Graphene oxide influences transfer of plasmid-mediated antibiotic resistance genes into plants. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
851401.0000Graphene oxide influences transfer of plasmid-mediated antibiotic resistance genes into plants. As an emerging contaminant, antibiotic resistance genes (ARGs) are raising concerns about its significant threat to public health. Meanwhile, graphene oxide (GO), which also has a potential ecological damage with increasingly entering the environment, has a great influence on the transfer of ARGs. However, little is known about the effects mechanisms of GO on the migration of antibiotic resistance genes (ARGs) from bacteria into plants. In this study, we investigated the influence of GO on the transfer of ARGs carried by RP4 plasmids from Bacillus subtilis into rice plants. Our results showed that the presence of GO at concentrations ranging from 0 to 400 mg L(-1) significantly reduced the transfer of ARGs into rice roots by 13-71 %. Moreover, the migration of RP4 from the roots to aboveground parts was significantly impaired by GO. These effects may be attributed to several factors. First, higher GO concentrations led to low pH in the culture solution, resulting in a substantial decrease in the number of antibiotic-resistant bacteria. Second, GO induced oxidative stress in rice, as indicated by enhanced Evans blue dye staining, and elevated levels of malondialdehyde, nitric oxide, and phenylalanine ammonia-lyase activity. The oxidative stress negatively affected plant growth, as demonstrated by the reduced fresh weight and altered lignin content in the rice. Microscopic observations confirmed the entry of GO into root cells but not leaf mesophyll cells. Furthermore, potential recipients of RP4 plasmid strains in rice after co-cultivation experiments were identified, including Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus cereus. These findings clarify the influence of GO on ARGs in the bacteria-plant system and emphasize the need to consider its potential ecological risks.202437979849
851610.9998Graphene Oxide Inhibits Antibiotic Uptake and Antibiotic Resistance Gene Propagation. Antibiotics and antibiotic resistance genes (ARGs) in the natural environment have become substantial threats to the ecosystem and public health. Effective strategies to control antibiotics and ARG contaminations are emergent. A novel carbon nanomaterial, graphene oxide (GO), has attracted a substantial amount of attention in environmental fields. This study discovered the inhibition effects of GO on sulfamethoxazole (SMZ) uptake for bacteria and ARG transfer among microorganisms. GO promoted the penetration of SMZ from intracellular to extracellular environments by increasing the cell membrane permeability. In addition, the formation of a GO-SMZ complex reduced the uptake of SMZ in bacteria. Moreover, GO decreased the abundance of the sulI and intI genes by approximately 2-3 orders of magnitude, but the global bacterial activity was not obviously inhibited. A class I integron transfer experiment showed that the transfer frequency was up to 55-fold higher in the control than that of the GO-treated groups. Genetic methylation levels were not significant while sulI gene replication was inhibited. The biological properties of ARGs were altered due to the GO-ARG noncovalent combination, which was confirmed using multiple spectral analyses. This work suggests that GO can potentially be applied for controlling ARG contamination via inhibiting antibiotic uptake and ARG propagation.201627934199
851720.9998Influences of graphene on microbial community and antibiotic resistance genes in mouse gut as determined by high-throughput sequencing. Graphene is a promising candidate as an antibacterial material owning to its bacterial toxicity. However, little information on influence of graphene on gut microbiota is available. In this study, mice were exposed to graphene for 4 weeks, and high-throughput sequencing was applied to characterize the changes in microbial community and antibiotic resistance genes (ARGs) in mouse gut. The results showed that graphene exposure increased biodiversity of gut microbiota, and changed their community. The 1 μg/d graphene exposure had higher influences on the gut microbiota than 10 μg/d and 100 μg/d graphene exposures, which might be due to higher aggregation of high-level graphene. The influence of graphene on gut microbiota might attribute to that graphene could induce oxidative stress and damage of cell membrane integrity. The results were verified by the increase of ratio of Gram-negative bacteria. Outer membrane of Gram-negative bacteria could reduce the membrane damage induced by graphene and make them more tolerance to graphene. Further, we found that graphene exposure significantly increased the abundance and types of ARGs, indicating a potential health risk of graphene. This study firstly provides new insight to the health effects of graphene on gut microbiota.201626476051
762930.9998Graphene oxide in the water environment could affect tetracycline-antibiotic resistance. In recent years, the influence of new materials like nanoparticles in the water environment on biological substances has been widely studied. Antibiotic resistance genes (ARGs) represent a new type of pollutant in the environment. Graphene oxide (GO), as a nano material, because of its unique structure, may have an impact on antibiotic resistance bacteria (ARB) and ARGs; however the research in this area is rarely reported. Therefore, this study mainly investigated the effects of GO on bacterial antibiotic resistance. The results showed that GO had a limited effect on ARB inactivation. A high concentration of GO (>10 mg/L) can damage resistant plasmids to reduce bacterial resistance to antibiotics, but low concentrations of GO (<1 mg/L) led to almost no damage to the plasmid. However, all tested concentrations of GO promoted the conjugative transfer from 1to over 3 folds, with low concentrations and high concentration (1-10 and 100 mg/L) of GO samples the least promoted. The overall effect of GO on antibiotic resistance needs further investigation.201728549325
851540.9998In vitro assessment of the bacterial stress response and resistance evolution during multidrug-resistant bacterial invasion of the Xenopus tropicalis intestinal tract under typical stresses. The intestinal microbiome might be both a sink and source of resistance genes (RGs). To investigate the impact of environmental stress on the disturbance of exogenous multidrug-resistant bacteria (mARB) within the indigenous microbiome and proliferation of RGs, an intestinal conjugative system was established to simulate the invasion of mARB into the intestinal microbiota in vitro. Oxytetracycline (OTC) and heavy metals (Zn, Cu, Pb), commonly encountered in aquaculture, were selected as typical stresses for investigation. Adenosine 5'-triphosphate (ATP), hydroxyl radical (OH·(-)) and extracellular polymeric substance (EPS) were measured to investigate their influence on the acceptance of RGs by intestinal bacteria. The results showed that the transfer and diffusion of RGs under typical combined stressors were greater than those under a single stressor. Combined effect of OTC and heavy metals (Zn, Cu) significantly increased the activity and extracellular EPS content of bacteria in the intestinal conjugative system, increasing intI3 and RG abundance. OTC induced a notable inhibitory response in Citrobacter and exerted the proportion of Citrobacter and Carnobacterium in microbiota. The introduction of stressors stimulates the proliferation and dissemination of RGs within the intestinal environment. These results enhance our comprehension of the typical stresses effect on the RGs dispersal in the intestine.202438280323
677550.9997Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. The spread of antibiotic resistance has become a major concern for public health. As emerging contaminants, various metallic nanoparticles (NPs) and ionic heavy metals have been ubiquitously detected in various environments. Although previous studies have indicated NPs and ionic heavy metals could exhibit co-selection effects for antibiotic resistance, little is known about whether and how they could promote antibiotic resistance spread via horizontal gene transfer across bacterial genera. This study, we report both CuO NPs and copper ions (Cu(2+)) could stimulate the conjugative transfer of multiple-drug resistance genes. When exposing bacteria to CuO NPs or Cu(2+) at environmental-relevant and sub-inhibitory concentrations (e.g., 1-100 μmol/L), conjugation frequencies of plasmid-encoded antibiotic resistance genes across genera (i.e., from Escherichia coli to Pseudomonas putida) were significantly enhanced (p < 0.05). The over-production of reactive oxygen species played a crucial role in promoting conjugative transfer. Genome-wide RNA and protein sequencing suggested expressional levels of genes and proteins related to oxidative stress, cell membrane permeability, and pilus generation were significantly up-regulated under CuO NPs and Cu(2+) exposure (p < 0.05). This study provides insights in the contributions of NPs and heavy metals on the spread of antibiotic resistance.201931158594
851960.9997Effects of Antibiotic Resistance Genes and Antibiotics on the Transport and Deposition Behaviors of Bacteria in Porous Media. Antibiotics present in the natural environment would induce the generation of antibiotic-resistant bacteria (ARB), causing great environmental risks. The effects of antibiotic resistance genes (ARGs) and antibiotics on bacterial transport/deposition in porous media yet are unclear. By using E. coli without ARGs as antibiotic-susceptible bacteria (ASB) and their corresponding isogenic mutants with ARGs in plasmids as ARB, the effects of ARGs and antibiotics on bacterial transport in porous media were examined under different conditions (1-4 m/d flow rates and 5-100 mM NaCl solutions). The transport behaviors of ARB were comparable with those of ASB under antibiotic-free conditions, indicating that ARGs present within cells had negligible influence on bacterial transport in antibiotic-free solutions. Interestingly, antibiotics (5-1000 μg/L gentamicin) present in solutions increased the transport of both ARB and ASB with more significant enhancement for ASB. This changed bacterial transport induced by antibiotics held true in solution with humic acid, in river water and groundwater samples. Antibiotics enhanced the transport of ARB and ASB in porous media via different mechanisms (ARB: competition of deposition sites; ASB: enhanced motility and chemotaxis effects). Clearly, since ASB are likely to escape sites containing antibiotics, these locations are more likely to accumulate ARB and their environmental risks would increase.202337406198
673870.9997Combined effects of microplastics and antibiotic-resistant bacteria on Daphnia magna growth and expression of functional genes. Microplastics could act as vectors for the transport of harmful bacteria, such as pathogens and antibiotic resistance bacteria (ARB), but their combined effects have not been reported yet. Here, ARB Shigella flexneri with sulfonamides resistance and micro-polystyrene (micro-PS) were used to investigate their possible combined effects on the growth and expression of functional genes in Daphnia magna. Results showed that micro-PS colonized with S. flexneri were ingested by D. magna and blocked in their intestine after 24 h exposure. Changes were observed in the life history and morphology of D. magna, as well as the expression of functional genes in all treatments, but with no difference in the survival rate. We also determined the expression of six functional genes involved in energy and metabolism (arginine kinase, AK) and oxidative stress response (thioredoxin reductase, TRxR, catalase, CAT, and glutathione S-transferases, GSTs), as well as in growth, development and reproduction (vitellogenin, Vtg1 and ecdysone receptor, EcR). AK and Vtg1 did not show significant differences, however, EcR was down-regulated and the other three genes (TRxR, CAT, GSTs) were up-regulated in the combined-treated group. Antibiotic resistance gene (ARGs) sul1 was detected when exposed to micro-PS colonized with S. flexneri., suggesting that D. magna could acquire resistance genes through microplastic biofilms. These results indicated that MPs could act as a carrier of ARB to transfer ARGs into D. magna, and affect the life history, morphology, and the expression of related functional genes of D. magna, to adapt to the stress caused by MPs and ARB.202337709097
678180.9997Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression. Due to the significant public health risks, there is substantial scientific interest in the increasing abundance of antibiotic-resistance bacteria (ARB) and the spread of antibiotic-resistance genes (ARGs) in aquatic environments. To clearly understand the mechanism of ARG transfer, this study examined the conjugative transfer of genes encoding resistance to cephalosporin (bla(CTX)) and polymyxin (mcr-1) from two antibiotic-resistant donor strains, namely E. coli DH5α (CTX) and E. coli DH5α (MCR), and to a streptomycin-resistant receptor strain (E. coli C600 (Sm)). Conjugative transfer was specifically studied under different light irradiation conditions including visible light (VL), simulated sunlight (SS) and ultraviolet light (UV(254nm)). Results show that the conjugative transfer frequency was not affected by VL irradiation, while it was slightly improved (2-10 fold) by SS irradiation and extremely accelerated (up to 100 fold) by UV irradiation. Furthermore, this study also explored the link between ARG transfer and stress conditions. This was done by studying physiological and biochemical changes; oxidative stress response; and functional gene expression of co-cultured AR-E. coli strains under stress conditions. When correlated with the transfer frequency results, we found that VL irradiation did not affect the physiological and biochemical characteristics of the bacteria, or induce oxidative stress and gene expression. For SS irradiation, oxidative stress occurred slowly, with a slight increase in the expression of target genes in the bacterial cells. In contrast, UV irradiation, rapidly inactivated the bacteria, the degree of oxidative stress was very severe and the expression of the target genes was markedly up-regulated. Our study could provide new insight into the underlying mechanisms and links between accelerated conjugative transfer and oxidative stress, as well as the altered expression of genes relevant to conjugation and other stress responses in bacterial cells.201930465986
677790.9997Unveiling the role of uranium in enhancing the transformation of antibiotic resistance genes. Transformation represents one of the most important pathways for the horizontal transfer of antibiotic resistance genes (ARGs), which enables competent bacteria to acquire extracellular ARGs from the surrounding environment. Both heavy metals and irradiation have been demonstrated to influence the bacterial transformation process. However, the impact of ubiquitously occurring radioactive heavy metals on the transformation of ARGs remains largely unknown. Here, we showed that a representative radioactive nuclide, uranium (U), at environmental concentrations (0.005-5 mg/L), improved the transformation frequency of resistant plasmid pUC19 into Escherichia coli by 0.10-0.85-fold in a concentration-dependent manner. The enhanced ARGs transformation ability under U stress was demonstrated to be associated with reactive oxygen species (ROS) overproduction, membrane damage, and up-regulation of genes related to DNA uptake and recombination. Membrane permeability and ROS production were the predominant direct and indirect factors affecting transformation ability, respectively. Our findings provide valuable insight into the underlying mechanisms of the impacts of U on the ARGs transformation process and highlight concerns about the exacerbated spread of ARGs in radioactive heavy metal-contaminated ecosystems, especially in areas with nuclear activity or accidents.202439208634
7581100.9997Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment. Antibiotic fermentation residues is a hazardous waste due to the existence of residual antibiotics and antibiotic resistance genes (ARGs), probably leading to the induction and spread of antibiotic resistant bacteria (ARB) in the environment, which could pose potential harm to the ecosystem and human health. It is urgent to develop an effective technology to remove the residual antibiotics and ARGs. In this study, the anaerobic digestion combined with gamma irradiation was applied for the disposal and utilization of cephalosporin C fermentation residues. The experimental results showed that the antibacterial activities of cephalosporin C against Staphylococcus aureus were significantly decreased after anaerobic digestion. The removal of tolC, a multidrug resistant gene, was improved up to 100% by the combination of gamma irradiation and anaerobic digestion compared to solely anaerobic digestion process, which may be due to the changes of microbial community structures induced by gamma irradiation.202031590081
6751110.9997Assessment of chlorine and hydrogen peroxide on airborne bacteria: Disinfection efficiency and induction of antibiotic resistance. Airborne pathogens severely threaten public health worldwide. Air disinfection is essential to ensure public health. However, excessive use of disinfectants may endanger environmental and ecological security due to the residual disinfectants and their by-products. This study systematically evaluated disinfection efficiency, induction of multidrug resistance, and the underlying mechanisms of disinfectants (NaClO and H(2)O(2)) on airborne bacteria. The results showed that airborne bacteria were effectively inactivated by atomized NaClO (>160 μg/L) and H(2)O(2) (>320 μg/L) after 15 min. However, some bacteria still survived after disinfection by atomized NaClO (0-80 μg/L) and H(2)O(2) (0-160 μg/L), and they exhibited significant increases in antibiotic resistance. The whole-genome sequencing of the resistant bacteria revealed distinct mutations that were responsible for both antibiotic resistance and virulence. This study also provided evidences and insights into possible mechanisms underlying the induction of antibiotic resistance by air disinfection, which involved intracellular reactive oxygen species formation, oxidative stress responses, alterations in bacterial membranes, activation of efflux pumps, and the thickening of biofilms. The present results also shed light on the role of air disinfection in inducing antibiotic resistance, which could be a crucial factor contributing to the global spread of antibiotic resistance through the air.202438823102
7966120.9997How heavy metal stress promotes dissemination of antibiotic resistance genes in the activated sludge process. Heavy metals have been recently revealed as promoters to antibiotic resistance gene (ARG) dissemination in water environment, but their influence on ARG transfer in the activated sludge process has not been clear. In this study, a set of sequencing batch reactors (SBRs) and micro-scale microfluidic chips were established to quantify the impacts of heavy metals (0.5 mM of Pb, 0.1 mM of As, and 0.005 mM of Hg) on the ARG spreading in the activated sludge consortium. Under heavy metal stress, transfer frequencies were 1.7-3.6 folds increase compared to the control. Gram-negative bacteria increased significantly after heavy metal added, which were more prone to receiving resistant plasmid from donors. Meanwhile, the relative expression of genes related to conjugation changed in activated sludge, especially the expression of outer membrane protein and oxidative stress regulatory genes increased by 2.9-7.4 folds and 7.8-13.1 folds, respectively. Furthermore, using microfluidic chips, the dynamics of ARG transfer was observed at single cell level under heavy metal pressure. Heavy metals firstly promoted conjugation and then vertical gene transfer played an important part for ARG spreading. The results provided in-depth understanding of the influence of heavy metals on ARG behavior in the environment.202235724617
7509130.9997Assessing biofilm formation and resistance of vibrio parahaemolyticus on UV-aged microplastics in aquatic environments. UV degradation of marine microplastics (MPs) could increase their vector potential for pathogenic bacteria and threaten human health. However, little is known about how the degree of UV aging affects interactions between MPs and pathogens and how various types of MPs differ in their impact on seafood safety. This study investigated five types of UV-aged MPs and their impact on Vibrio parahaemolyticus, a seafood pathogen. MPs exposed to UV for 60 days showed similar physicochemical changes such as surface cracking and hydrophobicity reduction. Regardless of the type, longer UV exposure of MPs resulted in more biofilm formation on the surface under the same conditions. V. parahaemolyticus types that formed biofilms on the MP surface showed 1.4- to 5.0-fold upregulation of virulence-related genes compared to those that did not form biofilms, independently of UV exposure. However, longer UV exposure increased resistance of V. parahaemolyticus on MPs to chlorine, heat, and human gastrointestinal environment. This study implies that the more UV degradation occurs on MPs, the more microbial biofilm formation is induced, which can significantly increase virulence and environmental resistance of bacteria regardless of the type of MP.202438422694
6768140.9997Biofilm formation mechanisms of mixed antibiotic-resistant bacteria in water: Bacterial interactions and horizontal transfer of antibiotic-resistant plasmids. Over 95 % of bacteria on water supply pipeline surfaces exist in biofilms, which are hotspots for antibiotic resistance gene (ARG) transmission. This study established mixed biofilm culture systems on a metal iron substrate using Escherichia coli: antibiotic-sensitive bacteria (ASB) and antibiotic-resistant bacteria (ARB). The growth rate and extracellular polymeric substances (EPS) content of mixed biofilm surpassed single-species biofilms due to synergistic interactions among different bacteria. However, the composition of mixed biofilms formed by ASB and ARB became unstable after 72 h, linked to reduced polysaccharide proportions in EPS and inter-bacterial competition. The bacterial composition and conjugative transfer frequency of ARGs in mixed biofilms indicate that biofilm formation significantly enhances horizontal transfer of ARGs. Notably, the conjugative transfer frequency of the mixed biofilm formed by two ARB increased 100-fold within five days. In contrast, the conjugative transfer frequency in the mixed biofilm formed by ASB and ARB was unstable; inter-bacterial competition led to plasmid loss associated with horizontal transfer of ARGs, ultimately resulting in biofilm shedding. Furthermore, genes associated with ARG transfer and biofilm growth up-regulated by 1.5 - 6 and 2 - 7 times, respectively, in mixed biofilm. These findings highlight a mutually reinforcing relationship between biofilm formation and horizontal ARG transmission, with significant environmental implications.202539566460
6764150.9997Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. Chlorine disinfection to drinking water plays an important role in preventing and controlling waterborne disease outbreaks globally. Nevertheless, little is known about why it enriches the antibiotic resistance genes (ARGs) in bacteria after chlorination. Here, ARGs released from killed antibiotic-resistant bacteria (ARB), and culturable chlorine-injured bacteria produced in the chlorination process as the recipient, were investigated to determine their contribution to the horizontal transfer of ARGs during disinfection treatment. We discovered Escherichia coli, Salmonella aberdeen, Pseudomonas aeruginosa and Enterococcus faecalis showed diverse resistance to sodium hypochlorite, and transferable RP4 could be released from killed sensitive donor consistently. Meanwhile, the survival of chlorine-tolerant injured bacteria with enhanced cell membrane permeabilisation and a strong oxidative stress-response demonstrated that a physiologically competent cell could be transferred by RP4 with an improved transformation frequency of up to 550 times compared with the corresponding untreated bacteria. Furthermore, the water quality factors involving chemical oxygen demand (COD(Mn)), ammonium nitrogen and metal ions (Ca(2+) and K(+)) could significantly promote above transformation frequency of released RP4 into injured E. faecalis. Our findings demonstrated that the chlorination process promoted the horizontal transfer of plasmids by natural transformation, which resulted in the exchange of ARGs across bacterial genera and the emergence of new ARB, as well as the transfer of chlorine-injured opportunistic pathogen from non-ARB to ARB. Considering that the transfer elements were quite resistant to degradation through disinfection, this situation poses a potential risk to public health.202032327733
8983160.9997Chlorine disinfectants promote microbial resistance in Pseudomonas sp. The substantial use of disinfectants has increased antibiotic resistance, thereby mediating serious ecological safety issues worldwide. Accumulating studies have reported the role of chlorine disinfectants in promoting disinfectant resistance. The present study sought to investigate the role of chlorine disinfectants in developing multiple resistance in Pseudomonas sp. isolated from the river through antioxidant enzyme measurement, global transcriptional analyses, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results demonstrated that 100 mg/L sodium hypochlorite could increase disinfectant resistance and antibiotic resistance. The SOS response (a conserved response to DNA damage) triggered by oxidative stress makes bacteria resistant to chlorine. An increase in antibiotic resistance could be attributed to a decreased membrane permeability, increased expression of MuxABC-OpmB efflux pump, beta-lactamase, and antioxidant enzymes. Additionally, KEGG enrichment analysis suggested that the differentially expressed genes were highly enriched in the metabolic pathways. In summary, the study results revealed the impact of chlorine disinfectants in promoting microbial disinfectant resistance and antibiotic resistance. This study will provide insight into disinfectant resistance mechanisms.202134010624
7501170.9997Enhanced sensitivity of extracellular antibiotic resistance genes (ARGs) to environmental concentrations of antibiotic. As emerging contaminants, antibiotics are frequently present in various environments, particularly rivers, albeit often at sublethal concentrations (ng/L∼μg/L). Assessing the risk associated with these low levels, which are far below the lethal threshold for most organisms, remains challenging. In this study, using microcosms containing planktonic bacteria and biofilm, we examined how antibiotic resistance genes (ARGs) in different physical states, including intracellular ARGs (iARGs) and extracellular ARGs (eARGs) responded to these low-level antibiotics. Our findings reveal a positive correlation between sub-lethal antibiotic exposure (ranging from 0.1 to 10 μg/L) and increased prevalence (measured as ARG copies/16s rDNA) of both iARGs and eARGs in planktonic bacteria. Notably, eARGs demonstrated greater sensitivity to antibiotic exposure compared to iARGs, with a lower threshold (0.1 μg/L for eARGs versus 1 μg/L for iARGs) for abundance increase. Moreover, ARGs in biofilms demonstrates higher sensitivity to antibiotic exposure compared to planktonic bacteria. To elucidate the underlying mechanisms, we established an integrated population dynamics-pharmacokinetics-pharmacodynamics (PD-PP) model. This model indicates that the enhanced sensitivity of eARGs is primarily driven by an increased potential for plasmid release from cells under low antibiotic concentrations. Furthermore, the accumulation of antibiotic in biofilms induces a greater sensitivity of ARG compared to the planktonic bacteria. This study provides a fresh perspective on the development of antibiotic resistance and offers an innovative approach for assessing the risk of sublethal antibiotic in the environment.202438797215
6748180.9997Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine aquatic environment. Many studies have examined the acute toxicity of nanoparticles (NPs) towards model bacteria. In this study, we report the time-dependent effects of ZnO NPs on native, selected Zn-resistant and dominant bacteria in estuarine waters. An initial inhibition of bacterial growth followed by a recovery at 24 h was observed, and this rebound phenomenon was particularly notable when the raw water samples were treated with relatively high ZnO NP concentrations (1 and 10 mg/L).By comparing the groups treated with Zn(2+), Zn(2+) was shown to largely explain the acute cytotoxic effect of ZnO NPs on bacteria in raw waters. Furthermore, similar to the native bacteria, especially the dominant bacteria, the viability of Escherichia coli (E. coli) decreased with the increasing treatments time and the concentrations of ZnO NPs in water with different salinities. Moreover, the expression of Zn-resistance genes including zntA and zntR in E. coli suggested that the Zn-resistance system in E. coli can be activated to defend against the stress of Zn(2+) released from ZnO NPs, and salinity may promote this process in estuarine aquatic systems. Thus, the effect of ZnO NPs on bacteria in estuarine water bodies is likely determined by the synergistic effect of environmental salinity and dissolved Zn ions. As such, our findings are of high relevance and importance for understanding the ecological disturbances caused by anthropogenic NPs in estuarine environments.202031505343
8564190.9997Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. The formation and transmission of antibiotic resistance genes (ARGs) have attracted increasing attention. It is unclear whether the internal mechanisms by which antibiotics affect horizontal gene transfer (HGT) of ARGs during anaerobic digestion (AD) were influenced by dose and type. We investigated the effects of two major antibiotics (oxytetracycline, OTC, and sulfamethoxazole, SMX) on ARGs during AD according to antibiotic concentration in livestock wastewater influent. The low-dose antibiotic (0.5 mg/L) increased ROS and SOS responses, promoting the formation of ARGs. Meanwhile, low-dose antibiotics could also promote the spread of ARGs by promoting pili, communication responses, and the type IV secretion system (T4SS). However, different types and doses of antibiotics would lead to changes in the above functional modules and then affect the enrichment of ARGs. With the increasing dose of SMX, the advantages of pili and communication responses would gradually change. In the OTC system, low-dose has the strongest promoting ability in both pili and communication responses. Similarly, an increase in the dose of SMX would change T4SS from facilitation to inhibition, while OTC completely inhibits T4SS. Microbial and network analysis also revealed that low-dose antibiotics were more favorable for the growth of host bacteria.202336063716