Phenolic compounds promote the horizontal transfer of antibiotic resistance genes in activated sludge. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
850801.0000Phenolic compounds promote the horizontal transfer of antibiotic resistance genes in activated sludge. Phenolic compounds are common organic pollutants in wastewater. During the wastewater treatment process, these compounds may influence the microbial community structure and functions. However, the impact of the phenolic compounds in the wastewater treatment plants on the horizontal transfer of antibiotic resistance genes (ARGs) has not been well assessed. In this study, we investigated the horizontal transfer of ARGs under the stress of phenolic compounds. The results showed that in pure culture bacteria system, p-nitrophenol (PNP), p-aminophenol (PAP) and phenol (PhOH) (10-100 mg/L) can significantly increase the horizontal transfer frequency of ARGs by 2.2-4.6, 3.6-9.4 and 1.9-9.0 fold, respectively. And, the RP4 plasmid transfer from Escherichia coli HB101 (E. coli HB101) to the bacteria in activated sludge increased obviously under the stress of phenolic compounds. Further investigation revealed that the PNP and PhOH at the concentration of 10-100 mg/L increased the production of reactive oxygen species and the permeability of cell membrane in the donor and recipient, which could be the causes of horizontal transfer of RP4 plasmid. In addition, it was also found that PNP, PAP and PhOH stress inhibit the expression of the global regulatory genes korB and trbA in the RP4 plasmid, and increase the expression level of the traF gene, thereby promoting the conjugative transfer of the RP4 plasmid. Taken together, these results improved our understanding of the horizontal transfer of ARGs under the stress of phenolic compounds and provided basic information for management of the systems that treat wastewater containing phenolic compounds.202134392203
676110.9998Exposure to Al(2)O(3) nanoparticles facilitates conjugative transfer of antibiotic resistance genes from Escherichia coli to Streptomyces. The spread of antibiotic resistance genes (ARGs) has become a global environmental issue; it has been found that nanoparticles (NPs) can promote the transfer of ARGs between bacteria. However, it remains unclear whether NPs can affect this kind of conjugation in Streptomyces, which mainly conjugate with other bacteria via spores. In the present study, we demonstrated that Al(2)O(3) NPs significantly promote the conjugative transfer of ARGs from Escherichia coli (E. coli) ET12567 to Streptomyces coelicolor (S. coelicolor) M145 without the use of heat shock method. The number of transconjugants induced by Al(2)O(3) particles was associated with the size and concentration of Al(2)O(3) particles, exposure time, and the ratio of E. coli and spores. When nanoparticle size was 30 nm at a concentration of 10 mg/L, the conjugation efficiency reached a peak value of 182 cfu/10(8) spores, which was more than 60-fold higher than that of the control. Compared with nanomaterials, bulk particles exhibited no significant effect on conjugation efficiency. We also explored the mechanisms by which NPs promote conjugative transfer. After the addition of NPs, the intracellular ROS content increased and the expression of the classical porin gene ompC was stimulated. In addition, ROS enhanced the mRNA expression levels of conjugative genes by inhibiting global regulation genes. Meanwhile, expression of the conjugation-related gene intA was also stimulated, ultimately increasing the number of transconjugants. Our results indicated that Al(2)O(3) NPs significantly promoted the conjugative transfer of ARGs from bacteria to spores and aggravated the diffusion of resistance genes in the environment.201931561730
850720.9998Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes. Conjunctive transfer of antibiotic resistance genes (ARGs) among bacteria driven by plasmids facilitated the evolution and spread of antibiotic resistance. Heavy metal exposure accelerated the plasmid-mediated conjunctive transfer of ARGs. Nanomaterials are well-known adsorbents for heavy metals removal, with the capability of combatting resistant bacteria/facilitating conjunctive transfer of ARGs. However, co-effect of heavy metals and nanomaterials on plasmid-mediated conjunctive transfer of ARGs was still unknown. In this study, we investigated the effect of the simultaneous exposure of Cd(2+) and nano Fe(2)O(3) on conjugative transfer of plasmid RP4 from Pseudomonas putida KT2442 to water microbial community. The permeability of bacterial cell membranes, antioxidant enzyme activities and conjugation gene expression were also investigated. The results suggested that the combination of Cd(2+) and high concentration nano Fe(2)O(3) (10 mg/L and 100 mg/L) significantly increased conjugative transfer frequencies of RP4 plasmid (p < 0.05). The most transconjugants were detected in the treatment of co-exposure to Cd(2+) and nano Fe(2)O(3), the majority of which were identified to be human pathogens. The mechanisms of the exacerbated conjugative transfer of ARGs were involved in the enhancement of cell membrane permeability, antioxidant enzyme activities, and mRNA expression levels of the conjugation genes by the co-effect of Cd(2+) and nano Fe(2)O(3). This study confirmed that the simultaneous exposure to Cd(2+)and nano Fe(2)O(3) exerted a synergetic co-effect on plasmid-mediated conjunctive transfer of ARGs, emphasizing that the co-effect of nanomaterials and heavy metals should be prudently evaluated when combating antibiotic resistance.202133798824
852430.9997Tebuconazole exacerbates co-occurrence and horizontal transfer of antibiotic resistance genes. As one of the most widely used pesticides in the global fungicide market, tebuconazole has become heavily embedded in soil along with antibiotic resistance genes (ARGs). However, it remains unclear whether the selective pressure produced by tebuconazole affects ARGs and their horizontal transfer. In this experiment, we simulated a tebuconazole-contaminated soil ecosystem and observed changes in the abundance of ARGs and mobile genetic element (MGEs) due to tebuconazole exposure. We also established a plasmid RP4-mediated conjugative transfer system to investigate in depth the impact of tebuconazole on the horizontal transfer of ARGs and its mechanism of action. The results showed that under tebuconazole treatment at concentrations ranging from 0 to 10 mg/L, there was a gradual increase in the frequency of plasmid conjugative transfer, peaking at 10 mg/L which was 7.93 times higher than that of the control group, significantly promoting horizontal transfer of ARGs. Further analysis revealed that the conjugative transfer system under tebuconazole stress exhibited strong ability to form biofilm, and the conjugative transfer frequency ratio of biofilm to planktonic bacteria varied with the growth cycle of biofilm. Additionally, scanning electron microscopy and flow cytometry demonstrated increased cell membrane permeability in both donor and recipient bacteria under tebuconazole stress, accompanied by upregulation of ompA gene expression controlling cell membrane permeability. Furthermore, enzyme activity assays indicated significant increases in CAT, SOD activity, and GSH content in recipient bacteria under tebuconazole stress. Moreover, expression levels of transmembrane transporter gene trfAp as well as genes involved in oxidative stress and SOS response were found to be correlated with the frequency of plasmid conjugative transfer.202439277355
678140.9997Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression. Due to the significant public health risks, there is substantial scientific interest in the increasing abundance of antibiotic-resistance bacteria (ARB) and the spread of antibiotic-resistance genes (ARGs) in aquatic environments. To clearly understand the mechanism of ARG transfer, this study examined the conjugative transfer of genes encoding resistance to cephalosporin (bla(CTX)) and polymyxin (mcr-1) from two antibiotic-resistant donor strains, namely E. coli DH5α (CTX) and E. coli DH5α (MCR), and to a streptomycin-resistant receptor strain (E. coli C600 (Sm)). Conjugative transfer was specifically studied under different light irradiation conditions including visible light (VL), simulated sunlight (SS) and ultraviolet light (UV(254nm)). Results show that the conjugative transfer frequency was not affected by VL irradiation, while it was slightly improved (2-10 fold) by SS irradiation and extremely accelerated (up to 100 fold) by UV irradiation. Furthermore, this study also explored the link between ARG transfer and stress conditions. This was done by studying physiological and biochemical changes; oxidative stress response; and functional gene expression of co-cultured AR-E. coli strains under stress conditions. When correlated with the transfer frequency results, we found that VL irradiation did not affect the physiological and biochemical characteristics of the bacteria, or induce oxidative stress and gene expression. For SS irradiation, oxidative stress occurred slowly, with a slight increase in the expression of target genes in the bacterial cells. In contrast, UV irradiation, rapidly inactivated the bacteria, the degree of oxidative stress was very severe and the expression of the target genes was markedly up-regulated. Our study could provide new insight into the underlying mechanisms and links between accelerated conjugative transfer and oxidative stress, as well as the altered expression of genes relevant to conjugation and other stress responses in bacterial cells.201930465986
677550.9997Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. The spread of antibiotic resistance has become a major concern for public health. As emerging contaminants, various metallic nanoparticles (NPs) and ionic heavy metals have been ubiquitously detected in various environments. Although previous studies have indicated NPs and ionic heavy metals could exhibit co-selection effects for antibiotic resistance, little is known about whether and how they could promote antibiotic resistance spread via horizontal gene transfer across bacterial genera. This study, we report both CuO NPs and copper ions (Cu(2+)) could stimulate the conjugative transfer of multiple-drug resistance genes. When exposing bacteria to CuO NPs or Cu(2+) at environmental-relevant and sub-inhibitory concentrations (e.g., 1-100 μmol/L), conjugation frequencies of plasmid-encoded antibiotic resistance genes across genera (i.e., from Escherichia coli to Pseudomonas putida) were significantly enhanced (p < 0.05). The over-production of reactive oxygen species played a crucial role in promoting conjugative transfer. Genome-wide RNA and protein sequencing suggested expressional levels of genes and proteins related to oxidative stress, cell membrane permeability, and pilus generation were significantly up-regulated under CuO NPs and Cu(2+) exposure (p < 0.05). This study provides insights in the contributions of NPs and heavy metals on the spread of antibiotic resistance.201931158594
850460.9997Chloroxylenol at environmental concentrations can promote conjugative transfer of antibiotic resistance genes by multiple mechanisms. The intergeneric conjugative transfer of antibiotic resistance genes (ARGs) is recognized as an important way to the dissemination of antibiotic resistance. However, it is unknown whether the extensive use of chloroxylenol (para-chloro-meta-xylenol, PCMX) in many pharmaceutical personal care products will lead to the spread of ARGs. In this study, the abilities and mechanisms of PCMX to accelerate the intergeneric conjugative transfer were investigated. Results showed that exposure of bacteria to environmental concentrations of PCMX (0.20-1.00 mg/L) can significantly stimulate the increase of conjugative transfer by 8.45-9.51 fold. The phenotypic experiments and genome-wide RNA sequencing revealed that 0.02-5.00 mg/L PCMX exposure could increase the content of alkaline phosphatase and malondialdehyde, which are characteristic products of cell wall and membrane damage. In addition, PCMX could lead to excessive production of reactive oxygen species (ROS) by 1.26-2.00 times, the superoxide dismutase and catalase produced by bacteria in response to oxidative stress were not enough to neutralize the damage of ROS, thus promoting the conjugative transfer. Gene Ontology enrichment analysis indicated that cell membrane permeability, pili, some chemical compounds transport and energy metabolism affected conjugative transfer. This study deepened the understanding of PCMX in promoting propagation of ARGs, and provided new perspectives for use and treatment of personal care products.202234774958
849970.9997Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma. Antibiotic resistant bacteria (ARB) and resistance genes (ARGs) are emerging environmental pollutants with strong pathogenicity. In this study, surface plasma was developed to inactivate the donor ARB with Escherichia coli (AR E. coli) as a model, eliminate ARGs, and inhibit conjugative transfer of ARGs in water, highlighting the influences of concomitant inorganic ions. Surface plasma oxidation significantly inactivated AR E. coli, eliminated ARGs, and inhibited conjugative transfer of ARGs, and the presence of NO(3)(-), Cu(2+), and Fe(2+) all promoted these processes, and SO(4)(2-) did not have distinct effect. Approximately 4.5log AR E. coli was inactivated within 10 min treatment, and it increased to 7.4log AR E. coli after adding Fe(2+). Integrons intI1 decreased by 3.10log (without Fe(2+)) and 4.43log (adding Fe(2+)); the addition of Fe(2+) in the surface plasma induced 99.8% decline in the conjugative transfer frequency. The inhibition effects on the conjugative transfer of ARGs were mainly attributed to the reduced reactive oxygen species levels, decreased DNA damage-induced response, decreased intercellular contact, and down-regulated expression of plasmid transfer genes. This study disclosed underlying mechanisms for inhibiting ARGs transfer, and supplied a prospective technique for ARGs control.202134536683
677180.9997Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. The dissemination of antibiotic resistance mediated by horizontal transfer of antibiotic resistance genes (ARGs) is exacerbating the global antibiotic crisis. Currently, little is known about whether non-antibiotic, anti-microbial (NAAM) chemicals are associated with the dissemination of ARGs in the environment. In this study, we aimed to evaluate whether a ubiquitous NAAM chemical, triclosan (TCS), is able to promote the transformation of plasmid-borne antibiotic resistance genes (ARGs). By using the plasmid pUC19 carrying ampicillin resistance genes as the extracellular ARG and a model microorganism Escherichia coli DH5ɑ as the recipient, we found that TCS at environmentally detected concentrations (0.2 μg/L to 20 μg/L) significantly enhanced the transformation of plasmid-borne ARGs into E. coli DH5ɑ for up to 1.4-fold. The combination of phenotypic experiments, genome-wide RNA sequencing and proteomic analyses revealed that TCS exposure stimulated the reactive oxygen species (ROS) production for 1.3- to 1.5-fold, induced bacterial membrane damage and up-regulated the translation of outer membrane porin. Moreover, general secretion system Sec (1.4-fold), twin arginine translocation system Tat (1.2-fold) and type IV pilus secretion systems (2.5-fold) were enhanced by TCS, which might contribute to the DNA searching/capture by pilus. Together, TCS might increase the transformation frequency of ARGs into E. coli DH5ɑ by ROS over-production, damaging cell membrane barrier, mediating the pilus capture of plasmid and the translocation of plasmid via cell membrane channels. This study reports that TCS could accelerate the transformation of extracellular ARGs to competent bacteria at environmentally relevant concentrations. The findings advance our understanding of the fate of ARGs in ecosystems and call for risk assessments of NAAM chemicals on disseminating antibiotic resistance.202032019018
850690.9997Extracellular Polymeric Substances Acting as a Permeable Barrier Hinder the Lateral Transfer of Antibiotic Resistance Genes. Antibiotic resistance genes (ARGs) in bacteria are emerging contaminants as their proliferation in the environment poses significant threats to human health. It is well recognized that extracellular polymeric substances (EPS) can protect microorganisms against stress or damage from exogenous contaminants. However, it is not clear whether EPS could affect the lateral transfer of ARGs into bacteria, which is one of the major processes for the dissemination of ARGs. This study investigated the lateral transfer of ARGs carried by plasmids (pUC19, pHSG298, and pHSG396) into competent Escherichia coli cells with and without EPS. Transformant numbers and transformation efficiency for E. coli without EPS were up to 29 times of those with EPS at pH 7.0 in an aqueous system. The EPS removal further increased cell permeability in addition to the enhanced cell permeability by Ca(2+), which could be responsible for the enhanced lateral transfer of ARGs. The fluorescence quenching experiments showed that EPS could strongly bind to plasmid DNA in the presence of Ca(2+) and the binding strength (LogK (A) = 10.65-15.80 L mol(-1)) between EPS and plasmids was positively correlated with the enhancement percentage of transformation efficiency resulting from the EPS removal. X-ray photoelectron spectroscopy (XPS) analyses and model computation further showed that Ca(2+) could electrostatically bind with EPS mainly through the carboxyl group, hydroxyl group, and RC-O-CR in glucoside, thus bridging the plasmid and EPS. As a result, the binding of plasmids with EPS hindered the lateral transfer of plasmid-borne ARGs. This study improved our understanding on the function of EPS in controlling the fate and transport of ARGs on the molecular and cellular scales.201931057498
6783100.9997Mechanism of earthworm coelomic fluid inhibits multidrug-resistant bacteria and blocks resistance transmission. Antibiotic resistance is a growing global health crisis, especially the spread of multi-drug resistance. In this study, the inhibitory effects of earthworm coelomic fluid (ECF) on multidrug-resistant bacteria (MRB) were investigated during employing vermicomposting to treat excess sludge generated from wastewater treatment. The results demonstrated that the ECF was able to inhibit, even completely decompose the MRB. Notably, when the ECF concentration reached 1.0 mg/mL, the intracellular reactive oxygen species (ROS) level increased by 46.7 %, while cell viability decreased by 55.2 % compared to the control, demonstrating that ECF exerts strong antibacterial activity by inducing oxidative stress and disrupting cellular homeostasis. Furthermore, ECF effectively degraded the DNA of MRB, with removal rates of aphA, KanR, and tetA reaching 51.8 %, 42.3 %, and 35.0 %, respectively, indicating its ability to eliminate resistance genes and hinder their potential transfer. Additionally, the upregulation of genes involved in signaling, DNA replication and repair, and energy metabolism pathways suggests a systemic stress response in MRB, further supporting the broad-spectrum inhibitory effects of ECF on bacterial viability and resistance maintenance. Taken together, these findings may open a door to naturally and ecologically combat antibiotic resistance in pollutants control in wastewater treatment.202540706790
7629110.9997Graphene oxide in the water environment could affect tetracycline-antibiotic resistance. In recent years, the influence of new materials like nanoparticles in the water environment on biological substances has been widely studied. Antibiotic resistance genes (ARGs) represent a new type of pollutant in the environment. Graphene oxide (GO), as a nano material, because of its unique structure, may have an impact on antibiotic resistance bacteria (ARB) and ARGs; however the research in this area is rarely reported. Therefore, this study mainly investigated the effects of GO on bacterial antibiotic resistance. The results showed that GO had a limited effect on ARB inactivation. A high concentration of GO (>10 mg/L) can damage resistant plasmids to reduce bacterial resistance to antibiotics, but low concentrations of GO (<1 mg/L) led to almost no damage to the plasmid. However, all tested concentrations of GO promoted the conjugative transfer from 1to over 3 folds, with low concentrations and high concentration (1-10 and 100 mg/L) of GO samples the least promoted. The overall effect of GO on antibiotic resistance needs further investigation.201728549325
6776120.9997Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic-resistance genes. Minerals and microorganisms are integral parts of natural environments, and they inevitably interact. Antibiotic-resistance genes (ARGs) significantly threaten modern healthcare. However, the effects of natural minerals on ARG propagation in aquatic systems are not fully understood. The present work studied the effects of natural sphalerite (NS) nanoparticles on the horizontal transfer of ARGs from Escherichia coli DH5α (CTX) (donor) to E. coli C600 (Sm) (recipient), and from E. coli DH5α (MCR) (donor) to E. coli C600 (Sm), and their underlying mechanisms. NS particles (0.5-50 mg L(-1)) induced an NS-concentration-dependent increase in conjugative transfer frequency. The underlying mechanisms associated with the facilitated ARG transfer included the production of intracellular reactive oxygen species, the SOS response, changes in bacterial cell morphology, and alteration of mRNA levels of bacterial cell membrane protein-related genes and genes associated with conjugative ARG transfer. The information herein offers new mechanistic understanding of risks of bacterial resistance resulting from NS.202031999971
8604130.9997Reactive chlorine species inhibiting interspecies spread of antibiotic resistance via disrupting donor - Recipient cells and regulating plasmid conjugation genes. Current drinking water treatment plant (DWTP) disinfection technologies face limitations, allowing plasmid-mediated antibiotic resistance genes (ARGs) transfer to occur among viable but nonculturable (VBNC) bacteria, heightening the risk of antibiotic-resistant infections. While UV/Chlorine has been adopted to curb ARGs abundance, its impacts on the interspecies transfer of ARG-carrying plasmids remain hardly explored. This study investigated how reactive chlorine species (RCS) in the UV/Chlorine system inhibited the transfer of antibiotic resistance from antibiotic-resistant Escherichia coli (AR E. coli) to Bacillus subtilis (B.S) by inactivating both donor and recipient strains and regulating plasmid conjugation genes. RCS reduced plasmid transfer frequencies by 2.1-log and 3.2-log compared to UV or chlorine alone. By impairing (•)OH scavenging ability, it led to ROS accumulation in AR E. coli, disrupting cellular energy metabolism and DNA repair, ultimately causing DNA degradation and membrane damage, resulting in AR E. coli inactivation rather than entering the VBNC state. Additionally, RCS induced structural and intracellular disruption in B.S, compromising its capacity for plasmid uptake and stable maintenance. Finally, RCS inhibited plasmid horizontal transfer while enhancing vertical transfer, with its damage to outer membrane proteins further restricting interspecies plasmid conjugation transfer. This study provides novel insights for DWTPs to better control ARGs interspecies transfer and improve drinking water safety.202540505407
8607140.9997Different paths, same destination: Bisphenol A and its substitute induce the conjugative transfer of antibiotic resistance genes. Antibiotic resistance genes are primarily spread through horizontal gene transfer in aquatic environments. Bisphenols, which are widely used in industry, are pervasive contaminants in such environments. This study investigated how environmentally relevant concentrations of bisphenol A and its substitute (bisphenol S, Bisphenol AP and Bisphenol AF) affect the spread of antibiotic resistance genes among Escherichia coli. As a result, bisphenol A and its three substitutes were found to promote the RP4 plasmid-mediated conjugative transfer of antibiotic resistance genes with different promotive efficiency. Particularly, bisphenol A and bisphenol S were found to induce more than double the incidence of conjugation at 0.1 nmol/L concentration. They therefore were selected as model compounds to investigate the involved mechanisms. Surprisingly, both slightly inhibited bacterial activity, but there was no significant increase in cell death. Bisphenols exposure changed the polymeric substances excreted by the bacteria, increased the permeability of their cell membranes, induced the secretion of antioxidant enzymes and generated reactive oxygen species. They also affected the expression of genes related to conjugative transfer by upregulating replication and DNA transfer genes and downregulating global regulatory genes. It should be noted that gene expression levels were higher in the BPS-exposed group than in the BPA-exposed group. The synthesis of bacterial metabolites and functional components was also significantly affected by bisphenols exposure. This research has helped to clarify the potential health risks of bisphenol contamination of aquatic environments.202439510271
7845150.9997Mechanism and potential risk of antibiotic resistant bacteria carrying last resort antibiotic resistance genes under electrochemical treatment. The significant rise in the number of antibiotic resistance genes (ARGs) that resulted from our abuse of antibiotics could do severe harm to public health as well as to the environment. We investigated removal efficiency and removal mechanism of electrochemical (EC) treatment based on 6 different bacteria isolated from hospital wastewater carrying 3 last resort ARGs including NDM-1, mcr-1 and tetX respectively. We found that the removal efficiency of ARGs increased with the increase of both voltage and electrolysis time while the maximum removal efficiency can reach 90%. The optimal treatment voltage and treatment time were 3 V and 120 min, respectively. Temperature, pH and other factors had little influence on the EC treatment process. The mechanism of EC treatment was explored from the macroscopic and microscopic levels by scanning electron microscopy (SEM) and flow cytometry. Our results showed that EC treatment significantly changed the permeability of cell membrane and caused cells successively experience early cell apoptosis, late cell apoptosis and cell necrosis. Moreover, compared with traditional disinfection methods, EC treatment had less potential risks. The conjugative transfer frequencies of cells were significantly reduced after treatment. Less than 1% of bacteria entered the viable but nonculturable (VBNC) state and less than 5% of intracellular ARGs (iARGs) turned into extracellular ARGs (eARGs). Our findings provide new insights into as well as important reference for future electrochemical treatment in removing ARB from hospital wastewater.202235085630
6764160.9997Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. Chlorine disinfection to drinking water plays an important role in preventing and controlling waterborne disease outbreaks globally. Nevertheless, little is known about why it enriches the antibiotic resistance genes (ARGs) in bacteria after chlorination. Here, ARGs released from killed antibiotic-resistant bacteria (ARB), and culturable chlorine-injured bacteria produced in the chlorination process as the recipient, were investigated to determine their contribution to the horizontal transfer of ARGs during disinfection treatment. We discovered Escherichia coli, Salmonella aberdeen, Pseudomonas aeruginosa and Enterococcus faecalis showed diverse resistance to sodium hypochlorite, and transferable RP4 could be released from killed sensitive donor consistently. Meanwhile, the survival of chlorine-tolerant injured bacteria with enhanced cell membrane permeabilisation and a strong oxidative stress-response demonstrated that a physiologically competent cell could be transferred by RP4 with an improved transformation frequency of up to 550 times compared with the corresponding untreated bacteria. Furthermore, the water quality factors involving chemical oxygen demand (COD(Mn)), ammonium nitrogen and metal ions (Ca(2+) and K(+)) could significantly promote above transformation frequency of released RP4 into injured E. faecalis. Our findings demonstrated that the chlorination process promoted the horizontal transfer of plasmids by natural transformation, which resulted in the exchange of ARGs across bacterial genera and the emergence of new ARB, as well as the transfer of chlorine-injured opportunistic pathogen from non-ARB to ARB. Considering that the transfer elements were quite resistant to degradation through disinfection, this situation poses a potential risk to public health.202032327733
6768170.9997Biofilm formation mechanisms of mixed antibiotic-resistant bacteria in water: Bacterial interactions and horizontal transfer of antibiotic-resistant plasmids. Over 95 % of bacteria on water supply pipeline surfaces exist in biofilms, which are hotspots for antibiotic resistance gene (ARG) transmission. This study established mixed biofilm culture systems on a metal iron substrate using Escherichia coli: antibiotic-sensitive bacteria (ASB) and antibiotic-resistant bacteria (ARB). The growth rate and extracellular polymeric substances (EPS) content of mixed biofilm surpassed single-species biofilms due to synergistic interactions among different bacteria. However, the composition of mixed biofilms formed by ASB and ARB became unstable after 72 h, linked to reduced polysaccharide proportions in EPS and inter-bacterial competition. The bacterial composition and conjugative transfer frequency of ARGs in mixed biofilms indicate that biofilm formation significantly enhances horizontal transfer of ARGs. Notably, the conjugative transfer frequency of the mixed biofilm formed by two ARB increased 100-fold within five days. In contrast, the conjugative transfer frequency in the mixed biofilm formed by ASB and ARB was unstable; inter-bacterial competition led to plasmid loss associated with horizontal transfer of ARGs, ultimately resulting in biofilm shedding. Furthermore, genes associated with ARG transfer and biofilm growth up-regulated by 1.5 - 6 and 2 - 7 times, respectively, in mixed biofilm. These findings highlight a mutually reinforcing relationship between biofilm formation and horizontal ARG transmission, with significant environmental implications.202539566460
7966180.9996How heavy metal stress promotes dissemination of antibiotic resistance genes in the activated sludge process. Heavy metals have been recently revealed as promoters to antibiotic resistance gene (ARG) dissemination in water environment, but their influence on ARG transfer in the activated sludge process has not been clear. In this study, a set of sequencing batch reactors (SBRs) and micro-scale microfluidic chips were established to quantify the impacts of heavy metals (0.5 mM of Pb, 0.1 mM of As, and 0.005 mM of Hg) on the ARG spreading in the activated sludge consortium. Under heavy metal stress, transfer frequencies were 1.7-3.6 folds increase compared to the control. Gram-negative bacteria increased significantly after heavy metal added, which were more prone to receiving resistant plasmid from donors. Meanwhile, the relative expression of genes related to conjugation changed in activated sludge, especially the expression of outer membrane protein and oxidative stress regulatory genes increased by 2.9-7.4 folds and 7.8-13.1 folds, respectively. Furthermore, using microfluidic chips, the dynamics of ARG transfer was observed at single cell level under heavy metal pressure. Heavy metals firstly promoted conjugation and then vertical gene transfer played an important part for ARG spreading. The results provided in-depth understanding of the influence of heavy metals on ARG behavior in the environment.202235724617
6762190.9996Impacts of particle size and surface charge of ZnO on horizontal transformation of antibiotic resistance genes. The ever-growing antibiotic resistance in bacteria poses an enormous threat to public health and the environment. The horizontal transfer of antibiotic resistance genes (ARGs) is a major pathway for disseminating antibiotic resistance. As an inexpensive, nontoxic, and biocompatible material, ZnO with diverse sizes and surface properties have been prepared for widespread use. However, the effects and mechanisms of ZnO particles with different structural properties on the horizontal transfer of ARGs are not comprehensively understood. In this study, two groups of ZnO particles, one with the same size (93 nm) and different charge types (-9.5 and + 17.4 mV), and the other homogeneously positively charged but of different sizes (93, 215, and 2381 nm), were prepared. Their impacts on the horizontal transformation of ARGs mediated by plasmid pUC19 into E coli DH5α were investigated. In the positively charged group, the smallest ZnO nanoparticles at concentrations of 0.1-100 μg/mL induced 1.04-1.35 and 1.37-1.71-fold increases in transformation frequency when compared with that of the medium-sized and largest particles, respectively. In the similar-sized groups, positive ZnO promoted 1.06-1.32-fold increases than negative ZnO. Further investigation suggested that smaller and positive ZnO adsorbed more plasmids and correspondingly increased the uptake by recipient bacteria than that of larger and/or negative ZnO. In addition, the enhanced bacterial membrane permeability, ATP synthesis, and DNA replication were also accounted for the increased transformation. These results suggest that smaller-sized and positive ZnO poses a high environmental risk of spreading antibiotic resistance.202540527433