABR on phenolic compounds. | 2025 | 40194331 |
| 7909 | 6 | 0.9991 | Simultaneous efficient removal of tetracycline and mitigation of antibiotic resistance genes enrichment by a modified activated sludge process with static magnetic field. To address the increasing issue of antibiotic wastewater, this study applied a static magnetic field (SMF) to the activated sludge process to increase the efficiency of tetracycline (TC) removal from swine wastewater and to reveal its enhanced mechanisms. The results demonstrated that the SMF-modified activated sludge process could achieve almost complete TC removal at sludge loading rates of 0.3 mg TC/g MLSS/d. Analysis of zeta potential and extracellular polymeric substances composition of the activated sludge revealed that SMF increased electrostatic interactions between TC and activated sludge and made activated sludge has much more binding sites, finally resulting in the increased TC biosorption. Metagenomic analysis showed that SMF promoted the enrichment of ammonia-oxidizing bacteria, TC-degrading bacteria, and aromatic compounds-degrading bacteria; it also enhanced ammonia monooxygenase- and cytochrome P450-mediated TC metabolism while upregulating functional genes associated with oxidase, reductase, and dehydrogenase - all contributing to increased TC biodegradation. Additionally, SMF mitigated the enrichment and spread of antibiotic resistance genes (ARGs) by decreasing the abundance of potential hosts of ARGs and inhibiting the upregulation of genes encoding ABC transporters and putative transposase. Based on these findings, this study demonstrates that magnetic field is an enhancement strategy with great potential to relieve the harmful impacts of the growing antibiotic wastewater problem on human health and the ecosystem. | 2024 | 39038424 |
| 7908 | 7 | 0.9991 | DNA-based stable isotope probing deciphered the active denitrifying bacteria and triclosan-degrading bacteria participating in granule-based partial denitrification process under triclosan pressure. Granule-based partial denitrification (PD) is a technology that can supply stable nitrite for applying anaerobic ammonia oxidation in wastewater treatment, and triclosan (TCS) is a frequently detected antibacterial agent in wastewater treatment plants, therefore it is possible that TCS could enter into wastewater that is treated using PD technology. However, the active microorganisms responsible for PD and TCS removing in granule-based PD system have not been clearly identified and it is currently not clear how TCS affects the PD process. In this study, the impacts of TCS on PD performance, PD microbial community, antibiotic resistance genes (ARGs), active PD bacteria and TCS-degrading bacteria in a granule-based PD system were investigated. 3 mg/L TCS had adverse influence on PD process, but PD system could recover gradually after inhibiting of 10 days. After a period of domestication, PD granular sludge could achieve 10.66% of TCS degradation efficiency and 43.62% of TCS adsorption efficiency. Microbes might increase their resistance to TCS by increasing the secretion of extracellular polymeric substances, and the secretion of protein might play a more pivotal role than the secretion of polysaccharides in resisting TCS. The short-term shock of TCS might cause the propagation of acrA-03, while the long-term operation of TCS could propagate fabK and intI1. DNA stable isotope probing assay indicated that Thauera was active PD bacteria and TCS-degrading bacteria in the granule-based PD system, and it could contribute to nitrite accumulation and TCS degradation, simultaneously. | 2022 | 34979468 |
| 7954 | 8 | 0.9991 | Metagenomic analysis reveals indole signaling effect on microbial community in sequencing batch reactors: Quorum sensing inhibition and antibiotic resistance enrichment. Indole is an essential signal molecule in microbial studies. However, its ecological role in biological wastewater treatments remains enigmatic. This study explores the links between indole and complex microbial communities using sequencing batch reactors exposed to 0, 15, and 150 mg/L indole concentrations. A concentration of 150 mg/L indole enriched indole degrader Burkholderiales, while pathogens, such as Giardia, Plasmodium, and Besnoitia were inhibited at 15 mg/L indole concentration. At the same time, indole reduced the abundance of predicted genes in the "signaling transduction mechanisms" pathway via the Non-supervised Orthologous Groups distributions analysis. Indole significantly decreased the concentration of homoserine lactones, especially C(14)-HSL. Furthermore, the quorum-sensing signaling acceptors containing LuxR, the dCACHE domain, and RpfC showed negative distributions with indole and indole oxygenase genes. Signaling acceptors' potential origins were mainly Burkholderiales, Actinobacteria, and Xanthomonadales. Meanwhile, concentrated indole (150 mg/L) increased the total abundance of antibiotic resistance genes by 3.52 folds, especially on aminoglycoside, multidrug, tetracycline, and sulfonamide. Based on Spearman's correlation analysis, the homoserine lactone degradation genes which were significantly impacted by indole negatively correlated with the antibiotic resistance gene abundance. This study brings new insights into the effect of indole signaling on in biological wastewater treatment plants. | 2023 | 37054839 |
| 7881 | 9 | 0.9991 | Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell. This study explored the biodegradation mechanisms of oxytetracycline (OTC/O) and electrochemical characteristics from the perspective of bacterial community shift and OTC resistance genes in dual graphene modified bioelectrode microbial fuel cell (O-D-GM-BE MFC). In phylum level, Proteobacteria was accounted to 95.04% in O-GM-BA, Proteobacteria and Bacteroidetes were accounted to 59.13% and 20.52% in O-GM-BC, which were beneficial for extracellular electron transport (EET) process and OTC biodegradation. In genus level, the most dominant bacteria in O-GM-BA were Salmonella and Trabulsiella, accounting up to 83.04%, moreover, representative exoelectrogens (Geobacter) were enriched, which contributed to OTC biodegradation and electrochemical performances; abundant degrading bacteria (Moheibacter, Comamonas, Pseudomonas, Dechloromonas, Nitrospira, Methylomicrobium, Pseudorhodoferax, Thiobacillus, Mycobacterium) were enriched in O-GM-BC, which contributed to the maximum removal efficiency of OTC; coding resistance genes of efflux pump, ribosome protective protein and modifying or passivating were all found in O-GM-BE, and this explained the OTC removal mechanisms from gene level. | 2019 | 30640017 |
| 8819 | 10 | 0.9991 | Responses of Bacillus sp. under Cu(II) stress in relation to extracellular polymeric substances and functional gene expression level. The production and composition of extracellular polymeric substances (EPS), as well as the EPS-related functional resistance genes and metabolic levels of Bacillus sp. under Cu(II) stress, were investigated. EPS production increased by 2.73 ± 0.29 times compared to the control when the strain was treated with 30 mg L(-1) Cu(II). Specifically, the polysaccharide (PS) content in EPS increased by 2.26 ± 0.28 g CDW(-1) and the PN/PS (protein/polysaccharide) ratio value increased by 3.18 ± 0.33 times under 30 mg L(-1) Cu(II) compared to the control. The increased EPS secretion and higher PN/PS ratio in EPS strengthened the cells' ability to resist the toxic effect of Cu(II). Differential expression of functional genes under Cu(II) stress was revealed by Gene Ontology pathway enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The enriched genes were most obviously upregulated in the UMP biosynthesis pathway, the pyrimidine metabolism pathway, and the TCS metabolism pathway. This indicates an enhancement of EPS regulation-related metabolic levels and their role as a defense mechanism for cells to adapt to Cu(II) stress. Additionally, seven copper resistance genes were upregulated while three were downregulated. The upregulated genes were related to the heavy metal resistance, while downregulated genes were related to cell differentiation, indicating that the strain had initiated an obvious resistance to Cu(II) despite its severe cell toxicity. These results provided a basis for promoting EPS-regulated associated functional genes and the application of gene-regulated bacteria in heavy metal-containing wastewater treatment. | 2023 | 37195605 |
| 7918 | 11 | 0.9991 | Robustness of the partial nitrification-anammox system exposing to triclosan wastewater: Stress relieved by extracellular polymeric substances and resistance genes. The partial nitrification-anammox (PN/A) process is a promising method for the treatment of municipal wastewater. It is necessary to clarify the responses of PN/A system to antimicrobial agent triclosan (TCS) widely existed in the influent of wastewater treatment plants. In this study, it was found that PN/A system was robust to cope with 0.5 mg/L TCS. Specifically, the control reactor reached 80% total nitrogen removal efficiency (TNRE) on day 107, while the reactor feeding with 0.5 mg/L TCS reached the same TNRE on day 84. The results of the activity test, high-throughput sequencing and DNA-based stable isotope probing showed that 0.5 mg/L TCS did not impede the performance of ammonia oxidizing archaea, ammonia oxidizing bacteria (Nitrosomonas) and anammox bacteria (Candidatus Brocadia and Ca. Kuenenia), but significant inhibited the nitrite oxidizing bacteria (Nitrospira and Ca. Nitrotoga) and denitrifying bacteria. The influent TCS led to the increase of EPS content and enrichment of four resistance genes (RGs) (intI1, sul1, mexB, and tnpA), which might be two principal mechanisms by which PN/A can resist TCS. In addition, functional bacteria carrying multiple RGs also contributed to the maintenance of PN/A system function. These findings improved the understandings of antimicrobial effects on the PN/A system. | 2022 | 34954146 |
| 7911 | 12 | 0.9990 | Biochar induced inhibitory effects on intracellular and extracellular antibiotic resistance genes in anaerobic digestion of swine manure. Distribution of intracellular (iARGs) and extracellular ARGs (eARGs) in manure anaerobic digestion (AD) process coupled with two types of biochar (BC and BP) were investigated. And the effects of biochar on the conjugation transfer of ARGs were explored by deciphering the interaction of biochar with bacterial stress responses, physiological metabolism and antibiotic resistances. Results showed that AD process could effectively remove all the detected eARGs with efficiency of 47.4-98.2%. The modified biochar (BP) with larger specific surface area (SSA) was propitious to decrease the absolute copy number of extracellular resistance genes. AD process could effectively remove iARGs by inhibiting the growth of host bacteria. The results of structural equation models (SEM) indicated that biochar put indirect influences on the fate of ARGs (λ = -0.23, P > 0.05). Analysis on oxidative stress levels, antioxidant capacity, DNA damage-induced response (SOS) response and energy generation process demonstrated that biochar induced the oxidative stress response of microorganisms and enhanced the antioxidant capacity of bacteria. The elevated antioxidant capacity negatively affected SOS response, amplified cell membrane damage and further weakened the energy generation process, resulted in the inhibition of horizontal transfer of ARGs. | 2022 | 35609652 |
| 8543 | 13 | 0.9990 | Soil bacteria, genes, and metabolites stimulated during sulfur cycling and cadmium mobilization under sodium sulfate stress. Sodium sulfate stress is known to improve cadmium (Cd) mobilization in soil and microbial sulfur oxidation, Cd resistance, and the accumulation of stress tolerance-associated metabolites has been correlated with increased soil Cd availability and toxicity. In this study, aerobic soil microcosms with Cd-contamination were stimulated with sodium sulfate to investigate its effects on soil microbial community structure, functional genes, and associated metabolite profiles. Metagenomic analysis revealed that sulfur oxidizing and Cd-resistant bacteria carried gene clusters encoding sox, dsr, and sqr genes, and znt, czc, and cad genes, respectively. Exposure to sodium sulfate resulted in the reprogram of soil metabolites. In particular, intensification of sulfur metabolism triggered an up-regulation in the tricarboxylic acid (TCA) cycle, which promoted the secretion of carboxylic acids and their precursors by soil bacteria. The accumulation of organic acids induced in response to high sodium sulfate dosages potentially drove an observed increase in Cd mobility. Pseudomonas and Erythrobacter spp. exhibited a high capacity for adaptation to heavy metal- or sulfur-induced stress, evident by an increased abundance of genes and metabolites for sulfur cycling and Cd resistance. These results provide valuable insights towards understanding the microbial mechanisms of sulfur transformation and Cd dissolution under saline stress. | 2021 | 34214562 |
| 8489 | 14 | 0.9990 | Signaling molecules accelerate the transmission of antibiotic resistance genes under the stress of copper. Heavy metals can accelerate the dissemination of antibiotic resistance genes (ARGs) in aquatic environments by imposing environmental stresses. Signaling molecules play a role in bacterial communication and help bacteria adapt to environmental stresses. However, little is known whether the presence of signaling molecules has an effect on the spread of ARGs induced by heavy metals. In this study, we investigated how N-decanoyl-L-homoserine lactone (C10-HSL) affects copper-induced conjugative transfer of ARGs. We calculated the conjugative transfer frequency and measured reactive oxygen species (ROS) production, membrane permeability, and the expression of relevant genes. The results demonstrated that the addition of C10-HSL increased the conjugative transfer frequency of ARGs under copper ions (Cu(2+)) stress, showing a 7.2-fold increase under 0.5 μM Cu(2+) and 0.39 μM C10-HSL treatment compared to the control. This enhancement was associated with elevated intracellular ROS production and increased membrane permeability. The reduced conjugative transfer frequency under anaerobic conditions or with thiourea treatment supported the key role of ROS in this process. Furthermore, ROS overproduction triggered the SOS response, as evidenced by a 9-fold upregulation of recA expression. C10-HSL also modulated membrane-associated gene expression by upregulating outer membrane porins and downregulating efflux pump genes under Cu(2+)stress. This study provides a new insight into the spread of ARGs in aquatic environments. | 2025 | 40840413 |
| 7967 | 15 | 0.9990 | Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: Mechanism and pathways. Ciprofloxacin (CIP), a fluoroquinolone antibiotic, removal was examined for the first time, in an anaerobic sulfate-reducing bacteria (SRB) sludge system. About 28.0% of CIP was biodegraded by SRB sludge when the influent CIP concentration was 5000 μg/L. Some SRB genera with high tolerance to CIP (i.e. Desulfobacter), were enriched at CIP concentration of 5000 μg/L. The changes in antibiotic resistance genes (ARGs) of SRB sludge coupled with CIP biodegradation intermediates were used to understand the mechanism of CIP biodegradation for the first time. The percentage of efflux pump genes associated with ARGs increased, while the percentage of fluoroquinolone resistance genes that inhibit the DNA copy of bacteria decreased during prolonged exposure to CIP. It implies that some intracellular CIP was extruded into extracellular environment of microbial cells via efflux pump genes to reduce fluoroquinolone resistance genes accumulation caused by exposure to CIP. Additionally, the degradation products and the possible pathways of CIP biodegradation were also examined using the new method developed in this study. The results suggest that CIP was biodegraded intracellularly via desethylation reaction in piperazinyl ring and hydroxylation reaction catalyzed by cytochrome P450 enzymes. This study provides an insight into the mechanism and pathways of CIP biodegradation by SRB sludge, and opens-up a new opportunity for the treatment of CIP-containing wastewater using sulfur-mediated biological process. | 2018 | 29494897 |
| 8535 | 16 | 0.9990 | Metagenomics combined with DNA-based stable isotope probing provide comprehensive insights of active triclosan-degrading bacteria in wastewater treatment. The biotransformation of triclosan (TCS) during wastewater treatment occurred frequently, while little researches are known the identity of microorganisms involved in the biodegradation process. In this work, DNA-based stable isotope probing (DNA-SIP) was occupied to investigate the TCS assimilation microbes originated from a full-scale cyclic activated sludge system in Beijing. Results of TCS removal pathway showed that the TCS removal in nitrification process was mainly contributed by the metabolism of heterotrophic bacteria, accounting for about 18.54%. DNA-SIP assay indicated that Sphingobium dominated the degradation of TCS. Oligotyping analysis further indicated that oligotype GCTAAT and ATGTTA of Sphingobium played important roles in degrading TCS. Furthermore, the Kyoto Encyclopedia of Genes and Genomes functional abundance statistics based on PICRUSt2 showed that glutathione transferase was the most prevalent enzyme involved in TCS metabolism, and TCS might be removed through microbial carbon metabolism. Metagenomics made clear that Sphingobium might play irrelevant role on the propagation of antibiotics resistance genes (ARGs), even though, it could degrade TCS. Thauera and Dechloromonas were identified as the key hosts of most ARGs. This study revealed the potential metabolic pathway and microbial ecology of TCS biodegradation in nitrification process of wastewater treatment system. | 2021 | 33069997 |
| 7884 | 17 | 0.9990 | Underlying the inhibition mechanisms of sulfate and lincomycin on long-term anaerobic digestion: Microbial response and antibiotic resistance genes distribution. This study evaluated the resilience of a long-term anaerobic treatment system exposed to sulfate, lincomycin (LCM) and their combined stress. LCM was found to impede anaerobic propionate degradation, while sulfate for restraining methanogenic acetate utilization. The combined stress, with influent LCM of 200 mg/L and sulfate of 1404 mg/L, revealed severer inhibition on anaerobic digestion than individual inhibition, leading to 73.9 % and 38.5 % decrease in methane production and sulfate removal, respectively. Suppression on propionate-oxidizing bacteria like unclassified_f__Anaerolineae and unclassified_f__Syntrophaceae further demonstrated LCM's inhibitory effect on propionate degradation. Besides, the down-regulation of genes encoding dissimilatory sulfate reduction enzymes caused by LCM triggered great inhibition on sulfate reduction. A notable increase in ARGs was detected under sulfate-stressed condition, owing to its obvious enrichment of tetracycline-resistant genes. Genera including unclassified_f__Syntrophaceae, unclassified_f__Geobacteraceae and unclassified_f__Anaerolineaceae were identified as dominant host of ARGs and enriched by sulfate addition. Overall, these results could provide the theoretical basis for further enhancement on anaerobic digestion of pharmaceutical wastewater containing sulfate and lincomycin. | 2024 | 38185146 |
| 7888 | 18 | 0.9990 | Microecology of aerobic denitrification system construction driven by cyclic stress of sulfamethoxazole. The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function. | 2024 | 38710419 |
| 6783 | 19 | 0.9989 | Mechanism of earthworm coelomic fluid inhibits multidrug-resistant bacteria and blocks resistance transmission. Antibiotic resistance is a growing global health crisis, especially the spread of multi-drug resistance. In this study, the inhibitory effects of earthworm coelomic fluid (ECF) on multidrug-resistant bacteria (MRB) were investigated during employing vermicomposting to treat excess sludge generated from wastewater treatment. The results demonstrated that the ECF was able to inhibit, even completely decompose the MRB. Notably, when the ECF concentration reached 1.0 mg/mL, the intracellular reactive oxygen species (ROS) level increased by 46.7 %, while cell viability decreased by 55.2 % compared to the control, demonstrating that ECF exerts strong antibacterial activity by inducing oxidative stress and disrupting cellular homeostasis. Furthermore, ECF effectively degraded the DNA of MRB, with removal rates of aphA, KanR, and tetA reaching 51.8 %, 42.3 %, and 35.0 %, respectively, indicating its ability to eliminate resistance genes and hinder their potential transfer. Additionally, the upregulation of genes involved in signaling, DNA replication and repair, and energy metabolism pathways suggests a systemic stress response in MRB, further supporting the broad-spectrum inhibitory effects of ECF on bacterial viability and resistance maintenance. Taken together, these findings may open a door to naturally and ecologically combat antibiotic resistance in pollutants control in wastewater treatment. | 2025 | 40706790 |