# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 849 | 0 | 1.0000 | Bacterial Genomics for National Antimicrobial Resistance Surveillance in Cambodia. BACKGROUND: Antimicrobial resistance (AMR) surveillance in low- and middle-income countries (LMICs) often relies on poorly resourced laboratory processes. Centralized sequencing was combined with cloud-based, open-source bioinformatics solutions for national AMR surveillance in Cambodia. METHODS: Blood cultures growing gram-negative bacteria were collected at 6 Cambodian hospitals (January 2021 to October 2022). Isolates were obtained from pure plate growth and shotgun DNA sequencing performed in country. Using public nucleotide and protein databases, reads were aligned for pathogen identification and AMR gene characterization. Multilocus sequence typing was performed on whole-genome assemblies and haplotype clusters compared against published genomes. RESULTS: Genes associated with acquired resistance to fluoroquinolones were identified in 59%, trimethoprim/sulfamethoxazole in 45%, and aminoglycosides in 52% of 715 isolates. Extended-spectrum β-lactamase encoding genes were identified in 34% isolates, most commonly blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55 in Escherichia coli sequence types 131 and 1193. Carbapenemase genes were identified in 12% isolates, most commonly blaOXA-23, blaNDM-1, blaOXA-58, and blaOXA-66 in Acinetobacter species. Phylogenetic analysis revealed clonal strains of Acinetobacter baumannii, representing suspected nosocomial outbreaks, and genetic clusters of quinolone-resistant typhoidal Salmonella and extended-spectrum β-lactamase E. coli cases suggesting community transmission. CONCLUSIONS: With accessible sequencing platforms and bioinformatics solutions, bacterial genomics can supplement AMR surveillance in LMICs. | 2025 | 39163245 |
| 848 | 1 | 0.9998 | Molecular Characterization of Escherichia coli Causing Urinary Tract Infections Through Next-Generation Sequencing: A Comprehensive Analysis of Serotypes, Sequence Types, and Antimicrobial and Virulence Genes. Introduction An enormous increase in antimicrobial resistance (AMR) among bacteria isolated from human clinical specimens contributed to treatment failures. Increased surveillance through next-generation sequencing (NGS) or whole genome sequencing (WGS) could facilitate the study of the epidemiology of drug-resistant bacterial strains, resistance genes, and other virulence determinants they are potentially carrying. Methods This study included 30 Escherichia coli (E. coli) isolates obtained from patients suffering from urinary tract infections (UTIs) attending Prathima Institute of Medical Sciences, Karimnagar, India. All bacterial isolates were identified, and antimicrobial susceptibility patterns were determined through conventional microbiological techniques and confirmed by automated systems. All the isolates were investigated using NGS to identify genes coding for resistance, such as extended-spectrum beta-lactamases (ESBLs), metallo-beta-lactamases, and virulence genes. Multilocus sequence typing (MLST) was used to understand the prevalent strain types, and serotyping was carried out to evaluate the type of O (cell wall antigen) and H (flagellar antigen) serotypes carried by the isolates. Results The conventional antimicrobial susceptibility testing revealed that 15 (50%) isolates were resistant to imipenem (IPM), 10 (33.33%) were resistant to amikacin (AK), 13 (43.33%) were resistant to piperacillin-tazobactam (PTZ), 17 (56.66%) were resistant to cephalosporins, and 14 (46.66%) were resistant to nitrofurantoin (NIT). Among the isolates, 26 (86.66%) had revealed the presence of multiple antibiotic-resistant genes with evidence of at least one gene coding for beta-lactamase resistance. There was a high prevalence of bla(CTX-M )(19/30, 63.33%) genes, followed by bla(TEM) and bla(OXA-1). The bla(NDM-5) gene was found in three isolates (3/30, 10%). The virulence genes identified in the present study were iutA, sat, iss, and papC, among others. The E. coli serotype found predominantly belonged to O25:H4 (5, 16.66%), followed by O102:H6 (4, 13.33%). A total of 16 MLST variants were identified among the examined samples. Of the MLST-based sequence types (STs) identified, ST-131 (7, 23.33%) was the predominant one, followed by ST-167 (3, 10%) and ST-12 (3, 10%). Conclusions The study results demonstrated that the E. coli strains isolated from patients suffering from UTIs potentially carried antimicrobial resistance and virulence genes and belonged to different strain types based on MLST. Careful evaluation of bacterial strains using molecular analyses such as NGS could facilitate an improved understanding of bacterial antibiotic resistance and its virulence potential. This could enable physicians to choose appropriate antimicrobial agents and contribute to better patient management, thereby preventing the emergence and spread of drug-resistant bacteria. | 2024 | 38576671 |
| 979 | 2 | 0.9998 | Integrative phenotypic and genomic analysis of extended-spectrum Beta-lactamase (ESBL) and carbapenemase genes in Enterobacteriaceae and Pseudomonaceae strains isolated from animals in a Spanish Veterinary Teaching Hospital. Antimicrobial resistance (AMR) is a major global health threat, exacerbated by globalization which facilitates the spread of resistant bacteria. Addressing this issue requires a One Health perspective, involving humans, animals, and the environment. This study aims to compare the phenotypic resistance profiles of 69 clinical bacterial isolates (Enterobacteriaceae and Pseudomonaceae) from a Veterinary Teaching Hospital in Spain with their genotypic resistance profiles based on the presence of Extended-Spectrum Beta-Lactamases (ESBLs), AmpC and carbapenemases -enconding genes. For the genotypical analysis, whole genome sequencing (WGS) was used. Phenotypic characterization revealed that 37 isolates (53.6 %) grew on ESBL-selective medium. Phenotypic confirmatory tests showed that 12 strains (17.4 %) had some type of ESBL and 21 (30.4 %) could have an AmpC. Also, 24 isolates (34.8 %) grew in selective media for carbapenemases-producing bacteria, and 2 of these had a class A carbapenemase based on the KPC&MBL&OXA-48 disc kit. The genotypic analysis revealed 20 isolates (29 %) had bla(TEM), 8 (11.6 %) had bla(CTX-M) and 7 (10.1 %) bla(SHV). 27 (39.1 %) isolates had class C beta-lactamase genes. 35 isolates (50.7 %) had bla(OXA), class D beta-lactamase. 37 strains (53.6 %) had an Inc. plasmid replicon associated with the spread of AMR genes, including beta-lactamases and carbapenemases. This study emphasizes the value of combining phenotypic and genomic analyses to better understand and address antibiotic resistance, especially in veterinary contexts. Integrating these approaches enhances diagnostic accuracy by identifying strains with resistance genes that may not show phenotypically, helping clinicians in anticipating resistance under selective pressure. | 2025 | 39808975 |
| 2114 | 3 | 0.9997 | Clinical, phenotypic, and genotypic characteristics of ESBL-producing Salmonella enterica bloodstream infections from Qatar. BACKGROUND: Resistant Salmonella infections are a major global public health challenge particularly for multidrug-resistant (MDR) isolates manifesting as bloodstream infections (BSIs). OBJECTIVES: To evaluate clinical, phenotypic, and genotypic characteristics of extended-spectrum beta-lactamase (ESBL) producing Salmonella enterica BSIs from Qatar. METHODS: Phenotypic ESBL Salmonella enterica from adult patients presenting with positive BSIs were collected between January 2019 to May 2020. Microbiological identification and characterization were performed using standard methods while genetic characteristics were examined through whole genome sequencing studies. RESULTS: Of 151 episodes of Salmonella enterica BSI, 15 (10%) phenotypic ESBL isolates were collected. Recent travel was recorded in most cases (80%) with recent exposure to antimicrobials (27%). High-level resistance to quinolines, aminoglycosides, and cephalosporins was recorded (80-100%) while meropenem, tigecycline and colistin demonstrated universal susceptibility. Genomic evaluation demonstrated dominance of serotype Salmonella Typhi sequence type 1 (93%) while antimicrobial resistance genes revealed dominance of aminoglycoside resistance (100%), qnrS1 quinolones resistance (80%), bla(CTX-M-15) ESBLs (86.7%), and paucity of AmpC resistance genes (6.7%). CONCLUSIONS: Invasive MDR Salmonella enterica is mainly imported, connected to patients from high prevalent regions with recent travel and antimicrobial use caused by specific resistant clones. In suspected cases of multidrug resistance, carbapenem therapy is recommended. | 2024 | 38742235 |
| 845 | 4 | 0.9997 | Variants of β-lactamase-encoding genes are disseminated by multiple genetically distinct lineages of bloodstream Escherichia coli. BACKGROUND: Escherichia coli is a major cause of bloodstream infections (BSI), which can lead to life-threatening organ dysfunction. We determined the genomic characteristics of E. coli implicated in BSI and the spread of antimicrobial resistance (AMR). METHODS: We carried out in vitro antimicrobial susceptibility testing and whole genome sequencing of 557 E. coli isolates recovered from BSI at Dartmouth-Hitchcock Medical Center, USA. RESULTS: We identify at least 119 previously recognized sequence types (ST), of which five STs (ST69, ST73, ST95, ST127, ST131) altogether represent 50% of the bloodstream E. coli population. Of the 142 distinct serotypes detected, the most common are O25:H4 and O1:H7. A total of 62 acquired genes are associated with resistance to at least 13 antimicrobial classes. These include the β-lactamase gene families bla(TEM), bla(SHV), bla(OXA), bla(CTX-M), and bla(CMY), which together can be further classified into 15 variants, including seven genes encoding extended-spectrum β-lactamases (ESBL). A total of 210/557 genomes carry at least one bla gene, with bla(TEM-1) being the most prevalent variant. ESBL-related genes are frequently detected in ST131 genomes. Four virulence operons related to iron uptake are differentially distributed among the five dominant STs. The putative IncF-type plasmid is often associated with genes related to AMR and iron uptake. Estimation of core and accessory genome similarity identifies 12 presumptive epidemiological linkages that span anywhere between 2-18 months. CONCLUSIONS: Multiple but genetically distinct E. coli lineages similarly cause BSI and shape AMR dissemination, emphasizing the opportunistic nature of E. coli in invasive infections. | 2025 | 40595425 |
| 843 | 5 | 0.9997 | Whole Genome Sequencing Reveals Presence of High-Risk Global Clones of Klebsiella pneumoniae Harboring Multiple Antibiotic Resistance Genes in Multiple Plasmids in Mwanza, Tanzania. BACKGROUND: Klebsiella pneumoniae is an important multidrug-resistant (MDR) pathogen, causing both community- and healthcare-associated infections. The resistance is due to the continuous accumulation of multiple antibiotic-resistance-genes (ARGs) through spontaneous genomic mutations and the acquisition of conjugative plasmids. This study presents antibiotics resistance genes, plasmids replicons, and virulence genes of K. pneumoniae isolates from clinical specimens in a tertiary hospital, Mwanza, Tanzania. METHODS: Whole genome sequencing (WGS) of 34 K. pneumoniae was performed, using an Illumina NextSeq 500, followed by in silco analysis. RESULTS: A total of 34 extended-spectrum beta-lactamase-producing K. pneumoniae, isolated from blood samples from neonatal units were whole-genome sequenced. Of these, 28 (82.4%) had an identified sequence type (ST), with ST14 (39.3%, n = 11) being frequently identified. Moreover, 18 (52.9%) of the bacteria harbored at least one plasmid, from which a total of 25 plasmid replicons were identified with a predominance of IncFIB(K) 48.0% (n = 12). Out of 34 sequenced K. pneumoniae, 32 (94.1%) were harboring acquired antibiotic/biocides-resistance-genes (ARGs) with a predominance of bla(CTX-M-15) (90.6%), followed by oqxB (87.5%), oqxA (84.4%), bla(TEM-1B) (84.4%) and sul2 (84.4%). Interestingly, we observed the ColRNAI plasmid-replicon (n = 1) and qacE gene (n = 4) for the first time in this setting. CONCLUSION: Global high-risk clones of K. pneumoniae isolates carry multiple ARGs in multiple plasmid-replicons. Findings from this study warrant genomic-based surveillance to monitor high-risk global clones, epidemic plasmids and ARGs in low- and middle-income countries. | 2022 | 36557648 |
| 1647 | 6 | 0.9997 | Genomic and antimicrobial resistance genes diversity in multidrug-resistant CTX-M-positive isolates of Escherichia coli at a health care facility in Jeddah. BACKGROUND: Whole genome sequencing has revolutionized epidemiological investigations of multidrug-resistant pathogenic bacteria worldwide. Aim of this study was to perform comprehensive characterization of ESBL-positive isolates of Escherichia coli obtained from clinical samples at the King Abdulaziz University Hospital utilizing whole genome sequencing. METHODS: Isolates were identified by MALDI-TOF mass spectrometry. Genome sequencing was performed using a paired-end strategy on the MiSeq platform. RESULTS: Nineteen isolates were clustered into different clades in a phylogenetic tree based on single nucleotide polymorphisms in core genomes. Seventeen sequence types were identified in the extended-spectrum β-lactamase (ESBL)-positive isolates, and 11 subtypes were identified based on distinct types of fimH alleles. Forty-one acquired resistance genes were found in the 19 genomes. The bla(CTX-M-15) gene, which encodes ESBL, was found in 15 isolates and was the most predominant resistance gene. Other antimicrobial resistance genes (ARGs) found in the isolates were associated with resistance to tetracycline (tetA), aminoglycoside [aph(3″)-Ib, and aph(6)-Id], and sulfonamide (sul1, and sul2). Nonsynonymous chromosomal mutations in the housekeeping genes parC and gyrA were commonly found in several genomes. CONCLUSION: Several other ARGs were found in CTX-M-positive E. coli isolates confer resistance to clinically important antibiotics used to treat infections caused by Gram-negative bacteria. | 2020 | 31279801 |
| 844 | 7 | 0.9997 | Whole Genome Sequencing of Extended Spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae Isolated from Hospitalized Patients in KwaZulu-Natal, South Africa. Extended spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae remain a critical clinical concern worldwide. The aim of this study was to characterize ESBL-producing K. pneumoniae detected within and between two hospitals in uMgungundlovu district, South Africa, using whole genome sequencing (WGS). An observational period prevalence study on antibiotic-resistant ESKAPE (i.e. Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) bacteria was carried out in hospitalized patients during a two-month period in 2017. Rectal swabs and clinical specimens were collected from patients hospitalized and were screened for ESBL-producing, Gram-negative ESKAPE bacteria using cefotaxime-containing MacConkey agar and ESBL combination disk tests. Nine confirmed ESBL-K. pneumoniae isolated from six patients and two hospitals were whole genome sequenced using an Illumina MiSeq platform. Genome sequences were screened for presence of integrons, insertion sequences, plasmid replicons, CRISPR regions, resistance genes and virulence genes using different software tools. Of the 159 resistant Gram-negative isolates collected, 31 (19.50%) were ESBL-producers, of which, nine (29.03%) were ESBL-K. pneumoniae. The nine K. pneumoniae isolates harboured several β-lactamase genes, including bla(CTX-M-15), bla(TEM-1b), bla(SHV-1), bla(OXA-1) concomitantly with many other resistance genes e.g. acc(6')-lb-cr, aadAI6, oqxA and oqxB that confer resistance to aminoglycosides and/or fluoroquinolones, respectively. Three replicon plasmid types were detected in both clinical and carriage isolates, namely ColRNAI, IncFIB(K), IncF(II). Sequence type ST152 was confirmed in two patients (one carriage isolate detected on admission and one isolate implicated in infection) in one hospital. In contrast, ST983 was confirmed in a clinical and a carriage isolate of two patients in two different hospitals. Our data indicate introduction of ESBL-producing K. pneumoniae isolates into hospitals from the community. We also found evidence of nosocomial transmission within a hospital and transmission between different hospitals. The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-associated cas3 genes were further detected in two of the nine ESBL-KP isolates. This study showed that both district and tertiary hospital in uMgungundlovu District were reservoirs for several resistance determinants and highlighted the necessity to efficiently and routinely screen patients, particularly those receiving extensive antibiotic treatment and long-term hospitalization stay. It also reinforced the importance of infection, prevention and control measures to reduce the dissemination of antibiotic resistance within the hospital referral system in this district. | 2019 | 31000772 |
| 978 | 8 | 0.9997 | Beta-lactamase resistance genes in Enterobacteriaceae from Nigeria. BACKGROUND: Beta-lactamase genes are one of the most important groups of antimicrobial resistance genes in human and animal health. Therefore, continuous surveillance of this group of resistance genes is needed for a better understanding of the local epidemiology within a country and global dissemination. AIM: This review was carried out to identify different beta-lactamase resistance genes reported in published literature from Nigeria. METHODS: Systematic review and meta-analysis was carried out on eligible Nigerian articles retrieved from electronic literature searches of PubMed(®), African Journals Online, and Google Scholar published between January 1990 and December 2019. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses method was adopted to facilitate clarity and transparency in reporting review findings. RESULTS: Fifty-seven articles were included. All beta-lactamases reported were detected from Gram-negative bacteria, particularly from Enterobacteriaceae. Thirty-six different beta-lactamase genes were reported in Nigeria. These genes belong to the narrow-spectrum, AmpC, extended-spectrum and carbapenemase beta-lactamase resistance genes. The pooled proportion estimate of extended-spectrum beta-lactamase genes in Nigeria was 31% (95% confidence interval [CI]: 26% - 36%, p < 0.0001), while the estimate of the bla (CTX-M-15) gene in Nigeria was 46% (95% CI: 36% - 57%, p < 0.0001). The proportion estimate of AmpC genes was 32% (95% CI: 11% - 52%, p < 0.001), while the estimate for carbapenemases was 8% (95% CI: 5% - 12%, p < 0.001). CONCLUSION: This study provides information on beta-lactamase distribution in Nigeria. This is necessary for a better understanding of molecular epidemiology of clinically important beta-lactamases, especially the extended-spectrum beta-lactamases and carbapenemases in Nigeria. | 2022 | 35282396 |
| 981 | 9 | 0.9997 | ESBL- and pAmpC-producing Enterobacterales from Swedish dogs and cats 2017-2021: a retrospective study. BACKGROUND: Antibiotic resistant bacteria are a threat to both human and animal health. Of special concern are resistance mechanisms that are transmissible between bacteria, such as extended-spectrum beta-lactamases (ESBL) and plasmid-mediated AmpC (pAmpC). ESBL/AmpC resistance is also of importance as it confers resistance to beta-lactam antibiotics including third generation cephalosporins. The Swedish Veterinary Agency (former English name National Veterinary Institute) performs confirmatory testing of suspected ESBL-/pAmpC-producing Enterobacterales. The aim of this study is to describe the clinical background, antibiotic susceptibility, and genetic relationships of confirmed isolates from dogs and cats in Sweden from 2017 to 2021. RESULTS: The study includes 92 isolates of ESBL/pAmpC-producing bacteria from 82 dogs, and 28 isolates from 23 cats. Escherichia coli was the most commonly isolated bacteria, and the most frequent sampling site was the urinary tract. From eight dogs and two cats, ESBL/pAmpC-producing bacteria were isolated on more than one occasion. Multi-resistance was more than twice as common in samples from dogs (50%) than in samples from cats (22%). Among dogs, sequence type (ST) 131 and ST372 were the dominant strains and bla(CMY-2) and bla(CTX-M-15) the dominant genes conferring reduced susceptibility to third-generation cephalosporins. Among cats, ST73 was the dominant strain and bla(CTX-M-15) the dominant gene. CONCLUSIONS: Monitoring the resistance patterns and genetic relationships of bacteria over time is important to follow the results of measures taken to reduce resistance. Knowledge of the appropriate antibiotic usage is also crucial. In this study, a variety of STs and ESBL/pAmpC-genes were detected among the isolates. There were available antibiotics likely effective for treatment in all cases, based on resistance pattern, infection site and host species. | 2025 | 39762972 |
| 917 | 10 | 0.9997 | Virulence characterization and clonal analysis of uropathogenic Escherichia coli metallo-beta-lactamase-producing isolates. BACKGROUND: Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infection (UTI); however, treatment of UTI has been challenging due to increased antimicrobial resistance (AMR). One of the most important types of AMR is carbapenem resistance (CR). CR bacteria are known as an important threat to global public health today. Class B metallo-beta-lactamases (MBLs) are one of the major factors for resistance against carbapenems. We aimed to investigate the characteristics of UPEC isolates producing MBL. METHODS: A cross-sectional study was conducted from October 2018 to December 2019 in Ahvaz; Iran. UPEC isolates were identified by biochemical and molecular methods. Metallo-beta-lactamase-producing isolates were detected using modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) tests. MBL genes, phylogenetic group, and virulence genes profile of carbapenem resistant isolates were determined. Conjugation assay and plasmid profiling were conducted to evaluate the ability of transferring of CR to other E. coli isolates. Clonal similarity of isolates were assessed using Enterobacterial intergenic repetitive element sequence (ERIC)-PCR. RESULTS: Among 406 UPEC isolates, 12 (2.95%) carbapenem-resistant were detected of which 11 were phenotypically MBL-producing strains. Four isolates were resistant to all investigated antimicrobial agents and were considered possible pandrug-resistant (PDR). bla(NDM), bla(OXA-48), bla(IMP-1), and bla(IMP-2) genes were found in 9, 5, 1, and 1 isolates, respectively. Among 30 virulence genes investigated, the traT, fyuA followed by fimH, and iutA with the frequency of 8 (66.7%), 8 (66.7%), 7 (58.3%), and 7 (58.3%) were the most identified genes, respectively. Siderophore production was the main virulence trait among carbapenem-resistant UPEC isolates. Except for two, all other isolates showed weak to moderate virulence index. In all recovered isolates, CR was readily transmitted via plasmids to other isolates during conjugation experiments. CONCLUSION: MBL and carbapenemase genes, especially bla(NDM) and bla(OXA-48) are spreading rapidly among bacteria, which can be a threat to global public health. Therefore monitoring the emergence and dissemination of new AMR is necessary to continuously refine guidelines for empiric antimicrobial therapy. Understanding the mechanisms of resistance and virulence in this group of bacteria can play an effective role in providing new therapeutic methods. | 2021 | 34344363 |
| 1017 | 11 | 0.9997 | Evaluation of canine raw food products for the presence of extended-spectrum beta-lactamase- and carbapenemase-producing bacteria of the order Enterobacterales. OBJECTIVE: To assess the potential contamination of commercial raw dog food products with bacteria of the Enterobacterales order that produce extended spectrum beta-lactamase (ESBL) and carbapenemase enzymes, determine risk factors for contamination, and understand isolate genetic diversity. SAMPLES: A total of 200 canine raw food products. METHODS: Products were cultured on selective chromogenic agar following enrichment steps. Whole-genome sequencing was performed for isolates that were confirmed to produce an ESBL. Isolates were characterized by antimicrobial resistance genes, and multilocus sequences typing, and compared to other isolates in the NCBI database for clonality. Preservation method and protein sources were assessed as potential risk factors for contamination with ESBL and carbapenemase-producing bacteria of the Enterobacterales order. RESULTS: No carbapenemase-producing Enterobacterales (CPE) were identified, but ESBL-producing Enterobacterales bacteria were isolated from 20/200 products (10.0%; 95% CI, 7.3 to 16.5%), all of which were frozen. Pork-derived protein source products were 8.1 times (P = .001; 95% CI, 2.53 to 26.2) more likely to carry ESBL-producing Enterobacterales bacteria than other protein sources. WGS analysis confirmed the presence of ESBL genes in a total of 25 distinct isolates (19 Escherichia coli, 5 Klebsiella pneumoniae, and 1 Citrobacter braakii). Genes encoding CTX-M type ESBL enzymes were the most common (24/25 isolates, 96.0%) with blaCTX-M-27 being the most common allele (8/25, 32.0%). CLINICAL RELEVANCE: Frozen, raw food products may serve as a route of transmission of ESBL-producing Enterobacterales bacteria to companion animals. Veterinarians should advise owners about the risks of raw food diets, including potential exposure to antimicrobial-resistant bacteria. | 2022 | 35895774 |
| 980 | 12 | 0.9997 | Phenotypic and Molecular Characterization of Extended-Spectrum β-Lactamase, Plasmid-Mediated- AmpC, and Carbapenemase-Producing Enterobacteriaceae Isolated from Companion and Production Animals in Brazil. The crisis of bacterial resistance is an emerging One Health challenge, driven by the overuse of antimicrobials in medical and agricultural settings. This study aimed to investigate extended-spectrum β-lactamase (ESBL), Ampicillinase (AmpC), and carbapenemase production, and the presence of genes encoding these enzymes in Escherichia coli, Klebsiella spp., and Proteus spp., major contributors to infections and resistance isolates from animals. From 2016 to 2021, 130 multidrug-resistant (MDR) or extensively drug-resistant (XDR) isolates were recovered from the secretions, excretions, and organs of companion and production animals with active infections. Antibacterial sensitivity tests, along with phenotypic and genotypic detection of resistance enzymes, were performed. To the best of our knowledge, this is the first study in Brazil to estimate the prevalence of XDR Enterobacteriales isolated from companion and production animals, which accounted for 13.8% of the strains. Statistically significant differences (P < 0.05) in resistant bacteria between different classes and within the same class of antibacterial bacteria were found. The statistical probability between genotypic detection of ESBL (OR = 3.1) and phenotypic tests for AmpC (OR = 2.3) was also established. Approximately 32.3%, 17.6%, and 16.8% of the strains had positive phenotypic tests for ESBL, AmpC, and carbapenemases, respectively. Genetic analysis revealed the presence of bla(CTX-M) (60.0%), bla(AmpC) (9.18%), bla(KPC-2) (0.76%), and bla(NDM) (1.52%). AmpC genes were identified in 8.46% of the samples, with bla(CMY) being the most frequent (6.92%), followed by bla(DHA) (0.77%), and bla(FOX) (0.77%). The sequenced amplicons were deposited in NCBI. This study reveals critical data on Enterobacteriaceae with antibacterial resistance genes isolated from animals and may pose a significant threat to One health. | 2025 | 39903315 |
| 866 | 13 | 0.9997 | Opening Pandora's box: High-level resistance to antibiotics of last resort in Gram-negative bacteria from Nigeria. OBJECTIVES: The aim of this study was to determine the percentage of antimicrobial-resistant isolates and the associated resistance mechanisms in Gram-negative bacteria from South Western Nigeria. METHODS: A total of 306 non-duplicate unbiased Gram-negative isolates were recovered from patients admitted to three teaching hospitals in South Western Nigeria in 2011 and 2013. Isolates were from clinical samples as well as from stool samples of inpatients without infection to assess antimicrobial resistance patterns in carriage isolates. Antimicrobial susceptibility testing was performed, and PCR and sequencing were used to identify genes encoding various known β-lactamases. Based on phenotypic and genotypic results, 10 isolates representing the diversity of phenotypes present were selected for whole-genome sequencing (WGS). RESULTS: Antimicrobial susceptibility testing revealed the following resistance rates: fluoroquinolones, 78.1%; third-generation cephalosporins, 92.2%; and carbapenems, 52.6%. More resistant isolates were isolated from stools of uninfected patients compared with clinical infection specimens. Klebsiella (10%) and Escherichia coli (7%) isolates produced a carbapenemase. WGS of selected isolates identified the presence of globally disseminated clones. CONCLUSION: This study illustrates a crisis for the use of first-line antimicrobial therapy in Nigerian patients. It is likely that Nigeria is playing a significant role in the spread of antimicrobial resistance owing to its large population with considerable global mobility. | 2020 | 31654790 |
| 842 | 14 | 0.9997 | Molecular characterization of antimicrobial resistance genes and plasmid profiles in enterobacterales isolated from urinary tract infections in rural outpatient women in Otavalo, Ecuador. BACKGROUND: The rise of antibiotic-resistant bacteria poses a significant public health threat, particularly in the context of urinary tract infections (UTIs), which rank as the second most common ambulatory illness. UTIs are often caused by Enterobacterales species, such as Escherichia coli and Klebsiella pneumoniae, with increasing resistance to critical antibiotics complicating treatment. Indigenous rural populations, like those in Ecuador, face unique challenges due to cultural, social, and economic barriers that hinder access to healthcare, exacerbating the issue of antibiotic resistance. METHODS: This study analyzed 154 Enterobacterales strains isolated from ambulatory UTI cases in outpatiens from Otavalo, Ecuador, between October 2021 and February 2022. DNA was extracted, and the presence of antibiotic resistance genes (ARGs) was screened using PCR for extended-spectrum beta-lactamases and carbapenemases. Plasmid incompatibility groups were identified through replicon typing, and multi-locus sequence typing (MLST) was performed to characterize strains. RESULTS: The analysis revealed four prevalent ARGs, with bla(TEM) being the most common (87.01% of isolates), followed by bla(CTX-M-1) (44.16%), bla(SHV) (18.83%), and bla(CTX-M-9) (13.64%). No carbapenemases or mcr-1 genes were detected. Among the incompatibility groups, IncFIB, IncF, and IncY were the most prevalent. A diverse array of ARG combinations was observed, indicating significant plasmid-mediated genetic plasticity. MLST identified 33 distinct sequence types among E. coli isolates, with ST10 and ST3944 being the most frequent. For K. pneumoniae, ST15 and ST25 were predominant. CONCLUSIONS: This study reveals significant antibiotic resistance among Enterobacterales from urinary tract infections in rural outpatients in Ecuador. The bla(TEM) gene was found in 87.01% of isolates, with notable clones like E. coli ST10 and ST3944 linked to extraintestinal infections. K. pneumoniae ST15 and ST25 were prevalent, indicating multidrug resistance. The findings highlight the need for ongoing surveillance and targeted public health strategies to combat resistance in these vulnerable communities. | 2025 | 41131447 |
| 919 | 15 | 0.9997 | Molecular Characteristics of Carbapenem-Resistant Enterobacter cloacae in Ningxia Province, China. The emergence of carbapenem-resistant Enterobacteriaceae (CRE) has become a major public health concern worldwide and a new challenge in the treatment of infectious diseases. The molecular characteristics of Enterobacter cloacae in Ningxia China are unknown. In this study, we reported 10 carbapenem-resistant E. cloacae isolates from the General Hospital of Ningxia Medical University, the largest university hospital in Ningxia between January 2012 and December 2013. Bacteria isolates were identified by Vitek2 compact and the identity of non-duplicate E. cloacae isolates was further confirmed by PCR and sequencing. The drug susceptibility and phenotype identification of these isolates were analyzed by agar dilution method, modified Hodge test (MHT), and EDTA synergy test. Beta-lactamase (bla) genes bla(NDM-1) was found in 8 out of 10 isolates. Most isolates harbored multiple resistance genes including bla(ESBL), bla(AmpC), quinolones, aminoglycosides, and disinfectant resistance genes. Pulsed field gel electrophoresis (PFGE) showed that these E. cloacae isolates were grouped into 6 clusters based on a cutoff of 80% genetic similarity. In conjugative assay, 9 out of 10 isolates transferred carbapenem-resistant genes to Escherichia coli. Our study has revealed that NDM-1-producing isolates are the most prevalent carbapenem-resistant E. cloacae in Ningxia. These isolates also carry several other carbapenem-resistant genes and can transfer these genes to other bacteria through conjugation. These findings highlight an urgent need to monitor these isolates to prevent their further spread in this region. | 2017 | 28197140 |
| 909 | 16 | 0.9997 | First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of resistance and virulence determinants were performed. PCR screening identified the presence of the resistance genes bla(KPC-3), bla(TEM-1) and bla(SHV-1) in both isolates. The KPC-3 K. pneumoniae isolate belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance profile including tigecycline and colistin. | 2018 | 30404152 |
| 918 | 17 | 0.9997 | Carbapenem Resistance in Gram-Negative Bacteria: A Hospital-Based Study in Egypt. Background and Objectives: The global spread of carbapenem resistance and the resulting increase in mortality forced the World Health Organization (WHO) to claim carbapenem-resistant enterobacteriaceae (CRE) as global priority pathogens. Our study aimed to determine the prevalence of carbapenemase-encoding genes and major plasmid incompatibility groups among Gram-negative hospital-based isolates in Egypt. Material and Methods: This cross-sectional study was carried out at Mansoura University Hospitals over 12 months, from January to December 2019. All the isolates were tested for carbapenem resistance. The selected isolates were screened by conventional polymerase chain reaction (PCR) for the presence of carbapenemase genes, namely bla(KPC), bla(IMP), bla(VIM), and bla(NDM-1). PCR-based plasmid replicon typing was performed using the commercial PBRT kit. Results: Out of 150 isolates, only 30 (20.0%) demonstrated carbapenem resistance. Klebsiella pneumoniae was the most resistant of all isolated bacteria, and bla(NDM) was the predominant carbapenemases gene, while the most prevalent plasmid replicons were the F replicon combination (FIA, FIB, and FII) and A/C. Plasmids were detected only in Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. Remarkably, we found a statistically significant association between carbapenemase genes and plasmid replicons, including bla(NDM), IncA/C, and IncX. Conclusions: Our study demonstrated an alarming rise of plasmid-mediated carbapenem-resistant bacteria in our locality. The coexistence of resistance genes and plasmids highlights the importance of a targeted antibiotic surveillance program and the development of alternative therapeutic options at the local and international levels. Based on our results, we suggest a large-scale study with more Enterobacteriaceae isolates, testing other carbapenemase-encoding genes, and comparing the replicon typing method with other plasmid detection methods. We also recommend a national action plan to control the irrational use of antibiotics in Egypt. | 2023 | 36837486 |
| 949 | 18 | 0.9997 | Molecular and clinical insights into extended-spectrum β-lactamase genes of Klebsiella pneumoniae isolated from neonatal sepsis in Ethiopia. BACKGROUND: Klebsiella bacterial strains harboring Extended-Spectrum Beta-Lactamase (ESBL) enzymes are the primary culprits behind neonatal sepsis globally. These strains significantly impact clinical outcomes due to their multi-drug resistance patterns in local healthcare settings. In response to this spiraling threat, we studied the prevalence and clinical implications of ESBL-encoding genes in neonates hospitalized with confirmed sepsis. METHODS: A correlational study was conducted on 51 neonates diagnosed with sepsis caused by ESBL-positive Klebsiella pneumoniae at Jimma Medical Center spanning from May 2022 to July 2023. Antimicrobial resistance profiles of the bacterial isolates were determined using the Kirby-Bauer diffusion test, while multiplex polymerase chain reaction (mPCR) techniques were employed to identify resistance genes. The correlation between resistance genes and treatment outcomes was analyzed using the phi coefficient (φ) with a significance level below 0.05. The data management was executed through the utilization of WHONET and STATA software platforms. RESULTS: The sample consisted of 26 (50.9%) male and the remaining 25 (49.1%) female neonates, with diverse clinical characteristics. All 51 Klebsiella pneumoniae isolates were 100% resistant to trimethoprim/sulfamethoxazole and ceftriaxone, but showed varying resistance profiles ranging from 30.8% to meropenem to 94.2% to ceftazidime. Notably, all isolates demonstrated multidrug resistance, with 23% of cases showing resistance to seven different antimicrobial classes. The most prevalent resistance genes identified were bla(CTX-M) (96.1%), bla(TEM) (94.1%), and bla(SHV) (88.2%). The majority of isolates (94.1%) carried at least two resistance genes, such as bla(TEM) and bla(CTX) (94.1%), bla(TEM) and bla(SHV) (86.2%), and bla(CTX) and bla(SHV) (86.2%). Notably, 84.3% of the bacteria harbored the trio of bla(TEM), bla(CTX), and bla(SHV) resistance genes, and only the presence of bla(SHV) in monogenic (φ = 0.4, P = 0.01) or the trio of bla(TEM), bla(CTX), and bla(SHV) genes (φ = 0.3, P = 0.02) showed positive correlation with neonatal mortality. CONCLUSION: We observed a significant prevalence of multidrug-resistant Klebsiella pneumoniae strains among neonates. Moreover, ESBL-resistance genes were widespread, with the blaSHV gene showing a correlation with increased neonatal mortality. These findings emphasize the urgent need for enhanced infection prevention measures, robust antimicrobial resistance surveillance, innovative treatment strategies, antibiotic stewardship initiatives, further research into resistance transfer mechanisms as well as hierarchical predictors of neonatal mortality. CLINICAL TRIAL NUMBER: Not applicable. | 2024 | 39695444 |
| 847 | 19 | 0.9997 | Genome-based characterization of Escherichia coli causing bloodstream infection through next-generation sequencing. Escherichia coli are one of the commonest bacteria causing bloodstream infection (BSI). The aim of the research was to identify the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance of E. coli isolated from bloodstream infection hospitalized patients in Cipto Mangunkusumo National Hospital Jakarta. We used whole genome sequencing methods rather than the conventional one, to characterized the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance (AMR) of E. coli. The composition of E. coli sequence types (ST) was as follows: ST131 (n = 5), ST38 (n = 3), ST405 (n = 3), ST69 (n = 3), and other STs (ST1057, ST127, ST167, ST3033, ST349, ST40, ST58, ST6630). Enteroaggregative E. coli (EAEC) and Extra-intestinal pathogenic E. coli (ExPEC) groups were found dominant in our samples. Twenty isolates carried virulence genes for host cells adherence and 15 for genes that encourage E. coli immune evasion by enhancing survival in serum. ESBL-genes were present in 17 E. coli isolates. Other AMR genes also encoded resistance against aminoglycosides, quinolones, chloramphenicol, macrolides and trimethoprim. The phylogeny analysis showed that phylogroup D is dominated and followed by phylogroup B2. The E. coli isolated from 22 patients in Cipto Mangunkusumo National Hospital Jakarta showed high diversity in serotypes, sequence types, virulence genes, and AMR genes. Based on this finding, routinely screening all bacterial isolates in health care facilities can improve clinical significance. By using Whole Genome Sequencing for laboratory-based surveillance can be a valuable early warning system for emerging pathogens and resistance mechanisms. | 2020 | 33362261 |