# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8433 | 0 | 1.0000 | Thermoresponsive Nanostructures: From Mechano-Bactericidal Action to Bacteria Release. Overuse of antibiotics can increase the risk of notorious antibiotic resistance in bacteria, which has become a growing public health concern worldwide. Featured with the merit of mechanical rupture of bacterial cells, the bioinspired nanopillars are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the resident dead bacterial cells on nanopillars may greatly impair their bactericidal capability and ultimately impede their translational potential toward long-term applications. Here, we show that the functions of bactericidal nanopillars can be significantly broadened by developing a hybrid thermoresponsive polymer@nanopillar-structured surface, which retains all of the attributes of pristine nanopillars and adds one more: releasing dead bacteria. We fabricate this surface through coaxially decorating mechano-bactericidal ZnO nanopillars with thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes. Combining the benefits of ZnO nanopillars and PNIPAAm chains, the antibacterial performances can be controllably regulated between ultrarobust mechano-bactericidal action (∼99%) and remarkable bacteria-releasing efficiency (∼98%). Notably, both the mechanical sterilization against the live bacteria and the controllable release for the pinned dead bacteria solely stem from physical actions, stimulating the exploration of intelligent structure-based bactericidal surfaces with persistent antibacterial properties without the risk of triggering drug resistance. | 2021 | 34905683 |
| 9088 | 1 | 0.9970 | Cocrystallizing and Codelivering Complementary Drugs to Multidrugresistant Tuberculosis Bacteria in Perfecting Multidrug Therapy. Bacteria cells exhibit multidrug resistance in one of two ways: by raising the genetic expression of multidrug efflux pumps or by accumulating several drug-resistant components in many genes. Multidrug-resistive tuberculosis bacteria are treated by multidrug therapy, where a few certain antibacterial drugs are administered together to kill a bacterium jointly. A major drawback of conventional multidrug therapy is that the administration never ensures the reaching of different drug molecules to a particular bacterium cell at the same time, which promotes growing drug resistivity step-wise. As a result, it enhances the treatment time. With additional tabletability and plasticity, the formation of a cocrystal of multidrug can ensure administrating the multidrug chemically together to a target bacterium cell. With properly maintaining the basic philosophy of multidrug therapy here, the synergistic effects of drug molecules can ensure killing the bacteria, even before getting the option to raise the drug resistance against them. This can minimize the treatment span, expenditure and drug resistance. A potential threat of epidemic from tuberculosis has appeared after the Covid-19 outbreak. An unwanted loop of finding molecules with the potential to kill tuberculosis, getting their corresponding drug approvals, and abandoning the drug after facing drug resistance can be suppressed here. This perspective aims to develop the universal drug regimen by postulating the principles of drug molecule selection, cocrystallization, and subsequent harmonisation within a short period to address multidrug-resistant bacteria. | 2023 | 37150990 |
| 9547 | 2 | 0.9969 | Confronting antibiotic-resistant pathogens: Distinctive drug delivery potentials of progressive nanoparticles. Antimicrobial resistance arises over time, usually due to genetic modifications. Global observations of high resistance rates to popular antibiotics used to treat common bacterial diseases, such as diarrhea, STIs, sepsis, and urinary tract infections, indicate that our supply of effective antibiotics is running low. The mechanisms of action of several antibiotic groups are covered in this review. Antimicrobials disrupt the development and metabolism of bacteria, leading to their eventual death. However, in recent years, microorganisms become resistant to the drugs. Bacteria encode resistant genes against antibiotics and inhibit the function of antibiotics by reducing the uptake of drugs, modifying the enzyme's active site, synthesizing enzymes to degrade antibiotics, and changing the structure of ribosomal subunits. Additionally, the methods of action of resistant bacteria against different kinds of antibiotics as well as their modes of action are discussed. Besides, the resistant pathogenic bacteria which get the most priority by World Health Organisation (WHO) for synthesizing new drugs, have also been incorporated. To overcome antimicrobial resistance, nanomaterials are used to increase the efficacy of antimicrobial drugs. Metallic, inorganic, and polymer-based nanoparticles once conjugated with antibacterial drugs, exhibit synergistic effects by increasing the efficacy of the drugs by inhibiting bacterial growth. Nanomaterial's toxic properties are proportional to their concentrations. Higher concentration nanomaterials are more toxic to the cells. In this review, the toxic properties of nanomaterials on lung cells, lymph nodes, and neuronal cells are also summarized. | 2024 | 38097117 |
| 9094 | 3 | 0.9969 | Pathogen-Specific Polymeric Antimicrobials with Significant Membrane Disruption and Enhanced Photodynamic Damage To Inhibit Highly Opportunistic Bacteria. Highly pathogenic Gram-negative bacteria and their drug resistance are a severe public health threat with high mortality. Gram-negative bacteria are hard to kill due to the complex cell envelopes with low permeability and extra defense mechanisms. It is challenging to treat them with current strategies, mainly including antibiotics, peptides, polymers, and some hybrid materials, which still face the issue of drug resistance, limited antibacterial selectivity, and severe side effects. Together with precise bacteria targeting, synergistic therapeutic modalities, including physical membrane damage and photodynamic eradication, are promising to combat Gram-negative bacteria. Herein, pathogen-specific polymeric antimicrobials were formulated from amphiphilic block copolymers, poly(butyl methacrylate)- b-poly(2-(dimethylamino) ethyl methacrylate- co-eosin)- b-ubiquicidin, PBMA- b-P(DMAEMA- co-EoS)-UBI, in which pathogen-targeting peptide ubiquicidin (UBI) was tethered in the hydrophilic chain terminal, and Eosin-Y was copolymerized in the hydrophilic block. The micelles could selectively adhere to bacteria instead of mammalian cells, inserting into the bacteria membrane to induce physical membrane damage and out-diffusion of intracellular milieu. Furthermore, significant in situ generation of reactive oxygen species was observed upon light irradiation, achieving further photodynamic eradication. Broad-spectrum bacterial inhibition was demonstrated for the polymeric antimicrobials, especially highly opportunistic Gram-negative bacteria, such as Pseudomona aeruginosa ( P. aeruginosa) based on the synergy of physical destruction and photodynamic therapy, without detectable resistance. In vivo P. aeruginosa-infected knife injury model and burn model both proved good potency of bacteria eradication and promoted wound healing, which was comparable with commercial antibiotics, yet no risk of drug resistance. It is promising to hurdle the infection and resistance suffered from highly opportunistic bacteria. | 2019 | 30632740 |
| 9538 | 4 | 0.9969 | The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Bacterial drug resistance is rapidly developing as one of the greatest threats to human health. Bacteria will adopt corresponding strategies to crack the inhibitory effect of antibiotics according to the antibacterial mechanism of antibiotics, involving the mutation of drug target, secreting hydrolase, and discharging antibiotics out of cells through an efflux pump, etc. In recent years, bacteria are found to constantly evolve new resistance mechanisms to antibiotics, including target protective protein, changes in cell morphology, and so on, endowing them with multiple defense systems against antibiotics, leading to the emergence of multi-drug resistant (MDR) bacteria and the unavailability of drugs in clinics. Correspondingly, researchers attempt to uncover the mystery of bacterial resistance to develop more convenient and effective antibacterial strategies. Although traditional antibiotics still play a significant role in the treatment of diseases caused by sensitive pathogenic bacteria, they gradually lose efficacy in the MDR bacteria. Therefore, highly effective antibacterial compounds, such as phage therapy and CRISPER-Cas precision therapy, are gaining an increasing amount of attention, and are considered to be the treatments with the moist potential with regard to resistance against MDR in the future. In this review, nine identified drug resistance mechanisms are summarized, which enhance the retention rate of bacteria under the action of antibiotics and promote the distribution of drug-resistant bacteria (DRB) in the population. Afterwards, three kinds of potential antibacterial methods are introduced, in which new antibacterial compounds exhibit broad application prospects with different action mechanisms, the phage therapy has been successfully applied to infectious diseases caused by super bacteria, and the CRISPER-Cas precision therapy as a new technology can edit drug-resistant genes in pathogenic bacteria at the gene level, with high accuracy and flexibility. These antibacterial methods will provide more options for clinical treatment, and will greatly alleviate the current drug-resistant crisis. | 2022 | 36139994 |
| 9145 | 5 | 0.9969 | A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. Bacterial infections are an important cause of mortality worldwide owing to the prevalence of drug resistant bacteria. Bacteria develop resistance against antimicrobial drugs by several mechanisms such as enzyme inactivation, reduced cell permeability, modifying target site or enzyme, enhanced efflux because of high expression of efflux pumps, biofilm formation or drug-resistance gene expression. New and alternative ways such as nanoparticle (NP) applications are being established to overcome the growing multidrug-resistance in bacteria. NPs have unique antimicrobial characteristics that make them appropriate for medical application to overcome antibiotic resistance. The proposed antibacterial mechanisms of NPs are cell membrane damage, changing cell wall penetration, reactive oxygen species (ROS) production, effect on DNA and proteins, and impact on biofilm formation. The present review mainly focuses on discussing various mechanisms of bacterial drug resistance and the applications of NPs as alternative antibacterial systems. Combination therapy of NPs and antibiotics as a novel approach in medicine towards antimicrobial resistance is also discussed. | 2021 | 33703979 |
| 9149 | 6 | 0.9969 | Smart Multifunctional Polymer Systems as Alternatives or Supplements of Antibiotics To Overcome Bacterial Resistance. In recent years, infectious diseases have again become a critical threat to global public health largely due to the challenges posed by antimicrobial resistance. Conventional antibiotics have played a crucial role in combating bacterial infections; however, their efficacy is significantly impaired by widespread drug resistance. Natural antimicrobial peptides (AMPs) and their polymeric mimics demonstrate great potential for killing bacteria with low propensity of resistance as they target the microbial membrane rather than a specific molecular target, but they are also toxic to the host eukaryotic cells. To minimize antibiotics systemic spread and the required dose that promote resistance and to advocate practical realization of the promising activity of AMPs and polymers, smart systems to target bacteria are highly sought after. This review presents bacterial recognition by various specific targeting molecules and the delivery systems of active components in supramolecules. Bacteria-induced activations of antimicrobial-based nanoformulations are also included. Recent advances in the bacteria targeting and delivery of synthetic antimicrobial agents may assist in developing new classes of highly selective antimicrobial systems which can improve bactericidal efficacy and greatly minimize the spread of bacterial resistance. | 2022 | 35471022 |
| 8341 | 7 | 0.9969 | Mutagenesis and Resistance Development of Bacteria Challenged by Silver Nanoparticles. Because of their extremely broad spectrum and strong biocidal power, nanoparticles of metals, especially silver (AgNPs), have been widely applied as effective antimicrobial agents against bacteria, fungi, and so on. However, the mutagenic effects of AgNPs and resistance mechanisms of target cells remain controversial. In this study, we discover that AgNPs do not speed up resistance mutation generation by accelerating genome-wide mutation rate of the target bacterium Escherichia coli. AgNPs-treated bacteria also show decreased expression in quorum sensing (QS), one of the major mechanisms leading to population-level drug resistance in microbes. Nonetheless, these nanomaterials are not immune to resistance development by bacteria. Gene expression analysis, experimental evolution in response to sublethal or bactericidal AgNPs treatments, and gene editing reveal that bacteria acquire resistance mainly through two-component regulatory systems, especially those involved in metal detoxification, osmoregulation, and energy metabolism. Although these findings imply low mutagenic risks of nanomaterial-based antimicrobial agents, they also highlight the capacity for bacteria to evolve resistance. | 2022 | 36094196 |
| 9527 | 8 | 0.9969 | Novel Opportunity to Reverse Antibiotic Resistance: To Explore Traditional Chinese Medicine With Potential Activity Against Antibiotics-Resistance Bacteria. Antibiotic resistance is becoming significantly prominent and urgent in clinical practice with the increasing and wide application of antibacterial drugs. However, developing and synthesizing new antimicrobial drugs is costly and time-consuming. Recently, researchers shifted their sights to traditional Chinese medicine (TCM). Here, we summarized the inhibitory mechanism of TCM herbs and their active ingredients on bacteria, discussed the regulatory mechanism of TCM on antibiotic-resistant bacteria, and revealed preclinical results of TCM herbs and their active components against antibiotic-resistant bacteria in mouse models. Those data suggest that TCM herbs and their effective constituents exhibit potential blockage ability on antibiotic-resistant bacteria, providing novel therapeutic ideas for reversing antibiotic resistance. | 2020 | 33414777 |
| 8975 | 9 | 0.9968 | Targeting bacterial biofilm-related genes with nanoparticle-based strategies. Persistent infection caused by biofilm is an urgent in medicine that should be tackled by new alternative strategies. Low efficiency of classical treatments and antibiotic resistance are the main concerns of the persistent infection due to biofilm formation which increases the risk of morbidity and mortality. The gene expression patterns in biofilm cells differed from those in planktonic cells. One of the promising approaches against biofilms is nanoparticle (NP)-based therapy in which NPs with multiple mechanisms hinder the resistance of bacterial cells in planktonic or biofilm forms. For instance, NPs such as silver (Ag), zinc oxide (ZnO), titanium dioxide (TiO(2)), copper oxide (Cu), and iron oxide (Fe(3)O(4)) through the different strategies interfere with gene expression of bacteria associated with biofilm. The NPs can penetrate into the biofilm structure and affect the expression of efflux pump, quorum-sensing, and adhesion-related genes, which lead to inhibit the biofilm formation or development. Therefore, understanding and targeting of the genes and molecular basis of bacterial biofilm by NPs point to therapeutic targets that make possible control of biofilm infections. In parallel, the possible impact of NPs on the environment and their cytotoxicity should be avoided through controlled exposure and safety assessments. This study focuses on the biofilm-related genes that are potential targets for the inhibition of bacterial biofilms with highly effective NPs, especially metal or metal oxide NPs. | 2024 | 38841057 |
| 9146 | 10 | 0.9968 | Emergence of microbial resistance against nanoparticles: Mechanisms and strategies. Antimicrobial nanoparticles have gained the status of a new generation of drugs that can kill bacterial pathogens by multiple means; however, nanoparticle resistance acquired by some bacterial pathogens has evoked a cause of concern. Several reports suggested that bacteria can develop nanoparticles, specifically metal nanoparticle resistance, by mechanisms: nanoparticle transformation-induced oxidative stress, membrane alterations, reversible adaptive resistance, irreversible modifications to cell division, and a change in bacterial motility and resistance. Surface properties, concentration and aggregation of nanoparticles, biofilm forming and metal exclusion capacity, and R plasmid and flagellin synthesis by bacteria are crucial factors in the development of nanoparticle resistance in bacteria. Studies reported the resistance reversal by modifying the surface corona of nanoparticles or inhibiting flagellin production by bacterial pathogens. Furthermore, strict regulation regarding the use and disposal of nano-waste across the globe, the firm knowledge of microbe-nanoparticle interaction, and the regulated disposal of nanoparticles in soil and water is required to prevent microbes from developing nanoparticle resistance. | 2023 | 36778867 |
| 229 | 11 | 0.9968 | Molecular basis underlying Mycobacterium tuberculosis D-cycloserine resistance. Is there a role for ubiquinone and menaquinone metabolic pathways? INTRODUCTION: Tuberculosis remains a formidable threat to global public health. Multidrug-resistant tuberculosis presents increasing burden on the control strategy. D-Cycloserine (DCS) is an effective second-line drug against Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis. Though less potent than isoniazid (INH) and streptomycin, DCS is crucial for antibiotic-resistant tuberculosis. One advantage of DCS is that less drug-resistant M. tuberculosis is reported in comparison with first-line antituberculosis drugs such as INH and rifampin. AREAS COVERED: In this review, we summarise our current knowledge of DCS, and review the drug target and low-level resistance of DCS in M. tuberculosis. We summarise the metabolism of D-alanine (D-Ala) and peptidoglycan biosynthesis in bacteria. We first compared the amino acid similarity of Mycobacterium alanine racemase and D-Ala:D-alanine ligase and quite unexpectedly found that the two enzymes are highly conserved among Mycobacterium. EXPERT OPINION: We summarise the drug targets of DCS and possible mechanisms underlying its low-level resistance for the first time. One significant finding is that ubiquinone and menaquinone metabolism-related genes are novel genes underlying DCS resistance in Escherichia coli and with homologues in M. tuberculosis. Further understanding of DCS targets and basis for its low-level resistance might inspire us to improve the use of DCS or find better drug targets. | 2014 | 24773568 |
| 9539 | 12 | 0.9968 | Materials for restoring lost Activity: Old drugs for new bugs. The escalation of bacterial resistance to conventional medical antibiotics is a serious concern worldwide. Improvements to current therapies are urgently needed to address this problem. The synergistic combination of antibiotics with other agents is a strategic solution to combat multi-drug-resistant bacteria. Although these combinations decrease the required high dosages and therefore, reduce the toxicity of both agents without compromising the bactericidal effect, they cannot stop the development of further resistance. Recent studies have shown certain elements restore the ability of antibiotics to destroy bacteria that have acquired resistance to them. Due to these synergistic activities, organic and inorganic molecules have been investigated with the goal of restoring antibiotics in new approaches that mitigate the risk of expanding resistance. Herein, we summarize recent studies that restore antibiotics once thought to be ineffective, but have returned to our armamentarium through innovative, combinatorial efforts. A special focus is placed on the mechanisms that allow the synergistic combinations to combat bacteria. The promising data that demonstrated restoration of antimicrobials, supports the notion to find more combinations that can combat antibiotic-resistant bacteria. | 2022 | 35461913 |
| 8397 | 13 | 0.9968 | Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in Mycobacterium tuberculosis. CRISPR screening, including CRISPR interference (CRISPRi) and CRISPR-knockout (CRISPR-KO) screening, has become a powerful technology in the genetic screening of eukaryotes. In contrast with eukaryotes, CRISPR-KO screening has not yet been applied to functional genomics studies in bacteria. Here, we constructed genome-scale CRISPR-KO and also CRISPRi libraries in Mycobacterium tuberculosis (Mtb). We first examined these libraries to identify genes essential for Mtb viability. Subsequent screening identified dozens of genes associated with resistance/susceptibility to the antitubercular drug bedaquiline (BDQ). Genetic and chemical validation of the screening results suggested that it provided a valuable resource to investigate mechanisms of action underlying the effects of BDQ and to identify chemical-genetic synergies that can be used to optimize tuberculosis therapy. In summary, our results demonstrate the potential for efficient genome-wide CRISPR-KO screening in bacteria and establish a combined CRISPR screening approach for high-throughput investigation of genetic and chemical-genetic interactions in Mtb. | 2022 | 36417506 |
| 9540 | 14 | 0.9968 | Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria. | 2011 | 22029522 |
| 8978 | 15 | 0.9968 | Revealing the antibacterial power of hydrogen-releasing PdH nanohydride against drug resistant Staphylococcus aureus: an in-depth mechanism study. Currently, multidrug resistant (MDR) bacterial infections are a great threat to public health, and the development of novel strategies for high efficiency combatting of MDR bacteria is in urgent demand. Hydrogen (H(2)) is a small gas with a high reducing ability, and plenty of recent studies have demonstrated its therapeutic effect on many diseases. However, the antibacterial effectiveness and mechanism of H(2) against MDR bacteria are still unknown. In the present work, using PdH nanohydride with a temperature responsive H(2)-releasing property as the H(2) source, we demonstrated that H(2) was not only able to inhibit the growth of normal Staphylococcus aureus (S. aureus), but could also effectively eliminate single drug resistant S. aureus (CRSA) and multidrug resistant S. aureus (MRSA), as well as the biofilms formed by those bacteria. Moreover, an in-depth mechanism regarding the anti-antibiotic-resistance activity of H(2) was elucidated by us, in which H(2) exerted its antibacterial effect by firstly causing severe membrane damage, followed by boosting generation of intracellular ROS, which subsequently triggered DNA damage and finally led to bacterial death. The proposed mechanism was further verified by genomic analysis, where a cluster of genes related to bacterial membrane integrity, biofilm formation, metabolism and DNA functions was significantly perturbed by the released H(2). In particular, H(2) boosted intracellular ROS generation by destroying the redox homeostasis of bacterial metabolism. More importantly, we revealed that H(2) was able to alleviate the antibiotic resistance of CRSA and MRSA by significantly down-regulating the expression of many drug-resistant genes, e.g. the norG gene of CRSA, and fmtA, gpsB, sarA and marR genes of MRSA, as well as reducing the minimal inhibitory concentration (MIC) of ciprofloxacin/ampicillin against CRSA/MRSA. The findings in our work suggested that H(2) therapy is a promising tool for combating antibiotic-resistant bacteria. | 2023 | 36655922 |
| 8958 | 16 | 0.9968 | Exogenous Citrulline and Glutamine Contribute to Reverse the Resistance of Salmonella to Apramycin. Antibiotic resistance is an increasing concern for human and animal health worldwide. Recently, the concept of reverting bacterial resistance by changing the metabolic state of antibiotic-resistant bacteria has emerged. In this study, we investigated the reversal of Apramycin resistance in Salmonella. First, non-targeted metabonomics were used to identify key differential metabolites of drug-resistant bacteria. Then, the reversal effect of exogenous substances was verified in vivo and in vitro. Finally, the underlying mechanism was studied. The results showed that the metabolites citrulline and glutamine were significantly reduced in Apramycin-resistant Salmonella. When citrulline and glutamine were added to the culture medium of drug-resistant Salmonella, the killing effect of Apramycin was restored markedly. Mechanistic studies showed that citrulline and glutamine promoted the Tricarboxylic acid cycle, produced more NADH in the bacteria, and increased the proton-motive force, thus promoting Apramycin entry into the bacterial cells, and killing the drug-resistant bacteria. This study provides a useful method to manage infections by antibiotic-resistant bacteria. | 2021 | 34721368 |
| 8974 | 17 | 0.9968 | Escherichia coli Bacteria Develop Adaptive Resistance to Antibacterial ZnO Nanoparticles. Antibacterial agents based on nanoparticles (NPs) have many important applications, e.g., for the textile industry, surface disinfection, wound dressing, water treatment, and food preservation. Because of their prevalent use it is important to understand whether bacteria could develop resistance to such antibacterial NPs similarly to the resistance that bacteria are known to develop to antibiotics. Here, it is reported that Escherichia coli (E. coli) develops adaptive resistance to antibacterial ZnO NPs after several days' exposure to the NPs. But, in contrast to antibiotics-resistance, the observed resistance to ZnO NPs is not stable-after several days without exposure to the NPs, the bacteria regain their sensitivity to the NPs' antibacterial properties. Based on the analyses it is suggested that the observed resistance is caused by changes in the shape of the bacteria and the expressions of membrane proteins. The findings provide insights into the response of bacteria to antibacterial NPs, which is important to elucidate for designing and evaluating the risk of applications based on antibacterial NPs. | 2018 | 33103858 |
| 9170 | 18 | 0.9968 | It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy. Multiple drug resistance poses a significant threat to public health worldwide, with a substantial increase in morbidity and mortality rates. Consequently, searching for novel strategies to control microbial pathogenicity is necessary. With the aid of auto-inducers (AIs), quorum sensing (QS) regulates bacterial virulence factors through cell-to-cell signaling networks. AIs are small signaling molecules produced during the stationary phase. When bacterial cultures reach a certain level of growth, these molecules regulate the expression of the bound genes by acting as mirrors that reflect the inoculum density.Gram-positive bacteria use the peptide derivatives of these signaling molecules, whereas Gram-negative bacteria use the fatty acid derivatives, and the majority of bacteria can use both types to modulate the expression of the target gene. Numerous natural and synthetic QS inhibitors (QSIs) have been developed to reduce microbial pathogenesis. Applications of QSI are vital to human health, as well as fisheries and aquaculture, agriculture, and water treatment. Video Abstract. | 2023 | 37316831 |
| 9142 | 19 | 0.9968 | Mechanism of antibacterial phytoconstituents: an updated review. The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies. | 2024 | 38913205 |