# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8529 | 0 | 1.0000 | Investigating and Modeling the Regulation of Extracellular Antibiotic Resistance Gene Bioavailability by Naturally Occurring Nanoparticles. Extracellular antibiotic resistance genes (eARGs) are widespread in the environment and can genetically transform bacteria. This work examined the role of environmentally relevant nanoparticles (NPs) in regulating eARG bioavailability. eARGs extracted from antibiotic-resistant B. subtilis were incubated with nonresistant recipient B. subtilis cells. In the mixture, particle type (either humic acid coated nanoparticles (HASNPs) or their micron-sized counterpart (HASPs)), DNase I concentration, and eARG type were systematically varied. Transformants were counted on selective media. Particles decreased bacterial growth and eARG bioavailability in systems without nuclease. When DNase I was present (≥5 μg/mL), particles increased transformation via chromosomal (but not plasmid-borne) eARGs. HASNPs increased transformation more than HASPs, indicating that the smaller nanoparticle with greater surface area per volume is more effective in increasing eARG bioavailability. These results were also modeled via particle aggregation theory, which represented eARG-bacteria interactions as transport leading to collision, followed by attachment. Using attachment efficiency as a fitting factor, the model predicted transformant concentrations within 35% of experimental data. These results confirm the ability of NPs to increase eARG bioavailability and suggest that particle aggregation theory may be a simplified and suitable framework to broadly predict eARG uptake. | 2022 | 35853206 |
| 8512 | 1 | 0.9997 | Dissolved oxygen facilitates efficiency of chlorine disinfection for antibiotic resistance. Controlling the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is a global concern. While commonly used chlorine disinfectants can damage or even kill ARB, dissolved oxygen (DO) may affect the formation of reactive chlorine species. This leads to the hypothesis that DO may play roles in mediating the effectiveness of chlorine disinfection for antibiotic resistance. To this end, this study investigated the impacts of DO on the efficiency of chlorine disinfection for antibiotic resistance. The results revealed that DO could increase the inactivation efficiency of ARB under chloramine and free chlorine exposure at practically relevant concentrations. Reactive species induced by DO, including H(2)O(2), O(2)(-), and OH, inactivated ARB strains by triggering oxidative stress response and cell membrane damage. In addition, the removal efficiency of extracellular ARGs (i.e. tetA and bla(TEM)) was enhanced with increasing dosage of free chlorine or chloramine under aerobic conditions. DO facilitated the fragmentation of plasmids, contributing to the degradation of extracellular ARGs under exposure to chlorine disinfectants. The findings suggested that DO facilitates disinfection efficiency for antibiotic resistance in water treatment systems. | 2024 | 38750753 |
| 6777 | 2 | 0.9996 | Unveiling the role of uranium in enhancing the transformation of antibiotic resistance genes. Transformation represents one of the most important pathways for the horizontal transfer of antibiotic resistance genes (ARGs), which enables competent bacteria to acquire extracellular ARGs from the surrounding environment. Both heavy metals and irradiation have been demonstrated to influence the bacterial transformation process. However, the impact of ubiquitously occurring radioactive heavy metals on the transformation of ARGs remains largely unknown. Here, we showed that a representative radioactive nuclide, uranium (U), at environmental concentrations (0.005-5 mg/L), improved the transformation frequency of resistant plasmid pUC19 into Escherichia coli by 0.10-0.85-fold in a concentration-dependent manner. The enhanced ARGs transformation ability under U stress was demonstrated to be associated with reactive oxygen species (ROS) overproduction, membrane damage, and up-regulation of genes related to DNA uptake and recombination. Membrane permeability and ROS production were the predominant direct and indirect factors affecting transformation ability, respectively. Our findings provide valuable insight into the underlying mechanisms of the impacts of U on the ARGs transformation process and highlight concerns about the exacerbated spread of ARGs in radioactive heavy metal-contaminated ecosystems, especially in areas with nuclear activity or accidents. | 2024 | 39208634 |
| 8513 | 3 | 0.9996 | Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. The bacterial infection that involves antimicrobial resistance is a rising global threat to public health. Chlorine-based water disinfection processes can inactivate antibiotic resistant bacteria. However, at the same time, these processes may cause the release of antibiotic resistance genes into the water as free DNA, and consequently increase the risk to disseminate antibiotic resistance via natural transformation. Presently, little is known about the contribution of residual chlorine affecting the transformation of extracellular antibiotic resistance genes (ARGs). This study investigates whether chloramine and free chlorine promote the transformation of ARGs and how this may occur. We reveal that both chloramine and free chlorine, at practically relevant concentrations, significantly stimulated the transformation of plasmid-encoded ARGs by the recipient Acinetobacter baylyi ADP1, by up to a 10-fold increase. The underlying mechanisms underpinning the increased transformations were revealed. Disinfectant exposure induced a series of cell responses, including increased levels of reactive oxygen species (ROS), bacterial membrane damage, ROS-mediated DNA damage, and increased stress response. These effects thus culminated in the enhanced transformation of ARGs. This promoted transformation was observed when exposing disinfectant-pretreated A. baylyi to free plasmid. In contrast, after pretreating free plasmid with disinfectants, the transformation of ARGs decreased due to the damage of plasmid integrity. These findings provide important insight on the roles of disinfectants affecting the horizontal transfer of ARGs, which could be crucial in the management of antibiotic resistance in our water systems. | 2021 | 33941886 |
| 7981 | 4 | 0.9996 | Dissolved biochar eliminates the effect of Cu(II) on the transfer of antibiotic resistance genes between bacteria. The proliferation of antibiotic resistance genes (ARGs) has posed significant risks to human and environmental health. Research has confirmed that Cu(II) could accelerate the conjugative transfer of ARGs between bacteria. This study found that adding dissolved biochar effectively weakened or eliminated the Cu(II)-facilitated efficient transfer of ARGs. The efficiency of conjugative transfer was promoted after treatment with Cu(II) (0.05 mg/L) or dissolved biochar at a pyrolysis temperature of 300 °C. When exposed to the combination of Cu(II) and dissolved biochar, the transfer frequency was significantly reduced; this occurred regardless of the Cu(II) concentration or pyrolysis temperature of dissolved biochar. In particular, when the Cu(II) concentration exceeded 0.5 mg/L, the transfer efficiency was entirely inhibited. Gene expression analysis indicated that different treatments affect transfer efficiency by regulating the expression of three global regulatory genes: korA, korB, and trbA. Among them, humic acid repressed the expression of these genes; however, Cu(II) formed complex with the humic acid-like components, gradually weakening the inhibitive effect of these components. The promotion of low molecule organic matters dominated, resulting in a dynamic decline in the transfer efficiency. This study provides a new environmental contaminant treatment approach to eliminate the heavy metal-facilitated transfer of ARGs between bacteria. | 2022 | 34583164 |
| 7500 | 5 | 0.9996 | Dead but Not Forgotten: How Extracellular DNA, Moisture, and Space Modulate the Horizontal Transfer of Extracellular Antibiotic Resistance Genes in Soil. Antibiotic-resistant bacteria and the spread of antibiotic resistance genes (ARGs) pose a serious risk to human and veterinary health. While many studies focus on the movement of live antibiotic-resistant bacteria to the environment, it is unclear whether extracellular ARGs (eARGs) from dead cells can transfer to live bacteria to facilitate the evolution of antibiotic resistance in nature. Here, we use eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to track the movement of eARGs to live P. stutzeri cells via natural transformation, a mechanism of horizontal gene transfer involving the genomic integration of eARGs. In sterile, antibiotic-free agricultural soil, we manipulated the eARG concentration, soil moisture, and proximity to eARGs. We found that transformation occurred in soils inoculated with just 0.25 μg of eDNA g(-1) soil, indicating that even low concentrations of soil eDNA can facilitate transformation (previous estimates suggested ∼2 to 40 μg eDNA g(-1) soil). When eDNA was increased to 5 μg g(-1) soil, there was a 5-fold increase in the number of antibiotic-resistant P. stutzeri cells. We found that eARGs were transformed under soil moistures typical of terrestrial systems (5 to 30% gravimetric water content) but inhibited at very high soil moistures (>30%). Overall, this work demonstrates that dead bacteria and their eARGs are an overlooked path to antibiotic resistance. More generally, the spread of eARGs in antibiotic-free soil suggests that transformation allows genetic variants to establish in the absence of antibiotic selection and that the soil environment plays a critical role in regulating transformation. IMPORTANCE Bacterial death can release eARGs into the environment. Agricultural soils can contain upwards of 10(9) ARGs g(-1) soil, which may facilitate the movement of eARGs from dead to live bacteria through a mechanism of horizontal gene transfer called natural transformation. Here, we track the spread of eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to live antibiotic-susceptible P. stutzeri cells in sterile agricultural soil. Transformation increased with the abundance of eARGs and occurred in soils ranging from 5 to 40% gravimetric soil moisture but was lowest in wet soils (>30%). Transformants appeared in soil after 24 h and persisted for up to 15 days even when eDNA concentrations were only a fraction of those found in field soils. Overall, our results show that natural transformation allows eARGs to spread and persist in antibiotic-free soils and that the biological activity of eDNA after bacterial death makes environmental eARGs a public health concern. | 2022 | 35323025 |
| 8519 | 6 | 0.9996 | Effects of Antibiotic Resistance Genes and Antibiotics on the Transport and Deposition Behaviors of Bacteria in Porous Media. Antibiotics present in the natural environment would induce the generation of antibiotic-resistant bacteria (ARB), causing great environmental risks. The effects of antibiotic resistance genes (ARGs) and antibiotics on bacterial transport/deposition in porous media yet are unclear. By using E. coli without ARGs as antibiotic-susceptible bacteria (ASB) and their corresponding isogenic mutants with ARGs in plasmids as ARB, the effects of ARGs and antibiotics on bacterial transport in porous media were examined under different conditions (1-4 m/d flow rates and 5-100 mM NaCl solutions). The transport behaviors of ARB were comparable with those of ASB under antibiotic-free conditions, indicating that ARGs present within cells had negligible influence on bacterial transport in antibiotic-free solutions. Interestingly, antibiotics (5-1000 μg/L gentamicin) present in solutions increased the transport of both ARB and ASB with more significant enhancement for ASB. This changed bacterial transport induced by antibiotics held true in solution with humic acid, in river water and groundwater samples. Antibiotics enhanced the transport of ARB and ASB in porous media via different mechanisms (ARB: competition of deposition sites; ASB: enhanced motility and chemotaxis effects). Clearly, since ASB are likely to escape sites containing antibiotics, these locations are more likely to accumulate ARB and their environmental risks would increase. | 2023 | 37406198 |
| 6764 | 7 | 0.9996 | Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. Chlorine disinfection to drinking water plays an important role in preventing and controlling waterborne disease outbreaks globally. Nevertheless, little is known about why it enriches the antibiotic resistance genes (ARGs) in bacteria after chlorination. Here, ARGs released from killed antibiotic-resistant bacteria (ARB), and culturable chlorine-injured bacteria produced in the chlorination process as the recipient, were investigated to determine their contribution to the horizontal transfer of ARGs during disinfection treatment. We discovered Escherichia coli, Salmonella aberdeen, Pseudomonas aeruginosa and Enterococcus faecalis showed diverse resistance to sodium hypochlorite, and transferable RP4 could be released from killed sensitive donor consistently. Meanwhile, the survival of chlorine-tolerant injured bacteria with enhanced cell membrane permeabilisation and a strong oxidative stress-response demonstrated that a physiologically competent cell could be transferred by RP4 with an improved transformation frequency of up to 550 times compared with the corresponding untreated bacteria. Furthermore, the water quality factors involving chemical oxygen demand (COD(Mn)), ammonium nitrogen and metal ions (Ca(2+) and K(+)) could significantly promote above transformation frequency of released RP4 into injured E. faecalis. Our findings demonstrated that the chlorination process promoted the horizontal transfer of plasmids by natural transformation, which resulted in the exchange of ARGs across bacterial genera and the emergence of new ARB, as well as the transfer of chlorine-injured opportunistic pathogen from non-ARB to ARB. Considering that the transfer elements were quite resistant to degradation through disinfection, this situation poses a potential risk to public health. | 2020 | 32327733 |
| 7501 | 8 | 0.9996 | Enhanced sensitivity of extracellular antibiotic resistance genes (ARGs) to environmental concentrations of antibiotic. As emerging contaminants, antibiotics are frequently present in various environments, particularly rivers, albeit often at sublethal concentrations (ng/L∼μg/L). Assessing the risk associated with these low levels, which are far below the lethal threshold for most organisms, remains challenging. In this study, using microcosms containing planktonic bacteria and biofilm, we examined how antibiotic resistance genes (ARGs) in different physical states, including intracellular ARGs (iARGs) and extracellular ARGs (eARGs) responded to these low-level antibiotics. Our findings reveal a positive correlation between sub-lethal antibiotic exposure (ranging from 0.1 to 10 μg/L) and increased prevalence (measured as ARG copies/16s rDNA) of both iARGs and eARGs in planktonic bacteria. Notably, eARGs demonstrated greater sensitivity to antibiotic exposure compared to iARGs, with a lower threshold (0.1 μg/L for eARGs versus 1 μg/L for iARGs) for abundance increase. Moreover, ARGs in biofilms demonstrates higher sensitivity to antibiotic exposure compared to planktonic bacteria. To elucidate the underlying mechanisms, we established an integrated population dynamics-pharmacokinetics-pharmacodynamics (PD-PP) model. This model indicates that the enhanced sensitivity of eARGs is primarily driven by an increased potential for plasmid release from cells under low antibiotic concentrations. Furthermore, the accumulation of antibiotic in biofilms induces a greater sensitivity of ARG compared to the planktonic bacteria. This study provides a fresh perspective on the development of antibiotic resistance and offers an innovative approach for assessing the risk of sublethal antibiotic in the environment. | 2024 | 38797215 |
| 8515 | 9 | 0.9996 | In vitro assessment of the bacterial stress response and resistance evolution during multidrug-resistant bacterial invasion of the Xenopus tropicalis intestinal tract under typical stresses. The intestinal microbiome might be both a sink and source of resistance genes (RGs). To investigate the impact of environmental stress on the disturbance of exogenous multidrug-resistant bacteria (mARB) within the indigenous microbiome and proliferation of RGs, an intestinal conjugative system was established to simulate the invasion of mARB into the intestinal microbiota in vitro. Oxytetracycline (OTC) and heavy metals (Zn, Cu, Pb), commonly encountered in aquaculture, were selected as typical stresses for investigation. Adenosine 5'-triphosphate (ATP), hydroxyl radical (OH·(-)) and extracellular polymeric substance (EPS) were measured to investigate their influence on the acceptance of RGs by intestinal bacteria. The results showed that the transfer and diffusion of RGs under typical combined stressors were greater than those under a single stressor. Combined effect of OTC and heavy metals (Zn, Cu) significantly increased the activity and extracellular EPS content of bacteria in the intestinal conjugative system, increasing intI3 and RG abundance. OTC induced a notable inhibitory response in Citrobacter and exerted the proportion of Citrobacter and Carnobacterium in microbiota. The introduction of stressors stimulates the proliferation and dissemination of RGs within the intestinal environment. These results enhance our comprehension of the typical stresses effect on the RGs dispersal in the intestine. | 2024 | 38280323 |
| 7599 | 10 | 0.9996 | Antibiotic resistant bacteria survived from UV disinfection: Safety concerns on genes dissemination. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are the emerging contaminants leading to a serious worldwide health problem. Although disinfection like ultraviolet (UV) irradiation could remove part of ARB and ARGs, there still are residual ARB and ARGs in the effluent of wastewater treatment plants. Conjugative transfer is main concern of the risk of ARGs and little is known about the effects of UV disinfection on the transfer ability of the non-inactivated ARB in the effluent which will enter the environment. Hence the influences of UV irradiation and reactivation on ARB conjugative transfer ability were studied under laboratory condition, focusing on the survival bacteria from UV irradiation and the reactivated bacteria, as well as their descendants. The experimental results imply that even 1 mJ/cm(2) UV disinfection can significantly decrease the conjugative transfer frequency of the survival bacteria. However, viable but not culturable state cells induced by UV can reactivate through both photoreactivation and dark repair and retain the same level of transfer ability as the untreated strains. This finding is essential for re-considering about the post safety of UV irradiated effluent and microbial safety control strategies were required. | 2019 | 30851534 |
| 8528 | 11 | 0.9996 | Non-negligible effects of sunlight irradiation on generation of VBNC-state antibiotic resistant bacteria in natural water. The viable but non-culturable (VBNC) state antibiotic resistant bacteria (ARB) poses significant environmental risk. The mechanism by which simulated sunlight irradiation induces ARB to enter the VBNC state remains unclear. This study systematically explored the photochemical generation mechanism of VBNC-ARB in natural water. Ampicillin-resistant Escherichia coli (AR E. coli) was selected as a representative ARB. The results showed that AR E. coli lost cultivability under sunlight with 91.1 % of AR E. coli entering the VBNC state. Suwannee River fulvic acid (SRFA) slightly enhanced this effect and can induce 95.9 % of AR E. coli into the VBNC state. Under sunlight exposure, oxidative stress and the toxin-antitoxin (TA) system in AR E. coli were identified as key factors in inducing the VBNC state. This process was accompanied by a deterioration in cell membrane fluidity, upregulation of cell wall and outer membrane-related genes, and toxin-mediated inhibition of DNA replication. Importantly, AR E. coli retained intact antibiotic resistance genes (ARGs) and could reactivate these genes in the dark, with SRFA promoting this recovery. Therefore, VBNC-ARB remains antibiotic resistance and increases virulence expression, consequently increasing human health risks. These findings underscore the need for effective strategies to manage VBNC-ARB in environmental systems. | 2025 | 40280065 |
| 6765 | 12 | 0.9996 | Environmentally relevant concentrations of triclosan exposure promote the horizontal transfer of antibiotic resistance genes mediated by Edwardsiella piscicida. Aquaculture pathogen and antibiotic resistance genes (ARGs) co-occur in the aquatic environment. Accumulated evidence suggests that aquaculture pathogens can facilitate the horizontal transfer of plasmid-mediated ARGs. However, the role of Edwardsiella piscicida (E. piscicida) in ARG dissemination is still not fully understood. In addition, the potential impact of triclosan (TCS) on the spread of ARGs mediated by E. piscicida is still unknown, so a mating model system was established to investigate the transfer process of ARGs. The results showed that E. piscicida disseminated ARGs on RP4 by horizontal gene transfer (HGT). Furthermore, TCS exposure promoted this process. The conjugative transfer frequencies were enhanced approximately 1.2-1.4-fold by TCS at concentrations from 2 to 20 μg/L, when compared with the control. TCS promoted the HGT of ARGs by stimulating reactive oxygen species (ROS) production, increasing cell membrane permeability, and altering expressions of conjugative transfer-associated genes. Together, the results suggested that aquaculture pathogens spread ARGs and that the emerging contaminant TCS enhanced the transfer of ARGs between bacteria. | 2022 | 35474424 |
| 8506 | 13 | 0.9996 | Extracellular Polymeric Substances Acting as a Permeable Barrier Hinder the Lateral Transfer of Antibiotic Resistance Genes. Antibiotic resistance genes (ARGs) in bacteria are emerging contaminants as their proliferation in the environment poses significant threats to human health. It is well recognized that extracellular polymeric substances (EPS) can protect microorganisms against stress or damage from exogenous contaminants. However, it is not clear whether EPS could affect the lateral transfer of ARGs into bacteria, which is one of the major processes for the dissemination of ARGs. This study investigated the lateral transfer of ARGs carried by plasmids (pUC19, pHSG298, and pHSG396) into competent Escherichia coli cells with and without EPS. Transformant numbers and transformation efficiency for E. coli without EPS were up to 29 times of those with EPS at pH 7.0 in an aqueous system. The EPS removal further increased cell permeability in addition to the enhanced cell permeability by Ca(2+), which could be responsible for the enhanced lateral transfer of ARGs. The fluorescence quenching experiments showed that EPS could strongly bind to plasmid DNA in the presence of Ca(2+) and the binding strength (LogK (A) = 10.65-15.80 L mol(-1)) between EPS and plasmids was positively correlated with the enhancement percentage of transformation efficiency resulting from the EPS removal. X-ray photoelectron spectroscopy (XPS) analyses and model computation further showed that Ca(2+) could electrostatically bind with EPS mainly through the carboxyl group, hydroxyl group, and RC-O-CR in glucoside, thus bridging the plasmid and EPS. As a result, the binding of plasmids with EPS hindered the lateral transfer of plasmid-borne ARGs. This study improved our understanding on the function of EPS in controlling the fate and transport of ARGs on the molecular and cellular scales. | 2019 | 31057498 |
| 8517 | 14 | 0.9996 | Influences of graphene on microbial community and antibiotic resistance genes in mouse gut as determined by high-throughput sequencing. Graphene is a promising candidate as an antibacterial material owning to its bacterial toxicity. However, little information on influence of graphene on gut microbiota is available. In this study, mice were exposed to graphene for 4 weeks, and high-throughput sequencing was applied to characterize the changes in microbial community and antibiotic resistance genes (ARGs) in mouse gut. The results showed that graphene exposure increased biodiversity of gut microbiota, and changed their community. The 1 μg/d graphene exposure had higher influences on the gut microbiota than 10 μg/d and 100 μg/d graphene exposures, which might be due to higher aggregation of high-level graphene. The influence of graphene on gut microbiota might attribute to that graphene could induce oxidative stress and damage of cell membrane integrity. The results were verified by the increase of ratio of Gram-negative bacteria. Outer membrane of Gram-negative bacteria could reduce the membrane damage induced by graphene and make them more tolerance to graphene. Further, we found that graphene exposure significantly increased the abundance and types of ARGs, indicating a potential health risk of graphene. This study firstly provides new insight to the health effects of graphene on gut microbiota. | 2016 | 26476051 |
| 8518 | 15 | 0.9996 | Influence of Dissolved Organic Matter on Tetracycline Bioavailability to an Antibiotic-Resistant Bacterium. Complexation of tetracycline with dissolved organic matter (DOM) in aqueous solution could alter the bioavailability of tetracycline to bacteria, thereby alleviating selective pressure for development of antibiotic resistance. In this study, an Escherichia coli whole-cell bioreporter construct with antibiotic resistance genes coupled to green fluorescence protein was exposed to tetracycline in the presence of DOM derived from humic acids. Complexation between tetracycline and DOM diminished tetracycline bioavailability to E. coli, as indicated by reduced expression of antibiotic resistance genes. Increasing DOM concentration resulted in decreasing bioavailability of tetracycline to the bioreporter. Freely dissolved tetracycline (not complexed with DOM) was identified as the major fraction responsible for the rate and magnitude of antibiotic resistance genes expressed. Furthermore, adsorption of DOM on bacterial cell surfaces inhibited tetracycline diffusion into the bioreporter cells. The magnitude of the inhibition was related to the amount of DOM adsorbed and tetracycline affinity for the DOM. These findings provide novel insights into the mechanisms by which the bioavailability of tetracycline antibiotics to bacteria is reduced by DOM present in water. Agricultural lands receiving livestock manures commonly have elevated levels of both DOM and antibiotics; the DOM could suppress the bioavailability of antibiotics, hence reducing selective pressure on bacteria for development of antibiotic resistance. | 2015 | 26370618 |
| 8520 | 16 | 0.9996 | Antibiotics can alter the bacterial extracellular polymeric substances and surface properties affecting the cotransport of bacteria and antibiotics in porous media. Currently, studies on the environmental impact of antibiotics have focused on toxicity and resistance genes, and gaps exist in research on the effects of antibiotics entering the environment on bacterial surface properties and the synergistic transport of antibiotics and bacteria in porous media. To fill the gaps, we investigated the interactions between bacteria and antibiotics in synergistic transport in saturated porous media and the effects of media particle size, flow rate, and ionic concentration on this synergistic transport. This study revealed that although synergistic transport was complex, the mechanism of action was clear. Antibiotics could affect bacterial extracellular polymeric substances (EPS), thus altering their surface hydrophobicity and roughness, thereby affecting bacterial transport. The effects of antibiotics on bacterial transport were dominated by altering bacterial roughness. Antibiotics had a relatively high adsorption on bacteria, so bacterial transport directly affected antibiotic transport. The antibiotic concentrations below a certain threshold increased the bacterial EPS quality, and above the threshold decreased the bacterial EPS quality. This threshold was related to antibiotic toxicity and bacterial type. Bacterial surface hydrophobicity was determined by the combination of proteins and sugars in the EPS, and roughness was positively correlated with the EPS quality. | 2024 | 37748312 |
| 7601 | 17 | 0.9996 | Evaluating the Impact of Cl(2)(•-) Generation on Antibiotic-Resistance Contamination Removal via UV/Peroxydisulfate. The removal of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) using sulfate anion radical (SO(4)(•-))-based advanced oxidation processes has gained considerable attention recently. However, immense uncertainties persist in technology transfer. Particularly, the impact of dichlorine radical (Cl(2)(•-)) generation during SO(4)(•-)-mediated disinfection on ARB/ARGs removal remains unclear, despite the Cl(2)(•-) concentration reaching levels notably higher than those of SO(4)(•-) in certain SO(4)(•-)-based procedures applied to secondary effluents, hospital wastewaters, and marine waters. The experimental results of this study reveal a detrimental effect on the disinfection efficiency of tetracycline-resistant Escherichia coli (Tc-ARB) during SO(4)(•-)-mediated treatment owing to Cl(2)(•-) generation. Through a comparative investigation of the distinct inactivation mechanisms of Tc-ARB in the Cl(2)(•-)- and SO(4)(•-)-mediated disinfection processes, encompassing various perspectives, we confirm that Cl(2)(•-) is less effective in inducing cellular structural damage, perturbing cellular metabolic activity, disrupting antioxidant enzyme system, damaging genetic material, and inducing the viable but nonculturable state. Consequently, this diminishes the disinfection efficiency of SO(4)(•-)-mediated treatment owing to Cl(2)(•-) generation. Importantly, the results indicate that Cl(2)(•-) generation increases the potential risk associated with the dark reactivation of Tc-ARB and the vertical gene transfer process of tetracycline-resistant genes following SO(4)(•-)-mediated disinfection. This study underscores the undesired role of Cl(2)(•-) for ARB/ARGs removal during the SO(4)(•-)-mediated disinfection process. | 2024 | 38477971 |
| 6778 | 18 | 0.9995 | Bisphenol S Promotes the Transfer of Antibiotic Resistance Genes via Transformation. The antibiotic resistance crisis has seriously jeopardized public health and human safety. As one of the ways of horizontal transfer, transformation enables bacteria to acquire exogenous genes naturally. Bisphenol compounds are now widely used in plastics, food, and beverage packaging, and have become a new environmental pollutant. However, their potential relationship with the spread of antibiotic resistance genes (ARGs) in the environment remains largely unexplored. In this study, we aimed to assess whether the ubiquitous bisphenol S (BPS) could promote the transformation of plasmid-borne ARGs. Using plasmid pUC19 carrying the ampicillin resistance gene as an extracellular ARG and model microorganism E. coli DH5α as the recipient, we established a transformation system. Transformation assays revealed that environmentally relevant concentrations of BPS (0.1-10 μg/mL) markedly enhanced the transformation frequency of plasmid-borne ARGs into E. coli DH5α up to 2.02-fold. Fluorescent probes and transcript-level analyses suggest that BPS stimulated increased reactive oxygen species (ROS) production, activated the SOS response, induced membrane damage, and increased membrane fluidity, which weakened the barrier for plasmid transfer, allowing foreign DNA to be more easily absorbed. Moreover, BPS stimulates ATP supply by activating the tricarboxylic acid (TCA) cycle, which promotes flagellar motility and expands the search for foreign DNA. Overall, these findings provide important insight into the role of bisphenol compounds in facilitating the horizontal spread of ARGs and emphasize the need to monitor the residues of these environmental contaminants. | 2024 | 39337307 |
| 6780 | 19 | 0.9995 | Enhanced uptake of antibiotic resistance genes in the presence of nanoalumina. Nanomaterial pollution and the spread of antibiotic resistance genes (ARGs) are global public health and environmental concerns. Whether nanomaterials could aid the transfer of ARGs released from dead bacteria into live bacteria to cause spread of ARGs is still unknown. Here, we demonstrated that nano-Al2O3 could significantly promote plasmid-mediated ARGs transformation into Gram-negative Escherichia coli strains and into Gram-positive Staphylococcus aureus; however, bulk Al2O3 did not have this effect. Under suitable conditions, 7.4 × 10(6) transformants of E. coli and 2.9 × 10(5) transformants of S. aureus were obtained from 100 ng of a pBR322-based plasmid when bacteria were treated with nano-Al2O3. Nanoparticles concentrations, plasmid concentrations, bacterial concentrations, interaction time between the nanomaterial and bacterial cells and the vortexing time affected the transformation efficiency. We also explored the mechanisms underlying this phenomenon. Using fluorescence in situ hybridization and scanning electron microscopy, we found that nano-Al2O3 damaged the cell membrane to produce pores, through which plasmid could enter bacterial cells. Results from reactive oxygen species (ROS) assays, genome-wide expression microarray profiling and quantitative real-time polymerase chain reactions suggested that intracellular ROS damaged the cell membrane, and that an SOS response promoted plasmid transformation. Our results indicated the environmental and health risk resulting from nanomaterials helping sensitive bacteria to obtain antibiotic resistance. | 2016 | 26946995 |