# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8444 | 0 | 1.0000 | Whole genome resequencing and complementation tests reveal candidate loci contributing to bacterial wilt (Ralstonia sp.) resistance in tomato. Tomato (Solanum lycopersicum) is one of the most economically important vegetable crops worldwide. Bacterial wilt (BW), caused by the Ralstonia solanacearum species complex, has been reported as the second most important plant pathogenic bacteria worldwide, and likely the most destructive. Extensive research has identified two major loci, Bwr-6 and Bwr-12, that contribute to resistance to BW in tomato; however, these loci do not completely explain resistance. Segregation of resistance in two populations that were homozygous dominant or heterozygous for all Bwr-6 and Bwr-12 associated molecular markers suggested the action of one or two resistance loci in addition to these two major QTLs. We utilized whole genome sequence data analysis and pairwise comparison of six BW resistant and nine BW susceptible tomato lines to identify candidate genes that, in addition to Bwr-6 and Bwr-12, contributed to resistance. Through this approach we found 27,046 SNPs and 5975 indels specific to the six resistant lines, affecting 385 genes. One sequence variant on chromosome 3 captured by marker Bwr3.2dCAPS located in the Asc (Solyc03g114600.4.1) gene had significant association with resistance, but it did not completely explain the resistance phenotype. The SNP associated with Bwr3.2dCAPS was located within the resistance gene Asc which was inside the previously identified Bwr-3 locus. This study provides a foundation for further investigations into new loci distributed throughout the tomato genome that could contribute to BW resistance and into the role of resistance genes that may act against multiple pathogens. | 2022 | 35589778 |
| 8758 | 1 | 0.9991 | Genome-wide association mapping for resistance to bacterial blight and bacterial leaf streak in rice. Using genome-wide SNP association mapping, a total of 77 and 7 loci were identified for rice bacterial blight and bacterial leaf streak resistance, respectively, which may facilitate rice resistance improvement. Bacterial blight (BB) and bacterial leaf streak (BLS) caused by Gram-negative bacteria Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), respectively, are two economically important diseases negatively affecting rice production. To mine new sources of resistance, a set of rice germplasm collection consisting of 895 re-sequenced accessions from the 3000 Rice Genomes Project (3 K RGP) were screened for BB and BLS resistance under field conditions. Higher levels of BB resistance were observed in aus/boro subgroup, whereas the japonica, temperate japonica and tropical japonica subgroups possessed comparatively high levels of resistance to BLS. A genome-wide association study (GWAS) mined 77 genomic loci significantly associated with BB and 7 with BLS resistance. The phenotypic variance (R(2)) explained by these loci ranged from 0.4 to 30.2%. Among the loci, 7 for BB resistance were co-localized with known BB resistance genes and one for BLS resistance overlapped with a previously reported BLS resistance QTL. A search for the candidates in other novel loci revealed several defense-related genes that may be involved in resistance to BB and BLS. High levels of phenotypic resistance to BB or BLS could be attributed to the accumulation of the resistance (R) alleles at the associated loci, indicating their potential value in rice resistance breeding via gene pyramiding. The GWAS analysis validated the known genes underlying BB and BLS resistance and identified novel loci that could enrich the current resistance gene pool. The resources with strong resistance and significant SNPs identified in this study are potentially useful in breeding for BB and BLS resistance. | 2021 | 33830376 |
| 8445 | 2 | 0.9990 | A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance. BACKGROUND: Columnaris causes severe mortalities among many different wild and cultured freshwater fish species, but understanding of host resistance is lacking. Catfish, the primary aquaculture species in the United States, serves as a great model for the analysis of host resistance against columnaris disease. Channel catfish in general is highly resistant to the disease while blue catfish is highly susceptible. F2 generation of hybrids can be produced where phenotypes and genotypes are segregating, providing a useful system for QTL analysis. To identify genes associated with columnaris resistance, we performed a genome-wide association study (GWAS) using the catfish 250 K SNP array with 340 backcross progenies derived from crossing female channel catfish (Ictalurus punctatus) with male F1 hybrid catfish (female channel catfish I. punctatus × male blue catfish I. furcatus). RESULTS: A genomic region on linkage group 7 was found to be significantly associated with columnaris resistance. Within this region, five have known functions in immunity, including pik3r3b, cyld-like, adcyap1r1, adcyap1r1-like, and mast2. In addition, 3 additional suggestively associated QTL regions were identified on linkage groups 7, 12, and 14. The resistant genotypes on the QTLs of linkage groups 7 and 12 were found to be homozygous with both alleles being derived from channel catfish. The paralogs of the candidate genes in the suggestively associated QTL of linkage group 12 were found on the QTLs of linkage group 7. Many candidate genes on the four associated regions are involved in PI3K pathway that is known to be required by many bacteria for efficient entry into the host. CONCLUSION: The GWAS revealed four QTLs associated with columnaris resistance in catfish. Strikingly, the candidate genes may be arranged as functional hubs; the candidate genes within the associated QTLs on linkage groups 7 and 12 are not only co-localized, but also functionally related, with many of them being involved in the PI3K signal transduction pathway, suggesting its importance for columnaris resistance. | 2015 | 25888203 |
| 8457 | 3 | 0.9990 | Molecular profiling of bacterial blight resistance in Malaysian rice cultivars. Bacteria blight is one of the most serious bacterial diseases of rice worldwide. The identification of genetic potential against bacterial blight in the existing rice resources is a prerequisite to develop multigenic resistance to combat the threat of climate change. This investigation was conducted to evaluate alleles variation in 38 Malaysian cultivars using thirteen Simple Sequences Repeats markers and one Sequence Tagged Sites (STS) marker which were reported to be linked with the resistance to bacterial blight. Based on molecular data, a dendrogram was constructed which classified the rice cultivars into seven major clusters at 0.0, 0.28 and 0.3 of similarity coefficient. Cluster 5 was the largest group comprised of ten rice cultivars where multiple genes were identified. However, xa13 could not be detected in the current rice germplasm, whereas xa2 was detected in 25 cultivars. Molecular analysis revealed that Malaysian rice cultivars possess multigenic resistance. | 2022 | 36541981 |
| 4617 | 4 | 0.9989 | A maximum likelihood QTL analysis reveals common genome regions controlling resistance to Salmonella colonization and carrier-state. BACKGROUND: The serovars Enteritidis and Typhimurium of the Gram-negative bacterium Salmonella enterica are significant causes of human food poisoning. Fowl carrying these bacteria often show no clinical disease, with detection only established post-mortem. Increased resistance to the carrier state in commercial poultry could be a way to improve food safety by reducing the spread of these bacteria in poultry flocks. Previous studies identified QTLs for both resistance to carrier state and resistance to Salmonella colonization in the same White Leghorn inbred lines. Until now, none of the QTLs identified was common to the two types of resistance. All these analyses were performed using the F2 inbred or backcross option of the QTLExpress software based on linear regression. In the present study, QTL analysis was achieved using Maximum Likelihood with QTLMap software, in order to test the effect of the QTL analysis method on QTL detection. We analyzed the same phenotypic and genotypic data as those used in previous studies, which were collected on 378 animals genotyped with 480 genome-wide SNP markers. To enrich these data, we added eleven SNP markers located within QTLs controlling resistance to colonization and we looked for potential candidate genes co-localizing with QTLs. RESULTS: In our case the QTL analysis method had an important impact on QTL detection. We were able to identify new genomic regions controlling resistance to carrier-state, in particular by testing the existence of two segregating QTLs. But some of the previously identified QTLs were not confirmed. Interestingly, two QTLs were detected on chromosomes 2 and 3, close to the locations of the major QTLs controlling resistance to colonization and to candidate genes involved in the immune response identified in other, independent studies. CONCLUSIONS: Due to the lack of stability of the QTLs detected, we suggest that interesting regions for further studies are those that were identified in several independent studies, which is the case of the QTL regions on chromosomes 2 and 3, involved in resistance to both Salmonella colonization and carrier state. These observations provide evidence of common genes controlling S. Typhimurium colonization and S. Enteritidis carrier-state in chickens. | 2012 | 22613937 |
| 8479 | 5 | 0.9987 | Identification and Genome Sequencing of Novel Virulent Strains of Xanthomonas oryzae pv. oryzae Causing Rice Bacterial Blight in Zhejiang, China. Xanthomonas oryzae pv. oryzae (Xoo) is the causative agent of rice bacterial blight (RBB), resulting in substantial harvest losses and posing a challenge to maintaining a stable global supply. In this study, Xoo strains isolated from Shaoxing, Quzhou, and Taizhou, where RBB occurred most frequently in Zhejiang Province in 2019, were selected as the subjects of research. Three isolated pathogenic bacteria of ZXooS (from Shaoxing), ZXooQ (from Quzhou), and ZXooT (from Taizhou) were all identified as novel Xoo strains. These novel strains demonstrate greater virulence compared to Zhe173, the previous epidemic Xoo strain from Zhejiang Province. Subsequent genomic sequencing and analysis revealed that there existed significant differences in the genome sequence, especially in effector genes corresponding to some known rice resistance (R) genes between the novel strains and Zhe173. The sequence alignment of avirulent genes (effector genes) indicated that nucleic and amino acid sequences of AvrXa5, AvrXa7, AvrXa10, and AvrXa23 in the novel strains varied prominently from those in Zhe173. Interestingly, it seemed that only the genome of ZXooQ might contain the AvrXa3 gene. In addition, the phylogenetic analysis of 61 Xoo strains revealed that the novel strains were situated in a distinct evolutionary clade separate from Zhe173. These results here suggest that the emergence of novel Xoo strains may lead to resistance loss of some R genes used in commercial rice varieties, potentially serving as one of the factors leading to RBB resurgence in Zhejiang Province, China. | 2024 | 39770343 |
| 5155 | 6 | 0.9986 | The Widespread Multidrug-Resistant Serotype O12 Pseudomonas aeruginosa Clone Emerged through Concomitant Horizontal Transfer of Serotype Antigen and Antibiotic Resistance Gene Clusters. The O-specific antigen (OSA) in Pseudomonas aeruginosa lipopolysaccharide is highly varied by sugar identity, side chains, and bond between O-repeats. These differences classified P. aeruginosa into 20 distinct serotypes. In the past few decades, O12 has emerged as the predominant serotype in clinical settings and outbreaks. These serotype O12 isolates exhibit high levels of resistance to various classes of antibiotics. Here, we explore how the P. aeruginosa OSA biosynthesis gene clusters evolve in the population by investigating the association between the phylogenetic relationships among 83 P. aeruginosa strains and their serotypes. While most serotypes were closely linked to the core genome phylogeny, we observed horizontal exchange of OSA biosynthesis genes among phylogenetically distinct P. aeruginosa strains. Specifically, we identified a "serotype island" ranging from 62 kb to 185 kb containing the P. aeruginosa O12 OSA gene cluster, an antibiotic resistance determinant (gyrA(C248T)), and other genes that have been transferred between P. aeruginosa strains with distinct core genome architectures. We showed that these genes were likely acquired from an O12 serotype strain that is closely related to P. aeruginosa PA7. Acquisition and recombination of the "serotype island" resulted in displacement of the native OSA gene cluster and expression of the O12 serotype in the recipients. Serotype switching by recombination has apparently occurred multiple times involving bacteria of various genomic backgrounds. In conclusion, serotype switching in combination with acquisition of an antibiotic resistance determinant most likely contributed to the dissemination of the O12 serotype in clinical settings. IMPORTANCE: Infection rates in hospital settings by multidrug-resistant (MDR) Pseudomonas aeruginosa clones have increased during the past decades, and serotype O12 is predominant among these epidemic strains. It is not known why the MDR phenotype is associated with serotype O12 and how this clone type has emerged. This study shows that evolution of MDR O12 strains involved a switch from an ancestral O4 serotype to O12. Serotype switching was the result of horizontal transfer and genetic recombination of lipopolysaccharide (LPS) biosynthesis genes originating from an MDR taxonomic outlier P. aeruginosa strain. Moreover, the recombination event also resulted in acquisition of antibiotic resistance genes. These results impact on our understanding of MDR outbreak strain and serotype evolution and can potentially assist in better monitoring and prevention. | 2015 | 26396243 |
| 4615 | 7 | 0.9986 | Effect of conditioned media from Aeromonas caviae on the transcriptomic changes of the porcine isolates of Pasteurella multocida. BACKGROUND: Pasteurella multocida is an opportunistic pathogen causing porcine respiratory diseases by co-infections with other bacterial and viral pathogens. Various bacterial genera isolated from porcine respiratory tracts were shown to inhibit the growth of the porcine isolates of P. multocida. However, molecular mechanisms during the interaction between P. multocida and these commensal bacteria had not been examined. METHODS: This study aimed to investigate the interaction between two porcine isolates of P. multocida (PM2 for type D and PM7 for type A) with Aeromonas caviae selected from the previously published work by co-culturing P. multocida in the conditioned media prepared from A. caviae growth and examining transcriptomic changes using RNA sequencing and bioinformatics analysis. RESULTS: In total, 629 differentially expressed genes were observed in the isolate with capsular type D, while 110 genes were significantly shown in type A. High expression of genes required for energy metabolisms, nutrient uptakes, and quorum sensing were keys to the growth and adaptation to the conditioned media, together with the decreased expression of those in the unurgent pathways, including translation and antibacterial resistance. CONCLUSION: This transcriptomic analysis also displayed the distinct capability of the two isolates of P. multocida and the preference of the capsular type A isolate in response to the tough environment of the A. caviae conditioned media. Therefore, controlling the environmental sensing and nutrient acquisition mechanisms of P. multocida would possibly prevent the overpopulation of these bacteria and reduce the chance of becoming opportunistic pathogens. | 2022 | 36368971 |
| 8459 | 8 | 0.9986 | A physical map of traits of agronomic importance based on potato and tomato genome sequences. Potato, tomato, pepper, and eggplant are worldwide important crop and vegetable species of the Solanaceae family. Molecular linkage maps of these plants have been constructed and used to map qualitative and quantitative traits of agronomic importance. This research has been undertaken with the vision to identify the molecular basis of agronomic characters on the one hand, and on the other hand, to assist the selection of improved varieties in breeding programs by providing DNA-based markers that are diagnostic for specific agronomic characters. Since 2011, whole genome sequences of tomato and potato became available in public databases. They were used to combine the results of several hundred mapping and map-based cloning studies of phenotypic characters between 1988 and 2022 in physical maps of the twelve tomato and potato chromosomes. The traits evaluated were qualitative and quantitative resistance to pathogenic oomycetes, fungi, bacteria, viruses, nematodes, and insects. Furthermore, quantitative trait loci for yield and sugar content of tomato fruits and potato tubers and maturity or earliness were physically mapped. Cloned genes for pathogen resistance, a few genes underlying quantitative trait loci for yield, sugar content, and maturity, and several hundred candidate genes for these traits were included in the physical maps. The comparison between the physical chromosome maps revealed, in addition to known intrachromosomal inversions, several additional inversions and translocations between the otherwise highly collinear tomato and potato genomes. The integration of the positional information from independent mapping studies revealed the colocalization of qualitative and quantitative loci for resistance to different types of pathogens, called resistance hotspots, suggesting a similar molecular basis. Synteny between potato and tomato with respect to genomic positions of quantitative trait loci was frequently observed, indicating eventual similarity between the underlying genes. | 2023 | 37564870 |
| 8448 | 9 | 0.9986 | Genome-Wide Association Analysis for Resistance to Coniothyrium glycines Causing Red Leaf Blotch Disease in Soybean. Soybean is a high oil and protein-rich legume with several production constraints. Globally, several fungi, viruses, nematodes, and bacteria cause significant yield losses in soybean. Coniothyrium glycines (CG), the causal pathogen for red leaf blotch disease, is the least researched and causes severe damage to soybean. The identification of resistant soybean genotypes and mapping of genomic regions associated with resistance to CG is critical for developing improved cultivars for sustainable soybean production. This study used single nucleotide polymorphism (SNP) markers generated from a Diversity Arrays Technology (DArT) platform to conduct a genome-wide association (GWAS) analysis of resistance to CG using 279 soybean genotypes grown in three environments. A total of 6395 SNPs was used to perform the GWAS applying a multilocus model Fixed and random model Circulating Probability Unification (FarmCPU) with correction of the population structure and a statistical test p-value threshold of 5%. A total of 19 significant marker-trait associations for resistance to CG were identified on chromosomes 1, 5, 6, 9, 10, 12, 13, 15, 16, 17, 19, and 20. Approximately 113 putative genes associated with significant markers for resistance to red leaf blotch disease were identified across soybean genome. Positional candidate genes associated with significant SNP loci-encoding proteins involved in plant defense responses and that could be associated with soybean defenses against CG infection were identified. The results of this study provide valuable insight for further dissection of the genetic architecture of resistance to CG in soybean. They also highlight SNP variants and genes useful for genomics-informed selection decisions in the breeding process for improving resistance traits in soybean. | 2023 | 37372451 |
| 4452 | 10 | 0.9986 | Whole-Genome Analysis of Acinetobacter baumannii Strain AB43 Containing a Type I-Fb CRISPR-Cas System: Insights into the Relationship with Drug Resistance. The CRISPR-Cas system is a bacterial and archaea adaptive immune system and is a newly recognized mechanism for controlling antibiotic resistance gene transfer. Acinetobacter baumannii (A. baumannii) is an important organism responsible for a variety of nosocomial infections. A. baumannii infections have become problematic worldwide because of the resistance of A. baumannii to multiple antibiotics. Thus, it is clinically significant to explore the relationship between the CRISPR-Cas system and drug resistance in A. baumannii. This study aimed to analyze the genomic characteristics of the A. baumannii strain AB3 containing the type I-Fb CRISPR-Cas system, which was isolated from a tertiary care hospital in China, and to investigate the relationship between the CRISPR-Cas system and antibiotic resistance in this strain. The whole-genome sequencing (WGS) of the AB43 strain was performed using Illumina and PacBio sequencing. The complete genome of AB43 consisted of a 3,854,806 bp chromosome and a 104,309 bp plasmid. The specific characteristics of the CRISPR-Cas system in AB43 are described as follows: (1) The strain AB43 carries a complete type I-Fb CRISPR-Cas system; (2) Homology analysis confirmed that the cas genes in AB43 share high sequence similarity with the same subtype cas genes; (3) A total of 28 of 105 A. baumannii AB43 CRISPR spacers matched genes in the bacteriophage genome database and the plasmid database, implying that the CRISPR-Cas system in AB43 provides immunity against invasive bacteriophage and plasmids; (4) None of the CRISPR spacers in A. baumannii AB43 were matched with antimicrobial resistance genes in the NCBI database. In addition, we analyzed the presence of antibiotic resistance genes and insertion sequences in the AB43 strain and found that the number of antibiotic resistance genes was not lower than in the "no CRISPR-Cas system" strain. This study supports the idea that the CRISPR-Cas system may inhibit drug-resistance gene expression via endogenous gene regulation, except to the published mechanism that the CRISPR-Cas system efficiently limits the acquisition of antibiotic resistance genes that make bacteria sensitive to antibiotics. | 2022 | 36080431 |
| 4616 | 11 | 0.9985 | Effect of two candidate genes on the Salmonella carrier state in fowl. Selection for increased resistance to Salmonella carrier-state (defined as the persistency of the bacteria 4 wk after inoculation) could reduce the risk for the consumer of food toxi-infections. The effects of two genomic regions on chromosomes 7 and 17 harboring two genes, NRAMP1 (SLC11A1) and TLR4, known to be involved in the level of chicken infection 3 d after inoculation by Salmonella were thus tested on a total of 331 hens orally inoculated at the peak of lay with 10(9) bacteria. The animals and their parents were genotyped for a total of 10 microsatellite markers mapped on chromosomes 7 and 17. Using maximum likelihood analysis and interval mapping, it was found that the SLC11A1 region was significantly involved in the control of the probability of spleen contamination 4 wk after inoculation. Single nucleotide polymorphisms (SNP) within the SLC11A1 and TLR4 gene were tested on those animals as well as on a second batch of 279 hens whose resistance was assessed in the same conditions. As the former was significantly associated with the risk of spleen contamination and the number of contaminated organs, SLC11A1 appears to be involved in the control of resistance to Salmonella carrier state. The involvement of the TLR4 gene was also highly suspected as a significant association between SNP within the gene, and the number of contaminated organs was detected. | 2003 | 12762392 |
| 8454 | 12 | 0.9985 | Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus x domestica) with Erwinia amylovora. BACKGROUND: The necrogenic enterobacterium, Erwinia amylovora is the causal agent of the fire blight (FB) disease in many Rosaceae species, including apple and pear. During the infection process, the bacteria induce an oxidative stress response with kinetics similar to those induced in an incompatible bacteria-plant interaction. No resistance mechanism to E. amylovora in host plants has yet been characterized, recent work has identified some molecular events which occur in resistant and/or susceptible host interaction with E. amylovora: In order to understand the mechanisms that characterize responses to FB, differentially expressed genes were identified by cDNA-AFLP analysis in resistant and susceptible apple genotypes after inoculation with E. amylovora. RESULTS: cDNA were isolated from M.26 (susceptible) and G.41 (resistant) apple tissues collected 2 h and 48 h after challenge with a virulent E. amylovora strain or mock (buffer) inoculated. To identify differentially expressed transcripts, electrophoretic banding patterns were obtained from cDNAs. In the AFLP experiments, M.26 and G.41 showed different patterns of expression, including genes specifically induced, not induced, or repressed by E. amylovora. In total, 190 ESTs differentially expressed between M.26 and G.41 were identified using 42 pairs of AFLP primers. cDNA-AFLP analysis of global EST expression in a resistant and a susceptible apple genotype identified different major classes of genes. EST sequencing data showed that genes linked to resistance, encoding proteins involved in recognition, signaling, defense and apoptosis, were modulated by E. amylovora in its host plant. The expression time course of some of these ESTs selected via a bioinformatic analysis has been characterized. CONCLUSION: These data are being used to develop hypotheses of resistance or susceptibility mechanisms in Malus to E. amylovora and provide an initial categorization of genes possibly involved in recognition events, early signaling responses the subsequent development of resistance or susceptibility. These data also provided potential candidates for improving apple resistance to fire blight either by marker-assisted selection or genetic engineering. | 2010 | 20047654 |
| 9862 | 13 | 0.9985 | Comparative Genomic Analysis Uncovered Evolution of Pathogenicity Factors, Horizontal Gene Transfer Events, and Heavy Metal Resistance Traits in Citrus Canker Bacterium Xanthomonas citri subsp. citri. Background: Worldwide citrus production is severely threatened by Asiatic citrus canker which is caused by the proteobacterium Xanthomonas citri subsp. citri. Foliar sprays of copper-based bactericides are frequently used to control plant bacterial diseases. Despite the sequencing of many X. citri strains, the genome diversity and distribution of genes responsible for metal resistance in X. citri subsp. citri strains from orchards with different management practices in Taiwan are not well understood. Results: The genomes of three X. citri subsp. citri strains including one copper-resistant strain collected from farms with different management regimes in Taiwan were sequenced by Illumina and Nanopore sequencing and assembled into complete circular chromosomes and plasmids. CRISPR spoligotyping and phylogenomic analysis indicated that the three strains were located in the same phylogenetic lineages and shared ∼3,000 core-genes with published X. citri subsp. citri strains. These strains differed mainly in the CRISPR repeats and pathogenicity-related plasmid-borne transcription activator-like effector (TALE)-encoding pthA genes. The copper-resistant strain has a unique, large copper resistance plasmid due to an unusual ∼40 kbp inverted repeat. Each repeat contains a complete set of the gene cluster responsible for copper and heavy metal resistance. Conversely, the copper sensitive strains carry no metal resistance genes in the plasmid. Through comparative analysis, the origin and evolution of the metal resistance clusters was resolved. Conclusion: Chromosomes remained constant among three strains collected in Taiwan, but plasmids likely played an important role in maintaining pathogenicity and developing bacterial fitness in the field. The evolution of pathogenicity factors and horizontal gene transfer events were observed in the three strains. These data suggest that agricultural management practices could be a potential trigger for the evolution of citrus canker pathogens. The decrease in the number of CRISPR repeats and pthA genes might be the result of adaptation to a less stressful environment. The metal resistance genes in the copper resistant X. citri strain likely originated from the Mauritian strain not the local copper-resistant X. euvesicatoria strain. This study highlights the importance of plasmids as 'vehicles' for exchanging genetic elements between plant pathogenic bacteria and contributing to bacterial adaptation to the environment. | 2021 | 34557177 |
| 8447 | 14 | 0.9985 | Deep R-gene discovery in HLB resistant wild Australian limes uncovers evolutionary features and potentially important loci for hybrid breeding. Huanglongbing (HLB) is a devastating citrus disease that threatens the citrus industry worldwide. HLB is associated with the bacteria Candidatus Liberibacter asiaticus (CLas) and as of today, there are no tools for economically viable disease management. Several wild Australian limes have been identified to be HLB resistant and their resistance is hypothesized to be conferred by resistance genes (R-genes), which mediate pathogen-specific defense responses. The aim of this study was to gain insight into the genomic features of R-genes in Australian limes, in comparison to susceptible citrus cultivars. In this study, we used five citrus genomes, including three Australian limes (Citrus australasica, C. glauca and C. inodora) and two cultivated citrus species (C. clementina and C. sinensis). Our results indicate up to 70% of the R-genes were identified in the unannotated regions in the original genome annotation of each species, owing to the use of a R-gene specific pipeline. Surprisingly, the two cultivated species harbored 15.8 to 104% more R-genes than the Australian limes. In all species, over 75% of the R-genes occurred in clusters and nearly 80% were concentrated in three chromosomes (Chr3, 5 and 7). The syntenic R-gene based phylogenic classification grouped the five species according to their HLB-resistance levels, reflecting the association between these R-genes and their distinct Australian origins. Domain structure analysis revealed substantial similarities in the R-genes between wild Australian limes and cultivated citrus. Investigation of chromosomal sites underlying Australian specific R genes revealed diversifying selection signatures on several chromosomal regions. The findings in this study will aid in the development of tools for genome-assisted breeding for HLB-resistant varieties. | 2024 | 39963358 |
| 6277 | 15 | 0.9985 | A large-scale whole-genome comparison shows that experimental evolution in response to antibiotics predicts changes in naturally evolved clinical Pseudomonas aeruginosa. Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections. An increasing number of isolates have mutations that make them antibiotic resistant, making treatment difficult. To identify resistance-associated mutations we experimentally evolved the antibiotic sensitive strain P. aeruginosa PAO1 to become resistant to three widely used anti-pseudomonal antibiotics, ciprofloxacin, meropenem and tobramycin. Mutants could tolerate up to 2048-fold higher concentrations of antibiotic than strain PAO1. Genome sequences were determined for thirteen mutants for each antibiotic. Each mutant had between 2 and 8 mutations. For each antibiotic at least 8 genes were mutated in multiple mutants, demonstrating the genetic complexity of resistance. For all three antibiotics mutations arose in genes known to be associated with resistance, but also in genes not previously associated with resistance. To determine the clinical relevance of mutations uncovered in this study we analysed the corresponding genes in 558 isolates of P. aeruginosa from patients with chronic lung disease and in 172 isolates from the general environment. Many genes identified through experimental evolution had predicted function-altering changes in clinical isolates but not in environmental isolates, showing that mutated genes in experimentally evolved bacteria can predict those that undergo mutation during infection. Additionally, large deletions of up to 479kb arose in experimentally evolved meropenem resistant mutants and large deletions were present in 87 of the clinical isolates. These findings significantly advance understanding of antibiotic resistance in P. aeruginosa and demonstrate the validity of experimental evolution in identifying clinically-relevant resistance-associated mutations. | 2019 | 31570397 |
| 9858 | 16 | 0.9985 | Genomic analysis reveals the role of integrative and conjugative elements in plant pathogenic bacteria. BACKGROUND: ICEs are mobile genetic elements found integrated into bacterial chromosomes that can excise and be transferred to a new cell. They play an important role in horizontal gene transmission and carry accessory genes that may provide interesting phenotypes for the bacteria. Here, we seek to research the presence and the role of ICEs in 300 genomes of phytopathogenic bacteria with the greatest scientific and economic impact. RESULTS: Seventy-eight ICEs (45 distinct elements) were identified and characterized in chromosomes of Agrobacterium tumefaciens, Dickeya dadantii, and D. solani, Pectobacterium carotovorum and P. atrosepticum, Pseudomonas syringae, Ralstonia solanacearum Species Complex, and Xanthomonas campestris. Intriguingly, the co-occurrence of four ICEs was observed in some P. syringae strains. Moreover, we identified 31 novel elements, carrying 396 accessory genes with potential influence on virulence and fitness, such as genes coding for functions related to T3SS, cell wall degradation and resistance to heavy metals. We also present the analysis of previously reported data on the expression of cargo genes related to the virulence of P. atrosepticum ICEs, which evidences the role of these genes in the infection process of tobacco plants. CONCLUSIONS: Altogether, this paper has highlighted the potential of ICEs to affect the pathogenicity and lifestyle of these phytopathogens and direct the spread of significant putative virulence genes in phytopathogenic bacteria. | 2022 | 35962419 |
| 4614 | 17 | 0.9985 | Listeria monocytogenes ability to survive desiccation: Influence of serotype, origin, virulence, and genotype. Listeria monocytogenes, a bacterium that is responsible for listeriosis, is a very diverse species. Desiccation resistance has been rarely studied in L. monocytogenes, although it is a stress that is largely encountered by this microorganism in food-processing environments and that could be managed to prevent its presence. The objective of this study was to evaluate the resistance of 30 L. monocytogenes strains to moderate desiccation (75% relative humidity) and evaluate the correlation of such resistance with the strains' virulence, serotype and genotype. The results showed a great heterogeneity of strains regarding their ability to survive (loss of cultivability between 0.4 and 2.0 log). Strains were classified into three groups according to desiccation resistance (sensitive, intermediate, or resistant), and the strain repartition was analyzed relative to serotype, virulence level and environmental origin of the strains. No correlation was found between isolate origin and desiccation resistance. All serotype 1/2b strains were classified into the group of resistant strains. Virulent and hypovirulent strains were distributed among the three groups of desiccation resistance. Finally, a genomic comparison was performed based on 31 genes that were previously identified as being involved in desiccation resistance. The presence of those genes was localized among the genomes of some strains and compared regarding strain-resistance levels. High nucleotide conservation was identified between resistant and desiccation-sensitive strains. In conclusion, the findings regarding the strains of serotype 1/2b indicate potential serotype-specific resistance to desiccation, and thus, to relative humidity fluctuations potentially encountered in food-related environments. The genomic comparison of 31 genes associated to desiccation tolerance did not reveal differences among four strains which have different level of resistance to desiccation. | 2017 | 28288399 |
| 4809 | 18 | 0.9985 | Genetic variation in Drosophila melanogaster resistance to infection: a comparison across bacteria. Insects use a generalized immune response to combat bacterial infection. We have previously noted that natural populations of D. melanogaster harbor substantial genetic variation for antibacterial immunocompetence and that much of this variation can be mapped to genes that are known to play direct roles in immunity. It was not known, however, whether the phenotypic effects of variation in these genes are general across the range of potentially infectious bacteria. To address this question, we have reinfected the same set of D. melanogaster lines with Serratia marcescens, the bacterium used in the previous study, and with three additional bacteria that were isolated from the hemolymph of wild-caught D. melanogaster. Two of the new bacteria, Enterococcus faecalis and Lactococcus lactis, are gram positive. The third, Providencia burhodogranaria, is gram negative like S. marcescens. Drosophila genotypes vary highly significantly in bacterial load sustained after infection with each of the four bacteria, but mean loads are largely uncorrelated across bacteria. We have tested statistical associations between immunity phenotypes and nucleotide polymorphism in 21 candidate immunity genes. We find that molecular variation in some genes, such as Tehao, contributes to phenotypic variation in the suppression of only a subset of the pathogens. Variation in SR-CII and 18-wheeler, however, has effects that are more general. Although markers in SR-CII and 18-wheeler explain >20% of the phenotypic variation in resistance to L. lactis and E. faecalis, respectively, most of the molecular polymorphisms tested explain <10% of the total variance in bacterial load sustained after infection. | 2006 | 16888344 |
| 8392 | 19 | 0.9985 | Identification of variable genomic regions related to stress response in Oenococcus oeni. The lactic acid bacterium Oenococcus oeni is the most important species involved in malolactic fermentation due to its capability to survive in presence of ethanol and in the acidic environment of wine. In order to identify novel genes involved in adaptation to wine, a new approach using genome-wide analysis based on stress-related genes was performed in strain O. oeni PSU-1, and 106 annotated stress genes were identified. The in silico analysis revealed the high similarity of all those genes through 57 O. oeni genomes; however, seven variable regions of genomic plasticity could be determined for their different presence observed among these strains. Regions 3 and 5 had the typical hallmarks of horizontal transfer, suggesting that the strategy of acquiring genes from other bacteria enhanced the fitness of O. oeni strains. Certain genes related to stress resistance were described in these regions, and similarities of putative acquired regions with other lactic acid bacteria species were found. Some genomic fragments present in all the strains were described and another new genomic island harbouring a threonine dehydrogenase was found. The association of selected sequences with adaptation to wine was assessed by screening 31 O. oeni strains using PCR of single genes, but no sequences were found to be exclusive to highly performing malolactic fermentation strains. This study provides new information about the genomic variability of O. oeni strains contributing to a further understanding of this species and the relationship of its genomic traits with the ability to adapt to stress conditions. | 2017 | 29195994 |