Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
849901.0000Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma. Antibiotic resistant bacteria (ARB) and resistance genes (ARGs) are emerging environmental pollutants with strong pathogenicity. In this study, surface plasma was developed to inactivate the donor ARB with Escherichia coli (AR E. coli) as a model, eliminate ARGs, and inhibit conjugative transfer of ARGs in water, highlighting the influences of concomitant inorganic ions. Surface plasma oxidation significantly inactivated AR E. coli, eliminated ARGs, and inhibited conjugative transfer of ARGs, and the presence of NO(3)(-), Cu(2+), and Fe(2+) all promoted these processes, and SO(4)(2-) did not have distinct effect. Approximately 4.5log AR E. coli was inactivated within 10 min treatment, and it increased to 7.4log AR E. coli after adding Fe(2+). Integrons intI1 decreased by 3.10log (without Fe(2+)) and 4.43log (adding Fe(2+)); the addition of Fe(2+) in the surface plasma induced 99.8% decline in the conjugative transfer frequency. The inhibition effects on the conjugative transfer of ARGs were mainly attributed to the reduced reactive oxygen species levels, decreased DNA damage-induced response, decreased intercellular contact, and down-regulated expression of plasmid transfer genes. This study disclosed underlying mechanisms for inhibiting ARGs transfer, and supplied a prospective technique for ARGs control.202134536683
850010.9999Plasma induced efficient removal of antibiotic-resistant Escherichia coli and antibiotic resistance genes, and inhibition of gene transfer by conjugation. Antibiotic-resistant bacteria (ARB) and their resistance genes (ARGs) are emerging environmental pollutants that pose great threats to human health. In this study, a novel strategy using plasma was developed to simultaneously remove antibiotic-resistant Escherichia coli (AR bio-56954 E. coli) and its ARGs, aiming to inhibit gene transfer by conjugation. Approximately 6.6 log AR bio-56954 E. coli was inactivated within 10 min plasma treatment, and the antibiotic resistance to tested antibiotics (tetracycline, gentamicin, and amoxicillin) significantly decreased. Reactive oxygen and nitrogen species (RONS) including •OH, (1)O(2), O(2)•(-), NO(2)(-), and NO(3)(-) contributed to ARB and ARGs elimination; their attacks led to destruction of cell membrane, accumulation of excessive intracellular reactive oxygen substances, deterioration of conformational structures of proteins, and destroy of nucleotide bases of DNA. As a result, the ARGs (tet(C), tet(W), blaTEM-1, aac(3)-II), and integron gene intI1), and conjugative transfer frequency of ARGs significantly decreased after plasma treatment. The results demonstrated that plasma has great prospective application in removing ARB and ARGs in water, inhibiting gene transfer by conjugation.202134214852
850120.9998Mechanistic insight of simultaneous removal of tetracycline and its related antibiotic resistance bacteria and genes by ferrate(VI). The emergence of antibiotics and their corresponding antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have posed great challenges to the public health. The paper demonstrates the removal of co-existing tetracycline (TC), its resistant Escherichia coli (E. coli), and ARGs (tetA and tetR) in a mixed system by applying ferrate(VI) (Fe(VI)O(4)(2-), Fe(VI)) at pH 7.0. TC was efficiently degraded by Fe(VI), and the rapid inactivation of the resistant E. coli was found with the complete loss of culturability. The results of flow cytometry suggested that the damage of membrane integrity and respiratory activity were highly correlated with the Fe(VI) dosages. Moreover, high-dose Fe(VI) eliminates 6 log(10) viable but non-culturable (VBNC) cells and even breaks the cells into fragments. ARGs in extracellular form (e-ARGs) exhibited a high sensitivity of 4.44 log(10) removal to Fe(VI). Comparatively, no removal of intracellular ARGs (i-ARGs) was observed due to the multi-protection of cellular structure and rapid decay of Fe(VI). The oxidized products of TC were assessed to be less toxic than the parent compound. Overall, this study demonstrated the superior efficiency and great promise of Fe(VI) on simultaneous removal of antibiotics and their related ARB and ARGs in water.202133984704
783830.9998Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO(2)&Ag composite photocatalysts under solar irradiation. In recent years, photocatalysis has been considered as a promising method, which provides measures to environmental pollution. Antibiotic resistant bacteria (ARB) and their antibiotic resistance genes (ARGs), as the emerging environmental pollutants, are released into the environment, resulting in antibiotic resistance spread. TiO(2)-based nanocomposites, as the most common photocatalytic material, may influence ARB and ARGs under photocatalytic conditions. However, the research on this aspect is rare. A novel nanocomposite synthesized from Ag, TiO(2) and graphene oxide (GO), was selected as a representative of nanomaterials for investigation. The experimental results indicated that TiO(2)/Ag/GO nanocomposites significantly affected ARB vitality. 100 mg/L TiO(2)/Ag/GO will reduce bacterial survival to 12.2% in 10 min under simulated sunlight irradiation. Chloramphenicol as the most representative antibiotic in the water, reduces the effect of ARB inactivation under photocatalytic conditions. The addition of TiO(2)/Ag/GO could affect tetracycline antibiotic resistance. The level of bacterial tolerance to tetracycline had a significant reduction. The horizontal gene transfer was promoted from 1 to 2 folds with the addition of TiO(2)/Ag/GO. Even high TiO(2)/Ag/GO concentration (100 mg/L) sample had a limited promotion, suggesting that TiO(2)/Ag/GO will not increase the risk of antibiotic resistance spread compared to other nano materials.201931330386
784540.9998Mechanism and potential risk of antibiotic resistant bacteria carrying last resort antibiotic resistance genes under electrochemical treatment. The significant rise in the number of antibiotic resistance genes (ARGs) that resulted from our abuse of antibiotics could do severe harm to public health as well as to the environment. We investigated removal efficiency and removal mechanism of electrochemical (EC) treatment based on 6 different bacteria isolated from hospital wastewater carrying 3 last resort ARGs including NDM-1, mcr-1 and tetX respectively. We found that the removal efficiency of ARGs increased with the increase of both voltage and electrolysis time while the maximum removal efficiency can reach 90%. The optimal treatment voltage and treatment time were 3 V and 120 min, respectively. Temperature, pH and other factors had little influence on the EC treatment process. The mechanism of EC treatment was explored from the macroscopic and microscopic levels by scanning electron microscopy (SEM) and flow cytometry. Our results showed that EC treatment significantly changed the permeability of cell membrane and caused cells successively experience early cell apoptosis, late cell apoptosis and cell necrosis. Moreover, compared with traditional disinfection methods, EC treatment had less potential risks. The conjugative transfer frequencies of cells were significantly reduced after treatment. Less than 1% of bacteria entered the viable but nonculturable (VBNC) state and less than 5% of intracellular ARGs (iARGs) turned into extracellular ARGs (eARGs). Our findings provide new insights into as well as important reference for future electrochemical treatment in removing ARB from hospital wastewater.202235085630
796650.9998How heavy metal stress promotes dissemination of antibiotic resistance genes in the activated sludge process. Heavy metals have been recently revealed as promoters to antibiotic resistance gene (ARG) dissemination in water environment, but their influence on ARG transfer in the activated sludge process has not been clear. In this study, a set of sequencing batch reactors (SBRs) and micro-scale microfluidic chips were established to quantify the impacts of heavy metals (0.5 mM of Pb, 0.1 mM of As, and 0.005 mM of Hg) on the ARG spreading in the activated sludge consortium. Under heavy metal stress, transfer frequencies were 1.7-3.6 folds increase compared to the control. Gram-negative bacteria increased significantly after heavy metal added, which were more prone to receiving resistant plasmid from donors. Meanwhile, the relative expression of genes related to conjugation changed in activated sludge, especially the expression of outer membrane protein and oxidative stress regulatory genes increased by 2.9-7.4 folds and 7.8-13.1 folds, respectively. Furthermore, using microfluidic chips, the dynamics of ARG transfer was observed at single cell level under heavy metal pressure. Heavy metals firstly promoted conjugation and then vertical gene transfer played an important part for ARG spreading. The results provided in-depth understanding of the influence of heavy metals on ARG behavior in the environment.202235724617
760160.9998Evaluating the Impact of Cl(2)(•-) Generation on Antibiotic-Resistance Contamination Removal via UV/Peroxydisulfate. The removal of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) using sulfate anion radical (SO(4)(•-))-based advanced oxidation processes has gained considerable attention recently. However, immense uncertainties persist in technology transfer. Particularly, the impact of dichlorine radical (Cl(2)(•-)) generation during SO(4)(•-)-mediated disinfection on ARB/ARGs removal remains unclear, despite the Cl(2)(•-) concentration reaching levels notably higher than those of SO(4)(•-) in certain SO(4)(•-)-based procedures applied to secondary effluents, hospital wastewaters, and marine waters. The experimental results of this study reveal a detrimental effect on the disinfection efficiency of tetracycline-resistant Escherichia coli (Tc-ARB) during SO(4)(•-)-mediated treatment owing to Cl(2)(•-) generation. Through a comparative investigation of the distinct inactivation mechanisms of Tc-ARB in the Cl(2)(•-)- and SO(4)(•-)-mediated disinfection processes, encompassing various perspectives, we confirm that Cl(2)(•-) is less effective in inducing cellular structural damage, perturbing cellular metabolic activity, disrupting antioxidant enzyme system, damaging genetic material, and inducing the viable but nonculturable state. Consequently, this diminishes the disinfection efficiency of SO(4)(•-)-mediated treatment owing to Cl(2)(•-) generation. Importantly, the results indicate that Cl(2)(•-) generation increases the potential risk associated with the dark reactivation of Tc-ARB and the vertical gene transfer process of tetracycline-resistant genes following SO(4)(•-)-mediated disinfection. This study underscores the undesired role of Cl(2)(•-) for ARB/ARGs removal during the SO(4)(•-)-mediated disinfection process.202438477971
784470.9998Insight into using a novel ultraviolet/peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: Mechanism and comparison with conventional processes. In this study, the simultaneous removal mechanism of antibiotics and antibiotic resistance genes (ARGs) was investigated using the novel ultraviolet/peracetic acid (UV/PAA) combination disinfection process and conventional disinfection processes were also applied for comparison. The results showed that UV/PAA disinfection with a high UV dosage (UV/PAA-H) was most effective for the removal of tetracyclines, quinolones, macrolides and β-lactams; their average removal efficiencies ranged from 25.7% to 100%, while NaClO disinfection was effective for the removal of sulfonamides (∼81.6%). The majority of ARGs were well removed after the UV/PAA-H disinfection, while specific genes including tetB, tetC, ermA and bla(TEM) significantly increased after NaClO disinfection. In addition, β-lactam resistance genes (-35.9%) and macrolides resistance genes (-12.0%) remarkably augmented after UV/NaClO disinfection. The highly reactive oxidation species generated from UV/PAA process including hydroxyl radicals (•OH) and carbon-centered organic radicals (R-C•), were responsible for the elimination of antibiotics and ARGs. Correlation analysis showed that tetracycline, sulfonamide and macrolide antibiotics removal showed a positive correlation with the corresponding ARGs, and a low dose of antibiotic residues played an important role in the distribution of ARGs. Metagenomic sequencing analysis showed that UV/PAA disinfection could not only greatly decrease the abundance of resistant bacteria but also downregulate the expression of key functional genes involved in ARGs propagation and inhibit the signal transduction of the host bacteria, underlying that its removal mechanism was quite different from that of NaClO-based disinfection processes. Our study provides valuable information for understanding the simultaneous removal mechanism of antibiotics and ARGs in wastewater during the disinfection processes, especially for the novel UV/PAA combination process.202234982977
784380.9998Inactivation of chlorine-resistant bacteria (CRB) via various disinfection methods: Resistance mechanism and relation with carbon source metabolism. With the widespread use of chlorine disinfection, chlorine-resistant bacteria (CRB) in water treatment systems have gained public attention. Bacterial chlorine resistance has been found positively correlated with extracellular polymeric substance (EPS) secretion. In this study, we selected the most suitable CRB controlling method against eight bacterial strains with different chlorine resistance among chloramine, ozone, and ultraviolet (UV) disinfection, analyzed the resistance mechanisms, clarified the contribution of EPS to disinfection resistance, and explored the role of carbon source metabolism capacity. Among all the disinfectants, UV disinfection showed the highest disinfection capacity by achieving the highest average and median log inactivation rates for the tested strains. For Bacillus cereus CR19, the strain with the highest chlorine resistance, 40 mJ/cm(2) UV showed a 1.90 log inactivation, which was much higher than that of 2 mg-Cl(2)/L chlorine (0.67 log), 2 mg-Cl(2)/L chloramine (1.68 log), and 2 mg/L ozone (0.19 log). Meanwhile, the UV resistance of the bacteria did not correlate with EPS secretion. These characteristics render UV irradiation the best CRB controlling disinfection method. Chloramine was found to have a generally high inactivation efficiency for bacteria with high chlorine-resistance, but a low inactivation efficiency for low chlorine-resistant ones. Although EPS consumed up to 56.7% of chloramine which an intact bacterial cell consumed, EPS secretion could not explain chloramine resistance. Thus, chloramine is an acceptable CRB control method. Similar to chlorine, ozone generally selected high EPS-secreting bacteria, with EPS consuming up to 100% ozone. Therefore, ozone is not an appropriate method for controlling CRB with high EPS secretion. EPS played an important role in all types of disinfection resistance, and can be considered the main mechanism for bacterial chlorine and ozone disinfection resistance. However, as EPS was not the main resistance mechanism in UV and chloramine disinfection, CRB with high EPS secretion were inactivated more effectively. Furthermore, carbon source metabolism was found related to the multiple resistance of bacteria. Those with low carbon source metabolism capacity tended to have higher multiple resistance, especially to chlorine, ozone, and UV light. Distinctively, among the tested gram-negative bacteria, in contrast to other disinfectants, chloramine resistance was negatively correlated with EPS secretion and positively correlated with carbon source metabolism capacity, suggesting a special disinfection mechanism.202337659185
763090.9998Coexistence of silver ion and tetracycline at environmentally relevant concentrations greatly enhanced antibiotic resistance gene development in activated sludge bioreactor. Antibiotic resistance has become a global public health problem. Recently, various environmental pollutants have been reported to induce the proliferation of antibiotic resistance. However, the impact of multiple pollutants (e.g., heavy metals and antibiotics), which more frequently occur in practical environments, is poorly understood. Herein, one widely distributed heavy metal (Ag(+)) and one frequently detected antibiotic (tetracycline) were chosen to investigate their coexisting effect on the proliferation of antibiotic resistance in the activated sludge system. Results show that the co-occurrence of Ag(+) and tetracycline at environmentally relevant concentrations exhibited no distinct inhibition in reactor performances. However, they inhibited the respiratory activity by 42%, destroyed the membrane structure by 218%, and increased membrane permeability by 29% compared with the blank control bioreactor. Moreover, the relative abundances of target antibiotic resistance genes (ARGs) (e.g., tetA, bla(TEM-1), and sulII) in effluent after exposure of coexisting Ag(+) and tetracycline were increased by 92-1983% compared with those in control reactor, which were 1.1-4.3 folds higher than the sum of the sole ones. These were possibly attributed to the enrichments of antibiotic-resistant bacteria. The results would illumine the coexisting effect of heavy metals and antibiotics on the dissemination of ARGs in activated sludge system.202234482077
6761100.9998Exposure to Al(2)O(3) nanoparticles facilitates conjugative transfer of antibiotic resistance genes from Escherichia coli to Streptomyces. The spread of antibiotic resistance genes (ARGs) has become a global environmental issue; it has been found that nanoparticles (NPs) can promote the transfer of ARGs between bacteria. However, it remains unclear whether NPs can affect this kind of conjugation in Streptomyces, which mainly conjugate with other bacteria via spores. In the present study, we demonstrated that Al(2)O(3) NPs significantly promote the conjugative transfer of ARGs from Escherichia coli (E. coli) ET12567 to Streptomyces coelicolor (S. coelicolor) M145 without the use of heat shock method. The number of transconjugants induced by Al(2)O(3) particles was associated with the size and concentration of Al(2)O(3) particles, exposure time, and the ratio of E. coli and spores. When nanoparticle size was 30 nm at a concentration of 10 mg/L, the conjugation efficiency reached a peak value of 182 cfu/10(8) spores, which was more than 60-fold higher than that of the control. Compared with nanomaterials, bulk particles exhibited no significant effect on conjugation efficiency. We also explored the mechanisms by which NPs promote conjugative transfer. After the addition of NPs, the intracellular ROS content increased and the expression of the classical porin gene ompC was stimulated. In addition, ROS enhanced the mRNA expression levels of conjugative genes by inhibiting global regulation genes. Meanwhile, expression of the conjugation-related gene intA was also stimulated, ultimately increasing the number of transconjugants. Our results indicated that Al(2)O(3) NPs significantly promoted the conjugative transfer of ARGs from bacteria to spores and aggravated the diffusion of resistance genes in the environment.201931561730
7581110.9998Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment. Antibiotic fermentation residues is a hazardous waste due to the existence of residual antibiotics and antibiotic resistance genes (ARGs), probably leading to the induction and spread of antibiotic resistant bacteria (ARB) in the environment, which could pose potential harm to the ecosystem and human health. It is urgent to develop an effective technology to remove the residual antibiotics and ARGs. In this study, the anaerobic digestion combined with gamma irradiation was applied for the disposal and utilization of cephalosporin C fermentation residues. The experimental results showed that the antibacterial activities of cephalosporin C against Staphylococcus aureus were significantly decreased after anaerobic digestion. The removal of tolC, a multidrug resistant gene, was improved up to 100% by the combination of gamma irradiation and anaerobic digestion compared to solely anaerobic digestion process, which may be due to the changes of microbial community structures induced by gamma irradiation.202031590081
7841120.9998Simultaneous removal of antibiotics and antibiotic resistance genes in wastewater by a novel nonthermal plasma/peracetic acid combination system: Synergistic performance and mechanism. In this study, a novel and green method combining plasma with peracetic acid (plasma/PAA) was developed to simultaneously remove antibiotics and antibiotic resistance genes (ARGs) in wastewater, which achieves significant synergistic effects in the removal efficiencies and energy yield. At a plasma current of 2.6 A and PAA dosage of 10 mg/L, the removal efficiencies of most detected antibiotics in real wastewater exceeded 90 % in 2 min, with the ARG removal efficiencies ranging from 6.3 % to 75.2 %. The synergistic effects of plasma and PAA could be associated with the motivated production of reactive species (including •OH, •CH(3), (1)O(2), ONOO(-), •O(2)(-) and NO•), which decomposed antibiotics, killed host bacteria, and inhibited ARG conjugative transfer. In addition, plasma/PAA also changed the contributions and abundances of ARG host bacteria and downregulated the corresponding genes of two-component regulatory systems, thus reducing ARG propagation. Moreover, the weak correlations between the removal of antibiotics and ARGs highlights the commendable performance of plasma/PAA in the simultaneous removal of antibiotics and ARGs. Therefore, this study affords an innovative and effective avenue to remove antibiotics and ARGs, which relies on the synergistic mechanisms of plasma and PAA and the simultaneous removal mechanisms of antibiotics and ARGs in wastewater.202337027926
7981130.9998Dissolved biochar eliminates the effect of Cu(II) on the transfer of antibiotic resistance genes between bacteria. The proliferation of antibiotic resistance genes (ARGs) has posed significant risks to human and environmental health. Research has confirmed that Cu(II) could accelerate the conjugative transfer of ARGs between bacteria. This study found that adding dissolved biochar effectively weakened or eliminated the Cu(II)-facilitated efficient transfer of ARGs. The efficiency of conjugative transfer was promoted after treatment with Cu(II) (0.05 mg/L) or dissolved biochar at a pyrolysis temperature of 300 °C. When exposed to the combination of Cu(II) and dissolved biochar, the transfer frequency was significantly reduced; this occurred regardless of the Cu(II) concentration or pyrolysis temperature of dissolved biochar. In particular, when the Cu(II) concentration exceeded 0.5 mg/L, the transfer efficiency was entirely inhibited. Gene expression analysis indicated that different treatments affect transfer efficiency by regulating the expression of three global regulatory genes: korA, korB, and trbA. Among them, humic acid repressed the expression of these genes; however, Cu(II) formed complex with the humic acid-like components, gradually weakening the inhibitive effect of these components. The promotion of low molecule organic matters dominated, resulting in a dynamic decline in the transfer efficiency. This study provides a new environmental contaminant treatment approach to eliminate the heavy metal-facilitated transfer of ARGs between bacteria.202234583164
7840140.9998Ferrate(VI) promotes inactivation of antibiotic-resistant bacteria and chlorine-resistant bacteria in water. The increasing problem of antibiotic resistance has garnered significant global attention. As a novel water treatment agent with strong oxidizing, disinfecting, and bactericidal properties, ferrate(VI) holds promise for inactivating antibiotic-resistant bacteria (ARB) and chlorine-resistant bacteria. The results showed that complete inactivation of ARB (10⁵ CFU/mL) was achieved when the ferrate(VI) concentration was 10 μM and the treatment duration was 5 min. For higher concentrations of ARB (10(8) CFU/mL), it was also possible to reduce the concentration by 1.73 log units. The concentration of Acinetobacter baylyi ADP1 was also reduced by 1.77 log units. Additionally, the absolute abundance of antibiotic resistance genes (ARGs), including aphA, bla(TEM), and tetA, was significantly reduced. Ferrate(VI) was rapidly consumed in the early stages of treatment, undergoing a stepwise reduction process that generated high-valent Fe intermediates and reactive oxygen species (ROS), both of which contributed to bacterial inactivation. Throughout the reaction, •O(2)(-) played a dominant role in bacterial inactivation, with H₂O₂ acting synergistically and •OH contributing at later stages, leading to ROS overload, severe cellular damage, and enhanced membrane disruption. This study confirmed that ferrate(VI) could effectively inactivate ARB and chlorine-tolerant bacteria, and reduce the abundances of ARGs.202540245720
8503150.9998Dual-pathway inhibition of antibiotic resistance genes by ferrate (Fe(VI)): Oxidative inactivation and genetic mobility impairment in anaerobically digested sludge. Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) are emerging environmental contaminants that threaten public health, highlighting the urgent need for effective control strategies. Ferrate (Fe(VI)), a strong and eco-friendly oxidant, shows great potential for this purpose. This study systematically evaluated the efficacy of Fe(VI) in mitigating ARGs and ARB in anaerobically digested sludge, with a particular focus on elucidating the underlying mechanisms by which Fe(VI) effects ARGs dissemination through both vertical gene transfer (VGT) and horizontal gene transfer (HGT). Result shows that Fe(VI) doses of 20 and 60 mg/g-TS reduce ARGs by 9.75 % and 19.12 %, respectively, while inactivating up to 24.7 % of ARB at the higher dose. Pathogenic ARB, such as Escherichia coli and Shigella sonnei, are preferentially removed, with abundances decrease by 63.7 % and 28.0 %. Mechanistically, the structural disruption of bacterial cells caused by Fe(VI) in anaerobically digested sludge, as indicated by a 29 % reduction in extracellular polymeric substances and a 23.7 % increase in cell membrane permeability. Subsequently, a marked release of intracellular ARGs into the extracellular environment is also observed, where they are likely subjected to degradation by Fe(VI). This oxidative killing accounts for the observed ARB decrease, thereby limiting the VGT of ARGs. In addition, Fe(VI) impairs the HGT of ARGs by diminishing their mobility potential, reflected in the reduced co-occurence with mobile genetic elements. Meanwhile, sludge bacterial competence for DNA uptake and recombination is markedly reduced, as evidenced by a 9.8 % decline in the abundance of related functional genes. These findings demonstrate that Fe(VI) effectively inhibits the dissemination of ARGs by targeting both primary transmission pathways. It suppresses VGT, thereby reducing the inheritance of ARB within populations, and limits HGT, curbing the spread of mobile ARGs among competent species. By disrupting these two critical routes, Fe(VI) shows strong potential as an effective strategy for mitigating ARGs propagation in sludge systems.202541138327
7629160.9997Graphene oxide in the water environment could affect tetracycline-antibiotic resistance. In recent years, the influence of new materials like nanoparticles in the water environment on biological substances has been widely studied. Antibiotic resistance genes (ARGs) represent a new type of pollutant in the environment. Graphene oxide (GO), as a nano material, because of its unique structure, may have an impact on antibiotic resistance bacteria (ARB) and ARGs; however the research in this area is rarely reported. Therefore, this study mainly investigated the effects of GO on bacterial antibiotic resistance. The results showed that GO had a limited effect on ARB inactivation. A high concentration of GO (>10 mg/L) can damage resistant plasmids to reduce bacterial resistance to antibiotics, but low concentrations of GO (<1 mg/L) led to almost no damage to the plasmid. However, all tested concentrations of GO promoted the conjugative transfer from 1to over 3 folds, with low concentrations and high concentration (1-10 and 100 mg/L) of GO samples the least promoted. The overall effect of GO on antibiotic resistance needs further investigation.201728549325
8512170.9997Dissolved oxygen facilitates efficiency of chlorine disinfection for antibiotic resistance. Controlling the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is a global concern. While commonly used chlorine disinfectants can damage or even kill ARB, dissolved oxygen (DO) may affect the formation of reactive chlorine species. This leads to the hypothesis that DO may play roles in mediating the effectiveness of chlorine disinfection for antibiotic resistance. To this end, this study investigated the impacts of DO on the efficiency of chlorine disinfection for antibiotic resistance. The results revealed that DO could increase the inactivation efficiency of ARB under chloramine and free chlorine exposure at practically relevant concentrations. Reactive species induced by DO, including H(2)O(2), O(2)(-), and OH, inactivated ARB strains by triggering oxidative stress response and cell membrane damage. In addition, the removal efficiency of extracellular ARGs (i.e. tetA and bla(TEM)) was enhanced with increasing dosage of free chlorine or chloramine under aerobic conditions. DO facilitated the fragmentation of plasmids, contributing to the degradation of extracellular ARGs under exposure to chlorine disinfectants. The findings suggested that DO facilitates disinfection efficiency for antibiotic resistance in water treatment systems.202438750753
8507180.9997Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes. Conjunctive transfer of antibiotic resistance genes (ARGs) among bacteria driven by plasmids facilitated the evolution and spread of antibiotic resistance. Heavy metal exposure accelerated the plasmid-mediated conjunctive transfer of ARGs. Nanomaterials are well-known adsorbents for heavy metals removal, with the capability of combatting resistant bacteria/facilitating conjunctive transfer of ARGs. However, co-effect of heavy metals and nanomaterials on plasmid-mediated conjunctive transfer of ARGs was still unknown. In this study, we investigated the effect of the simultaneous exposure of Cd(2+) and nano Fe(2)O(3) on conjugative transfer of plasmid RP4 from Pseudomonas putida KT2442 to water microbial community. The permeability of bacterial cell membranes, antioxidant enzyme activities and conjugation gene expression were also investigated. The results suggested that the combination of Cd(2+) and high concentration nano Fe(2)O(3) (10 mg/L and 100 mg/L) significantly increased conjugative transfer frequencies of RP4 plasmid (p < 0.05). The most transconjugants were detected in the treatment of co-exposure to Cd(2+) and nano Fe(2)O(3), the majority of which were identified to be human pathogens. The mechanisms of the exacerbated conjugative transfer of ARGs were involved in the enhancement of cell membrane permeability, antioxidant enzyme activities, and mRNA expression levels of the conjugation genes by the co-effect of Cd(2+) and nano Fe(2)O(3). This study confirmed that the simultaneous exposure to Cd(2+)and nano Fe(2)O(3) exerted a synergetic co-effect on plasmid-mediated conjunctive transfer of ARGs, emphasizing that the co-effect of nanomaterials and heavy metals should be prudently evaluated when combating antibiotic resistance.202133798824
6767190.9997Effects of iron mineral adhesion on bacterial conjugation: Interfering the transmission of antibiotic resistance genes through an interfacial process. Bacterial conjugation is one of the most prominent ways for antibiotic resistance genes (ARGs) transmission in the environment. Interfacial interactions between natural colloidal minerals and bacteria can alter the effective contact of bacteria, thereby affecting ARGs conjugation. Understanding the impact of iron minerals, a core component of colloidal minerals, on ARGs conjugation can help assess and intervene in the risk of ARGs transmission. With three selected iron minerals perturbation experiments, it was found that the conjugative transfer of plasmid that carried kanamycin resistance gene was 1.35 - 3.91-fold promoted by low concentrations of iron minerals (i.e., 5 - 100 mg L(-1)), but inhibited at high concentrations (i.e., 1000 - 2000 mg L(-1)) as 0.10 - 0.22-fold. Conjugation occurrence was highly relevant to the number of bacteria adhering per unit mass of mineral, thus switch in the adhesion modes of mineral-bacterial determined whether the conjugate transfer of ARGs was facilitated or inhibited. In addition, a unified model was formularized upon the physicochemical and physiological effects of adhesion on conjugation, and it can be used in estimating the critical inhibitory concentration of different iron minerals on conjugation. Our findings indicate natural colloidal minerals have great potential for applications in preventing the environmental propagation of ARGs through interfacial interactions.202235472548