A potent and selective antimicrobial poly(amidoamine) dendrimer conjugate with LED209 targeting QseC receptor to inhibit the virulence genes of gram negative bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
843401.0000A potent and selective antimicrobial poly(amidoamine) dendrimer conjugate with LED209 targeting QseC receptor to inhibit the virulence genes of gram negative bacteria. The pandemic of multidrug-resistant Gram negative bacteria (GNB) is a worldwide healthcare concern, and very few antibiotics are being explored to match the clinical challenge. Recently, amino-terminated poly(amidoamine) (PAMAM) dendrimers have shown potential to function as broad antimicrobial agents. However, PAMAM displays a generation dependent cytotoxicity to mammalian cells and low selectivity on bacterial cells, which limits PAMAM to be developed as an antibacterial agent for systemic administration. We conjugated G3 PAMAM with LED209, a specific inhibitor of quorum sensor QseC of GNB, to generate a multifunctional agent PAMAM-LED209. Intriguingly, PAMAM-LED209 showed higher selectivity on GNB and lower cytotoxicity to mammalian cells, yet remained strong antibacterial activity. PAMAM-LED209 also inhibited virulence gene expression of GNB, and did not induce antibiotic-resistance. The present work firstly demonstrated that PAMAM-LED209 conjugate had a highly selective anti-GNB activity and low cytotoxicity, which offered a feasible strategy for combating multidrug-resistant GNB infections. FROM THE CLINICAL EDITOR: This research team demonstrated that a novel PAMAM-LED209 conjugate had highly selective activity against Gram-negative bacteria, coupled with low cytotoxicity, offering a potential strategy for combating multidrug-resistant infections.201525461286
910310.9982Development of cannabidiol derivatives as potent broad-spectrum antibacterial agents with membrane-disruptive mechanism. The emergence of antibiotic resistance has brought a significant burden to public health. Here, we designed and synthesized a series of cannabidiol derivatives by biomimicking the structure and function of cationic antibacterial peptides. This is the first report on the design of cannabidiol derivatives as broad-spectrum antibacterial agents. Through the structure-activity relationship (SAR) study, we found a lead compound 23 that killed both Gram-negative and Gram-positive bacteria via a membrane-targeting mechanism of action with low resistance frequencies. Compound 23 also exhibited very weak hemolytic activity, low toxicity toward mammalian cells, and rapid bactericidal properties. To further validate the membrane action mechanism of compound 23, we performed transcriptomic analysis using RNA-seq, which revealed that treatment with compound 23 altered many cell wall/membrane/envelope biogenesis-related genes in Gram-positive and Gram-negative bacteria. More importantly, compound 23 showed potent in vivo antibacterial efficacy in murine corneal infection models caused by Staphylococcus aureus or Pseudomonas aeruginosa. These findings would provide a new design idea for the discovery of novel broad-spectrum antibacterial agents to overcome the antibiotic resistance crisis.202438266554
909920.9982Small molecule downregulation of PmrAB reverses lipid A modification and breaks colistin resistance. Infections caused by multi-drug resistant bacteria, particularly Gram-negative bacteria, are an ever-increasing problem. While the development of new antibiotics remains one option in the fight against bacteria that have become resistant to currently available antibiotics, an attractive alternative is the development of adjuvant therapeutics that restore the efficacy of existing antibiotics. We report a small molecule adjuvant that suppresses colistin resistance in multidrug resistant Acinetobacter baumannii and Klebsiella pneumoniae by interfering with the expression of a two-component system. The compound downregulates the pmrCAB operon and reverses phosphoethanolamine modification of lipid A responsible for colistin resistance. Furthermore, colistin-susceptible and colistin-resistant bacteria do not evolve resistance to combination treatment. This represents the first definitive example of a compound that breaks antibiotic resistance by directly modulating two-component system activity.201424131198
910030.9982Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Gram-positive bacteria like Enterococcus faecium and Staphylococcus aureus, and Gram-negative bacteria like Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Spp. are responsible for most of fatal bacterial infections. Bacteria present a handful of targets like ribosome, RNA polymerase, cell wall biosynthesis, and dihydrofolate reductase. Antibiotics targeting the protein synthesis like aminoglycosides and tetracyclines, inhibitors of RNA/DNA synthesis like fluoroquinolones, inhibitors of cell wall biosynthesis like glycopeptides and β-lactams, and membrane-targeting polymyxins and lipopeptides have shown very good success in combating the bacterial infections. Ability of the bacteria to develop drug resistance is a serious public health challenge as bacteria can develop antimicrobial resistance against newly introduced antibiotics that enhances the challenge for antibiotic drug discovery. Therefore, bacterial membranes present a suitable therapeutic target for development of antimicrobials as bacteria can find it difficult to develop resistance against membrane-targeting antimicrobials. In this review, we present the recent advances in engineering of membrane-targeting antimicrobial amphiphiles that can be effective alternatives to existing antibiotics in combating bacterial infections.202134325929
22540.9981Mechanisms of bactericidal action and resistance of polymyxins for Gram-positive bacteria. Polymyxins are cationic antimicrobial peptides used as the last-line therapy to treat multidrug-resistant Gram-negative bacterial infections. The bactericidal activity of polymyxins against Gram-negative bacteria relies on the electrostatic interaction between the positively charged polymyxins and the negatively charged lipid A of lipopolysaccharide (LPS). Given that Gram-positive bacteria lack an LPS-containing outer membrane, it is generally acknowledged that polymyxins are less active against Gram-positive bacteria. However, Gram-positive bacteria produce negatively charged teichoic acids, which may act as the target of polymyxins. More and more studies suggest that polymyxins have potential as a treatment for Gram-positive bacterial infection. This mini-review discusses recent advances in the mechanism of the antibacterial activity and resistance of polymyxins in Gram-positive bacteria.Key Points• Teichoic acids play a key role in the action of polymyxins on Gram-positive bacteria.• Polymyxin kills Gram-positive bacteria by disrupting cell surface and oxidative damage.• Modification of teichoic acids and phospholipids contributes to polymyxin resistance in Gram-positive bacteria.• Polymyxins have potential as a treatment for Gram-positive bacterial infection.202032157424
978250.9981Homodimeric Tobramycin Adjuvant Repurposes Novobiocin as an Effective Antibacterial Agent against Gram-Negative Bacteria. Low permeability across the outer membrane is a major reason why most antibiotics are ineffective against Gram-negative bacteria. Agents that permeabilize the outer membrane are typically toxic at their effective concentrations. Here, we report the development of a broad-spectrum homodimeric tobramycin adjuvant that is nontoxic and more potent than the gold standard permeabilizing agent, polymyxin B nonapeptide. In pilot studies, the adjuvant confers potent bactericidal activity on novobiocin against Gram-negative bacteria, including carbapenem-resistant and colistin-resistant strains bearing plasmid-borne mcr-1 genes. Resistance development to the combination was significantly reduced, relative to novobiocin alone, and there was no induction of cross-resistance to other antibiotics, including the gyrase-acting fluoroquinolones. Tobramycin homodimer may allow the use of lower doses of novobiocin, overcoming its twin problem of efficacy and toxicity.201931557020
23060.9981Two methionine aminopeptidases from Acinetobacter baumannii are functional enzymes. Drug resistance in gram-negative bacteria, such as Acinetobacter baumannii, is emerging as a significant healthcare problem. New antibiotics with a novel mechanism of action are urgently needed to overcome the drug resistance. Methionine aminopeptidase (MetAP) carries out an essential cotranslational methionine excision in many bacteria and is a potential target to develop such novel antibiotics. Two putative MetAP genes were identified in A. baumannii genome, but whether they actually function as MetAP enzymes was not known. Therefore, we established an efficient E. coli expression system for their production as soluble and metal-free proteins for biochemical characterization. We demonstrated that both could carry out the metal-dependent catalysis and could be activated by divalent metal ions with the order Fe(II) ≈ Ni(II) > Co(II) > Mn(II) for both. By using a set of metalloform-selective inhibitors discovered on other MetAP enzymes, potency and metalloform selectivity on the A. baumannii MetAP proteins were observed. The similarity of their catalysis and inhibition to other MetAP enzymes confirmed that both may function as competent MetAP enzymes in A. baumannii and either or both may serve as the potential drug target.201121524572
910470.9981Heterogeneous efflux pump expression underpins phenotypic resistance to antimicrobial peptides. Antimicrobial resistance threatens the viability of modern medical interventions. There is a dire need to develop novel approaches to counter resistance mechanisms employed by starved or slow-growing pathogens that are refractory to conventional antimicrobial therapies. Antimicrobial peptides have been advocated as potential therapeutic solutions due to the low levels of genetic resistance observed in bacteria against these compounds. However, here we show that subpopulations of stationary phase Escherichia coli and Pseudomonas aeruginosa survive tachyplesin treatment without acquiring genetic mutations. These phenotypic variants display enhanced efflux activity to limit intracellular peptide accumulation. Differential regulation of genes involved in outer membrane vesicle secretion, membrane modification, and protease activity was also observed between phenotypically resistant and susceptible cells. We discovered that the formation of these phenotypic variants could be prevented by administering tachyplesin in combination with sertraline, a clinically used antidepressant, suggesting a novel approach for combatting antimicrobial-refractory stationary phase bacteria.202540607907
820780.9981Functional amyloid proteins confer defence against predatory bacteria. Bdellovibrio bacteriovorus is a predatory bacterium that non-selectively preys on Gram-negative bacteria by invading the prey-cell periplasm, leaching host nutrients and ultimately lysing the infected cell to exit and find a new host(1,2). The predatory life cycle of B. bacteriovorus is, in many ways, comparable to a bacteriophage. However, unlike phage defence, defence against B. bacteriovorus has not been widely investigated. Here we screened a collection of diverse Escherichia coli strains for resistance to B. bacteriovorus and identified that roughly one-third of strains robustly defended against predation by producing curli fibres. Curli fibres are oligomers of the functional amyloid protein CsgA, which is exceptionally durable(3). Using genetics and microscopy, we demonstrate that curli fibres provide a barrier that protects susceptible cells independent of genes required for biofilm formation. This barrier further protected E. coli against attack by the predatory bacterium Myxococcus xanthus and select phages. Bioinformatic analysis of bacterial amyloids showed these systems are diverse and widespread in diderm bacteria (those with both inner and outer membranes). One of these, an evolutionarily distinct amyloid encoded by Pseudomonas aeruginosa, also protected against B. bacteriovorus. This work establishes that functional amyloids defend bacteria against a wide range of threats.202540604283
820890.9980Bacterial resistance to antimicrobial host defenses--an emerging target for novel antiinfective strategies? Increasing bacterial resistance to virtually all available antibiotics causes an urgent need for new antimicrobial drugs, drug targets and therapeutic concepts. This review focuses on strategies to render bacteria highly susceptible to the antimicrobial arsenal of the immune system by targeting bacterial immune escape mechanisms that are conserved in a major number of pathogens. Virtually all innate molecules that inactivate bacteria, ranging from antimicrobial peptides such as defensins and cathelicidins to bacteriolytic enzymes such as lysozyme and group IIA phospholipase A2, are highly cationic in order to facilitate binding to the anionic bacterial cell envelopes. Bacteria have found ways to modulate their anionic cell wall polymers such as peptidoglycan, lipopolysaccharide, teichoic acid or phospholipids by introducing positively charged groups. Two of these mechanisms involving the transfer of D-alanine into teichoic acids and of L-lysine into phospholipids, respectively, have been identified and characterized in Staphylococcus aureus, a major human pathogen in community- and hospital-acquired infections. Inactivation of the responsible genes, dltABCD for alanylation of teichoic acids and mprF for lysinylation of phosphatidylglycerol, renders S. aureus highly susceptible to many human antimicrobial molecules and leads to profoundly attenuated virulence in several animal models. dltABCD- and mprF-related genes are found in the genomes of many bacterial pathogens indicating that the escape from human host defenses by modulation of the cell envelope is a general trait in pathogenic bacteria. This review suggests that inhibitors of DltABCD or MprF should have great potential in complementing or replacing the conventional antibiotic therapies.200314577655
9749100.9980Nanotransformation of Vancomycin Overcomes the Intrinsic Resistance of Gram-Negative Bacteria. The increased emergence of antibiotic-resistant bacteria is a growing public health concern, and although new drugs are constantly being sought, the pace of development is slow compared with the evolution and spread of multidrug-resistant species. In this study, we developed a novel broad-spectrum antimicrobial agent by simply transforming vancomycin into nanoform using sonochemistry. Vancomycin is a glycopeptide antibiotic largely used for the treatment of infections caused by Gram-positive bacteria but inefficient against Gram-negative species. The nanospherization extended its effect toward Gram-negative Escherichia coli and Pseudomonas aeruginosa, making these bacteria up to 10 and 100 times more sensitive to the antibiotic, respectively. The spheres were able to disrupt the outer membranes of these bacteria, overcoming their intrinsic resistance toward glycopeptides. The penetration of nanospheres into a Langmuir monolayer of bacterial membrane phospholipids confirmed the interaction of the nanoantibiotic with the membrane of E. coli cells, affecting their physical integrity, as further visualized by scanning electron microscopy. Such mechanism of antibacterial action is unlikely to induce mutations in the evolutionary conserved bacterial membrane, therefore reducing the possibility of acquiring resistance. Our results indicated that the nanotransformation of vancomycin could overcome the inherent resistance of Gram-negative bacteria toward this antibiotic and disrupt mature biofilms at antibacterial-effective concentrations.201728393523
8910110.9980Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells. The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.201323844246
707120.9980Reciprocal control between a bacterium's regulatory system and the modification status of its lipopolysaccharide. Gram-negative bacteria often modify their lipopolysaccharide (LPS), thereby increasing resistance to antimicrobial agents and avoidance of the host immune system. However, it is unclear how bacteria adjust the levels and activities of LPS-modifying enzymes in response to the modification status of their LPS. We now address this question by investigating the major regulator of LPS modifications in Salmonella enterica. We report that the PmrA/PmrB system controls expression of a membrane peptide that inhibits the activity of LpxT, an enzyme responsible for increasing the LPS negative charge. LpxT's inhibition and the PmrA-dependent incorporation of positively charged L-4-aminoarabinose into the LPS decrease Fe(3+) binding to the bacterial cell. Because Fe(3+) is an activating ligand for the sensor PmrB, transcription of PmrA-dependent LPS-modifying genes is reduced. This mechanism enables bacteria to sense their cell surface by its effect on the availability of an inducing signal for the system regulating cell-surface modifications.201222921935
9166130.9980Mechanisms of Inhibition of Quorum Sensing as an Alternative for the Control of E. coli and Salmonella. Quorum sensing (QS) is a process of cell-cell communication for bacteria such as E. coli and Salmonella that cause foodborne diseases, with the production, release, and detection of autoinducer (AI) molecules that participate in the regulation of virulence genes. All of these proteins are useful in coordinating collective behavior, the expression of virulence factors, and the pathogenicity of Gram-negative bacteria. In this work, we review the natural or synthetic inhibitor molecules of QS that inactivate the autoinducer and block QS regulatory proteins in E. coli and Salmonella. Furthermore, we describe mechanisms of QS inhibitors (QSIs) that act as competitive inhibitors, being a useful tool for preventing virulence gene expression through the downregulation of AI-2 production pathways and the disruption of signal uptake. In addition, we showed that QSIs have negative regulatory activity of genes related to bacterial biofilm formation on clinical artifacts, which confirms the therapeutic potential of QSIs in the control of infectious pathogens. Finally, we discuss resistance to QSIs, the design of next-generation QSIs, and how these molecules can be leveraged to provide a new antivirulence therapy to combat diseases caused by E. coli or Salmonella.202235630329
8226140.9980Host-dependent resistance of Group A Streptococcus to sulfamethoxazole mediated by a horizontally-acquired reduced folate transporter. Described antimicrobial resistance mechanisms enable bacteria to avoid the direct effects of antibiotics and can be monitored by in vitro susceptibility testing and genetic methods. Here we describe a mechanism of sulfamethoxazole resistance that requires a host metabolite for activity. Using a combination of in vitro evolution and metabolic rescue experiments, we identify an energy-coupling factor (ECF) transporter S component gene (thfT) that enables Group A Streptococcus to acquire extracellular reduced folate compounds. ThfT likely expands the substrate specificity of an endogenous ECF transporter to acquire reduced folate compounds directly from the host, thereby bypassing the inhibition of folate biosynthesis by sulfamethoxazole. As such, ThfT is a functional equivalent of eukaryotic folate uptake pathways that confers very high levels of resistance to sulfamethoxazole, yet remains undetectable when Group A Streptococcus is grown in the absence of reduced folates. Our study highlights the need to understand how antibiotic susceptibility of pathogens might function during infections to identify additional mechanisms of resistance and reduce ineffective antibiotic use and treatment failures, which in turn further contribute to the spread of antimicrobial resistance genes amongst bacterial pathogens.202236450721
9221150.9980Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding. Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here, we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers.202235025730
9105160.9980tRNA Methylation Is a Global Determinant of Bacterial Multi-drug Resistance. Gram-negative bacteria are intrinsically resistant to drugs because of their double-membrane envelope structure that acts as a permeability barrier and as an anchor for efflux pumps. Antibiotics are blocked and expelled from cells and cannot reach high-enough intracellular concentrations to exert a therapeutic effect. Efforts to target one membrane protein at a time have been ineffective. Here, we show that m(1)G37-tRNA methylation determines the synthesis of a multitude of membrane proteins via its control of translation at proline codons near the start of open reading frames. Decreases in m(1)G37 levels in Escherichia coli and Salmonella impair membrane structure and sensitize these bacteria to multiple classes of antibiotics, rendering them incapable of developing resistance or persistence. Codon engineering of membrane-associated genes reduces their translational dependence on m(1)G37 and confers resistance. These findings highlight the potential of tRNA methylation in codon-specific translation to control the development of multi-drug resistance in Gram-negative bacteria.201930981730
9163170.9980Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug specifically targeted quorum sensing systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa biofilms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response.200312881415
8225180.9980Basic peptide-morpholino oligomer conjugate that is very effective in killing bacteria by gene-specific and nonspecific modes. Basic peptides covalently linked to nucleic acids, or chemically modified nucleic acids, enable the insertion of such a conjugate into bacteria grown in liquid medium and mammalian cells in tissue culture. A unique peptide, derived from human T cells, has been employed in a chemical synthesis to make a conjugate with a morpholino oligonucleotide. This new conjugate is at least 10- to 100-fold more effective than previous peptides used in altering the phenotype of host bacteria if the external guide sequence methodology is employed in these experiments. Bacteria with target genes expressing chloramphenicol resistance, penicillin resistance, or gyrase A function can effectively be reduced in their expression and the host cells killed. Several bacteria are susceptible to this treatment, which has a broad range of potency. The loss in viability of bacteria is not due only to complementarity with a target RNA and the action of RNase P, but also to a non-gene-specific tight binding of the complexed nontargeted RNA to the basic polypeptide-morpholino oligonucleotide.201121949365
8273190.9980Targeting quorum sensing and competence stimulation for antimicrobial chemotherapy. Bacterial resistance to antibiotics is now a serious problem, with traditional classes of antibiotics having gradually become ineffective. New drugs are therefore needed to target and inhibit novel pathways that affect the growth of bacteria. An important feature in the survival of bacteria is that they coordinate their efforts together as a colony via secreted auto-inducing molecules. Competence stimulating peptides (CSPs) are among the quorum sensing pheromones involved in this coordination. These peptides activate a two-component system in gram-negative bacteria, binding to and activating a histidine kinase receptor called ComD, which phosphorylates a response regulator called ComE, leading to gene expression and induction of competence. Competent bacteria are able to take up exogenous DNA and incorporate it into their own genome. By this mechanism bacteria are able to acquire and share genes encoding antibiotic resistance. Despite having been studied for over 30 years, this pathway has only recently begun to be explored as a novel approach to modulating bacterial growth. Antagonists of ComD might block the signaling cascade that leads to competence, while overstimulation of ComD might also reduce bacterial growth. One possible approach to inhibiting ComD is to examine peptide sequences of CSPs that activate ComD and attempt to constrain them to bioactive conformations, likely to have higher affinity due to pre-organization for recognition by the receptor. Thus, small molecules that mimic an alpha helical epitope of CSPs, the putative ComD binding domain, have been shown here to inhibit growth of bacteria such as S. pneumoniae. Such alpha helix mimetics may be valuable clues to antibacterial chemotherapeutic agents that utilize a new mechanism to control bacterial growth.201222664089