# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8415 | 0 | 1.0000 | Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes. BACKGROUND: Shine-Dalgarno (SD) signal has long been viewed as the dominant translation initiation signal in prokaryotes. Recently, leaderless genes, which lack 5'-untranslated regions (5'-UTR) on their mRNAs, have been shown abundant in archaea. However, current large-scale in silico analyses on initiation mechanisms in bacteria are mainly based on the SD-led initiation way, other than the leaderless one. The study of leaderless genes in bacteria remains open, which causes uncertain understanding of translation initiation mechanisms for prokaryotes. RESULTS: Here, we study signals in translation initiation regions of all genes over 953 bacterial and 72 archaeal genomes, then make an effort to construct an evolutionary scenario in view of leaderless genes in bacteria. With an algorithm designed to identify multi-signal in upstream regions of genes for a genome, we classify all genes into SD-led, TA-led and atypical genes according to the category of the most probable signal in their upstream sequences. Particularly, occurrence of TA-like signals about 10 bp upstream to translation initiation site (TIS) in bacteria most probably means leaderless genes. CONCLUSIONS: Our analysis reveals that leaderless genes are totally widespread, although not dominant, in a variety of bacteria. Especially for Actinobacteria and Deinococcus-Thermus, more than twenty percent of genes are leaderless. Analyzed in closely related bacterial genomes, our results imply that the change of translation initiation mechanisms, which happens between the genes deriving from a common ancestor, is linearly dependent on the phylogenetic relationship. Analysis on the macroevolution of leaderless genes further shows that the proportion of leaderless genes in bacteria has a decreasing trend in evolution. | 2011 | 21749696 |
| 9350 | 1 | 0.9993 | Genome DNA Sequence Variation, Evolution, and Function in Bacteria and Archaea. Comparative genomics has revealed that variations in bacterial and archaeal genome DNA sequences cannot be explained by only neutral mutations. Virus resistance and plasmid distribution systems have resulted in changes in bacterial and archaeal genome sequences during evolution. The restriction-modification system, a virus resistance system, leads to avoidance of palindromic DNA sequences in genomes. Clustered, regularly interspaced, short palindromic repeats (CRISPRs) found in genomes represent yet another virus resistance system. Comparative genomics has shown that bacteria and archaea have failed to gain any DNA with GC content higher than the GC content of their chromosomes. Thus, horizontally transferred DNA regions have lower GC content than the host chromosomal DNA does. Some nucleoid-associated proteins bind DNA regions with low GC content and inhibit the expression of genes contained in those regions. This form of gene repression is another type of virus resistance system. On the other hand, bacteria and archaea have used plasmids to gain additional genes. Virus resistance systems influence plasmid distribution. Interestingly, the restriction-modification system and nucleoid-associated protein genes have been distributed via plasmids. Thus, GC content and genomic signatures do not reflect bacterial and archaeal evolutionary relationships. | 2013 | 22772895 |
| 8429 | 2 | 0.9993 | Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BACKGROUND: Thermus thermophilus and Deinococcus radiodurans belong to a distinct bacterial clade but have remarkably different phenotypes. T. thermophilus is a thermophile, which is relatively sensitive to ionizing radiation and desiccation, whereas D. radiodurans is a mesophile, which is highly radiation- and desiccation-resistant. Here we present an in-depth comparison of the genomes of these two related but differently adapted bacteria. RESULTS: By reconstructing the evolution of Thermus and Deinococcus after the divergence from their common ancestor, we demonstrate a high level of post-divergence gene flux in both lineages. Various aspects of the adaptation to high temperature in Thermus can be attributed to horizontal gene transfer from archaea and thermophilic bacteria; many of the horizontally transferred genes are located on the single megaplasmid of Thermus. In addition, the Thermus lineage has lost a set of genes that are still present in Deinococcus and many other mesophilic bacteria but are not common among thermophiles. By contrast, Deinococcus seems to have acquired numerous genes related to stress response systems from various bacteria. A comparison of the distribution of orthologous genes among the four partitions of the Deinococcus genome and the two partitions of the Thermus genome reveals homology between the Thermus megaplasmid (pTT27) and Deinococcus megaplasmid (DR177). CONCLUSION: After the radiation from their common ancestor, the Thermus and Deinococcus lineages have taken divergent paths toward their distinct lifestyles. In addition to extensive gene loss, Thermus seems to have acquired numerous genes from thermophiles, which likely was the decisive contribution to its thermophilic adaptation. By contrast, Deinococcus lost few genes but seems to have acquired many bacterial genes that apparently enhanced its ability to survive different kinds of environmental stresses. Notwithstanding the accumulation of horizontally transferred genes, we also show that the single megaplasmid of Thermus and the DR177 megaplasmid of Deinococcus are homologous and probably were inherited from the common ancestor of these bacteria. | 2005 | 16242020 |
| 8377 | 3 | 0.9993 | Genome-Wide Association Analyses in the Model Rhizobium Ensifer meliloti. Genome-wide association studies (GWAS) can identify genetic variants responsible for naturally occurring and quantitative phenotypic variation. Association studies therefore provide a powerful complement to approaches that rely on de novo mutations for characterizing gene function. Although bacteria should be amenable to GWAS, few GWAS have been conducted on bacteria, and the extent to which nonindependence among genomic variants (e.g., linkage disequilibrium [LD]) and the genetic architecture of phenotypic traits will affect GWAS performance is unclear. We apply association analyses to identify candidate genes underlying variation in 20 biochemical, growth, and symbiotic phenotypes among 153 strains of Ensifer meliloti For 11 traits, we find genotype-phenotype associations that are stronger than expected by chance, with the candidates in relatively small linkage groups, indicating that LD does not preclude resolving association candidates to relatively small genomic regions. The significant candidates show an enrichment for nucleotide polymorphisms (SNPs) over gene presence-absence variation (PAV), and for five traits, candidates are enriched in large linkage groups, a possible signature of epistasis. Many of the variants most strongly associated with symbiosis phenotypes were in genes previously identified as being involved in nitrogen fixation or nodulation. For other traits, apparently strong associations were not stronger than the range of associations detected in permuted data. In sum, our data show that GWAS in bacteria may be a powerful tool for characterizing genetic architecture and identifying genes responsible for phenotypic variation. However, careful evaluation of candidates is necessary to avoid false signals of association.IMPORTANCE Genome-wide association analyses are a powerful approach for identifying gene function. These analyses are becoming commonplace in studies of humans, domesticated animals, and crop plants but have rarely been conducted in bacteria. We applied association analyses to 20 traits measured in Ensifer meliloti, an agriculturally and ecologically important bacterium because it fixes nitrogen when in symbiosis with leguminous plants. We identified candidate alleles and gene presence-absence variants underlying variation in symbiosis traits, antibiotic resistance, and use of various carbon sources; some of these candidates are in genes previously known to affect these traits whereas others were in genes that have not been well characterized. Our results point to the potential power of association analyses in bacteria, but also to the need to carefully evaluate the potential for false associations. | 2018 | 30355664 |
| 9645 | 4 | 0.9993 | Horizontal Gene Transfers in prokaryotes show differential preferences for metabolic and translational genes. BACKGROUND: Horizontal gene transfer (HGT) is an important process, which contributes in bacterial pathogenesis and drug resistance. A number of methods have been proposed for detection of horizontal gene transfer. One successful approach to the detection of HGT events is due to Novichkov et al. (J. Bacteriology 186, 6575-85), who rely on comparing phylogenetic distances within a gene family with genomic distances of the source organisms. Building on their approach, we introduce outlier detection in the correlation between those two sets of distances. This approach is designed to detect horizontal transfers of core set of genes present in many bacteria. The principle behind method allows detection of xenologous gene displacements as well as acquisition of novel genes. RESULTS: Simulations indicated that our method performs better than Novichkov et al's original approach. The approach very efficiently identified HGT between distantly related bacteria and also a limited number of gene transfers between closely related bacteria. In combination with sequence similarity and likelihood tests, it yields a measure robust enough to derive a set of 171 genes deemed likely to have been horizontally transferred. Further analysis of these 171 established horizontal transfer events gave interesting insights in the direction of transfer. CONCLUSION: The majority of transfers between archaea and bacteria have occurred in the direction from bacteria to archaea rather than the other way round. Genes transferred between the archaea and bacteria are mostly metabolic genes. On the other hand, genes transferred within the bacterial phyla are mainly involved in translation. | 2009 | 19134215 |
| 4374 | 5 | 0.9992 | Core genes can have higher recombination rates than accessory genes within global microbial populations. Recombination is essential to microbial evolution, and is involved in the spread of antibiotic resistance, antigenic variation, and adaptation to the host niche. However, assessing the impact of homologous recombination on accessory genes which are only present in a subset of strains of a given species remains challenging due to their complex phylogenetic relationships. Quantifying homologous recombination for accessory genes (which are important for niche-specific adaptations) in comparison to core genes (which are present in all strains and have essential functions) is critical to understanding how selection acts on variation to shape species diversity and genome structures of bacteria. Here, we apply a computationally efficient, non-phylogenetic approach to measure homologous recombination rates in the core and accessory genome using >100,000 whole genome sequences from Streptococcus pneumoniae and several additional species. By analyzing diverse sets of sequence clusters, we show that core genes often have higher recombination rates than accessory genes, and for some bacterial species the associated effect sizes for these differences are pronounced. In a subset of species, we find that gene frequency and homologous recombination rate are positively correlated. For S. pneumoniae and several additional species, we find that while the recombination rate is higher for the core genome, the mutational divergence is lower, indicating that divergence-based homologous recombination barriers could contribute to differences in recombination rates between the core and accessory genome. Homologous recombination may therefore play a key role in increasing the efficiency of selection in the most conserved parts of the genome. | 2022 | 35801696 |
| 9343 | 6 | 0.9992 | Origin of the bacterial SET domain genes: vertical or horizontal? The presence of Supressor of variegation-Enhanser of zeste-Trithorax (SET) domain genes in bacteria is a current paradigm for lateral genetic exchange between eukaryotes and prokaryotes. Because a major function of SET domain proteins is the chemical modification of chromatin and bacteria do not have chromatin, there is no apparent functional requirement for the existence of bacterial SET domain genes. Consequently, their finding in only a small fraction of pathogenic and symbiotic bacteria was taken as evidence that bacteria have obtained the SET domain genes from their hosts. Furthermore, it was proposed that the products of the genes would, most likely, be involved in bacteria-host interactions. The broadened scope of sequenced bacterial genomes to include also free-living and environmental species provided a larger sample to analyze the bacterial SET domain genes. By phylogenetic analysis, examination of individual chromosomal regions for signs of insertion, and evaluating the chromosomal versus SET domain genes' GC contents, we provide evidence that SET domain genes have existed in the bacterial domain of life independently of eukaryotes. The bacterial genes have undergone an evolution of their own unconnected to the evolution of the eukaryotic SET domain genes. Initial finding of SET domain genes in predominantly pathogenic and symbiotic bacteria resulted, most probably, from a biased sample. However, a lateral transfer of SET domain genes may have occurred between some bacteria and a family of Archaea. A model for the evolution and distribution of SET domain genes in bacteria is proposed. | 2007 | 17148507 |
| 3810 | 7 | 0.9992 | The Effect of the Presence and Absence of DNA Repair Genes on the Rate and Pattern of Mutation in Bacteria. Bacteria lose and gain repair genes as they evolve. Here, we investigate the consequences of gain and loss of 11 DNA repair genes across a broad range of bacteria. Using synonymous polymorphisms from bacteria and a set of 50 phylogenetically independent contrasts, we find no evidence that the presence or absence of these 11 genes affects either the overall level of diversity or the pattern of mutation. Using phylogenetic generalized linear squares yields a similar conclusion. It seems likely that the lack of an effect is due to variation in the genetic background and the environment which obscures any effects that the presence or absence of individual genes might have. | 2024 | 39376054 |
| 9850 | 8 | 0.9992 | Annotation and Comparative Genomics of Prokaryotic Transposable Elements. The data generated in nearly 30 years of bacterial genome sequencing has revealed the abundance of transposable elements (TE) and their importance in genome and transcript remodeling through the mediation of DNA insertions and deletions, structural rearrangements, and regulation of gene expression. Furthermore, what we have learned from studying transposition mechanisms and their regulation in bacterial TE is fundamental to our current understanding of TE in other organisms because much of what has been observed in bacteria is conserved in all domains of life. However, unlike eukaryotic TE, prokaryotic TE sequester and transmit important classes of genes that impact host fitness, such as resistance to antibiotics and heavy metals and virulence factors affecting animals and plants, among other acquired traits. This provides dynamism and plasticity to bacteria, which would otherwise be propagated clonally. The insertion sequences (IS), the simplest form of prokaryotic TE, are autonomous and compact mobile genetic elements. These can be organized into compound transposons, in which two similar IS can flank any DNA segment and render it transposable. Other more complex structures, called unit transposons, can be grouped into four major families (Tn3, Tn7, Tn402, Tn554) with specific genetic characteristics. This chapter will revisit the prominent structural features of these elements, focusing on a genomic annotation framework and comparative analysis. Relevant aspects of TE will also be presented, stressing their key position in genome impact and evolution, especially in the emergence of antimicrobial resistance and other adaptive traits. | 2024 | 38819561 |
| 9349 | 9 | 0.9992 | Gene essentiality analysis based on DEG, a database of essential genes. Essential genes are the genes that are indispensable for the survival of an organism. The genome-scale identification of essential genes has been performed in various organisms, and we consequently constructed DEG, a Database that contains currently available essential genes. Here we analyzed functional distributions of essential genes in DEG, and found that some essential-gene functions are even conserved between the prokaryote (bacteria) and the eukaryote (yeast), e.g., genes involved in information storage and processing are overrepresented, whereas those involved in metabolism are underrepresented in essential genes compared with non-essential ones. In bacteria, species specificity in functional distribution of essential genes is mainly due to those involved in cellular processes. Furthermore, within the category of information storage and processing, function of translation, ribosomal structure, and biogenesis are predominant in essential genes. Finally, some potential pitfalls for analyzing gene essentiality based on DEG are discussed. | 2008 | 18392983 |
| 9860 | 10 | 0.9992 | Insights and inferences about integron evolution from genomic data. BACKGROUND: Integrons are mechanisms that facilitate horizontal gene transfer, allowing bacteria to integrate and express foreign DNA. These are important in the exchange of antibiotic resistance determinants, but can also transfer a diverse suite of genes unrelated to pathogenicity. Here, we provide a systematic analysis of the distribution and diversity of integron intI genes and integron-containing bacteria. RESULTS: We found integrons in 103 different pathogenic and non-pathogenic bacteria, in six major phyla. Integrons were widely scattered, and their presence was not confined to specific clades within bacterial orders. Nearly 1/3 of the intI genes that we identified were pseudogenes, containing either an internal stop codon or a frameshift mutation that would render the protein product non-functional. Additionally, 20% of bacteria contained more than one integrase gene. dN/dS ratios revealed mutational hotspots in clades of Vibrio and Shewanella intI genes. Finally, we characterized the gene cassettes associated with integrons in Methylobacillus flagellatus KT and Dechloromonas aromatica RCB, and found a heavy metal efflux gene as well as genes involved in protein folding and stability. CONCLUSION: Our analysis suggests that the present distribution of integrons is due to multiple losses and gene transfer events. While, in some cases, the ability to integrate and excise foreign DNA may be selectively advantageous, the gain, loss, or rearrangment of gene cassettes could also be deleterious, selecting against functional integrases. Thus, such a high fraction of pseudogenes may suggest that the selective impact of integrons on genomes is variable, oscillating between beneficial and deleterious, possibly depending on environmental conditions. | 2008 | 18513439 |
| 9351 | 11 | 0.9992 | Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors. In the pregenomic era, the acquisition of pathogenicity islands via horizontal transfer was proposed as a major mechanism in pathogen evolution. Much effort has been expended to look for the contiguous blocks of virulence genes that are present in pathogenic bacteria, but absent in closely related species that are nonpathogenic. However, some of these virulence factors were found in nonpathogenic bacteria. Moreover, and contrary to expectation, pathogenic bacteria were found to lack genes (antivirulence genes) that are characteristic of nonpathogenic bacteria. The availability of complete genome sequences has led to a new era of pathogen research. Comparisons of genomes have shown that the most pathogenic bacteria have reduced genomes, with less ribosomal RNA and unorganized operons; they lack transcriptional regulators but have more genes that encode protein toxins, toxin-antitoxin (TA) modules, and proteins for DNA replication and repair, when compared with less pathogenic close relatives. These findings questioned the paradigm of virulence by gene acquisition and put forward the notion of genomic repertoire of virulence. | 2013 | 23814139 |
| 9603 | 12 | 0.9992 | Resistance signatures manifested in early drug response across cancer types and species. Aim: Growing evidence points to non-genetic mechanisms underlying long-term resistance to cancer therapies. These mechanisms involve pre-existing or therapy-induced transcriptional cell states that confer resistance. However, the relationship between early transcriptional responses to treatment and the eventual emergence of resistant states remains poorly understood. Furthermore, it is unclear whether such early resistance-associated transcriptional responses are evolutionarily conserved. In this study, we examine the similarity between early transcriptional responses and long-term resistant states, assess their clinical relevance, and explore their evolutionary conservation across species. Methods: We integrated datasets on early drug responses and long-term resistance from multiple cancer cell lines, bacteria, and yeast to identify early transcriptional changes predictive of long-term resistance and assess their evolutionary conservation. Using genome-wide CRISPR-Cas9 knockout screens, we evaluated the impact of genes associated with resistant transcriptional states on drug sensitivity. Clinical datasets were analyzed to explore the prognostic value of the identified resistance-associated gene signatures. Results: We found that transcriptional states observed in drug-naive cells and shortly after treatment overlapped with those seen in fully resistant populations. Some of these shared features appear to be evolutionarily conserved. Knockout of genes marking resistant states sensitized ovarian cancer cells to Prexasertib. Moreover, early resistance gene signatures effectively distinguished therapy responders from non-responders in multiple clinical cancer trials and differentiated premalignant breast lesions that progressed to malignancy from those that remained benign. Conclusion: Early cellular transcriptional responses to therapy exhibit key similarities to fully resistant states across different drugs, cancer types, and species. Gene signatures defining these early resistance states have prognostic value in clinical settings. | 2025 | 41019980 |
| 9664 | 13 | 0.9992 | Distribution of Genetic Determinants Associated with CRISPR-Cas Systems and Resistance to Antibiotics in the Genomes of Archaea and Bacteria. The CRISPR-Cas system represents an adaptive immune mechanism found across diverse Archaea and Bacteria, allowing them to defend against invading genetic elements such as viruses and plasmids. Despite its broad distribution, the prevalence and complexity of CRISPR-Cas systems differ significantly between these domains. This study aimed to characterize and compare the genomic distribution, structural features, and functional implications of CRISPR-Cas systems and associated antibiotic resistance genes in 30 archaeal and 30 bacterial genomes. Through bioinformatic analyses of CRISPR arrays, cas gene architectures, direct repeats (DRs), and thermodynamic properties, we observed that Archaea exhibit a higher number and greater complexity of CRISPR loci, with more diverse cas gene subtypes exclusively of Class 1. Bacteria, in contrast, showed fewer CRISPR loci, comprising a mix of Class 1 and Class 2 systems, with Class 1 representing the majority (~75%) of the detected systems. Notably, Bacteria lacking CRISPR-Cas systems displayed a higher prevalence of antibiotic resistance genes, suggesting a possible inverse correlation between the presence of these immune systems and the acquisition of such genes. Phylogenetic and thermodynamic analyses further highlighted domain-specific adaptations and conservation patterns. These findings support the hypothesis that CRISPR-Cas systems play a dual role: first, as a defense mechanism preventing the integration of foreign genetic material-reflected in the higher complexity and diversity of CRISPR loci in Archaea-and second, as a regulator of horizontal gene transfer, evidenced by the lower frequency of antibiotic resistance genes in organisms with active CRISPR-Cas systems. Together, these results underscore the evolutionary and functional diversification of CRISPR-Cas systems in response to environmental and selective pressures. | 2025 | 40572209 |
| 9663 | 14 | 0.9992 | The structure of temperate phage-bacteria infection networks changes with the phylogenetic distance of the host bacteria. With their ability to integrate into the bacterial chromosome and thereby transfer virulence or drug-resistance genes across bacterial species, temperate phage play a key role in bacterial evolution. Thus, it is paramount to understand who infects whom to be able to predict the movement of DNA across the prokaryotic world and ultimately the emergence of novel (drug-resistant) pathogens. We empirically investigated lytic infection patterns among Vibrio spp. from distinct phylogenetic clades and their derived temperate phage. We found that across distantly related clades, infections occur preferentially within modules of the same clade. However, when the genetic distance of the host bacteria decreases, these clade-specific infections disappear. This indicates that the structure of temperate phage-bacteria infection networks changes with the phylogenetic distance of the host bacteria. | 2018 | 30429242 |
| 9280 | 15 | 0.9992 | Evolutionary Changes after Translational Challenges Imposed by Horizontal Gene Transfer. Genes acquired by horizontal gene transfer (HGT) may provide the recipient organism with potentially new functions, but proper expression level and integration of the transferred genes in the novel environment are not granted. Notably, transferred genes can differ from the receiving genome in codon usage preferences, leading to impaired translation and reduced functionality. Here, we characterize the genomic and proteomic changes undergone during experimental evolution of Escherichia coli after HGT of three synonymous versions, presenting very different codon usage preference, of an antibiotic resistance gene. The experimental evolution was conducted with and without the corresponding antibiotic and the mutational patterns and proteomic profiles after 1,000 generations largely depend on the experimental growth conditions (e.g., mutations in antibiotic off-target genes), and on the synonymous gene version transferred (e.g., mutations in genes responsive to translational stress). The transfer of an exogenous gene extensively modifies the whole proteome, and these proteomic changes are different for the different version of the transferred gene. Additionally, we identified conspicuous changes in global regulators and in intermediate metabolism, confirmed the evolutionary ratchet generated by mutations in DNA repair genes and highlighted the plasticity of bacterial genomes accumulating large and occasionally transient duplications. Our results support a central role of HGT in fuelling evolution as a powerful mechanism promoting rapid, often dramatic genotypic and phenotypic changes. The profound reshaping of the pre-existing geno/phenotype allows the recipient bacteria to explore new ways of functioning, far beyond the mere acquisition of a novel function. | 2019 | 30753446 |
| 9346 | 16 | 0.9991 | Horizontal gene transfer in prokaryotes: quantification and classification. Comparative analysis of bacterial, archaeal, and eukaryotic genomes indicates that a significant fraction of the genes in the prokaryotic genomes have been subject to horizontal transfer. In some cases, the amount and source of horizontal gene transfer can be linked to an organism's lifestyle. For example, bacterial hyperthermophiles seem to have exchanged genes with archaea to a greater extent than other bacteria, whereas transfer of certain classes of eukaryotic genes is most common in parasitic and symbiotic bacteria. Horizontal transfer events can be classified into distinct categories of acquisition of new genes, acquisition of paralogs of existing genes, and xenologous gene displacement whereby a gene is displaced by a horizontally transferred ortholog from another lineage (xenolog). Each of these types of horizontal gene transfer is common among prokaryotes, but their relative contributions differ in different lineages. The fixation and long-term persistence of horizontally transferred genes suggests that they confer a selective advantage on the recipient organism. In most cases, the nature of this advantage remains unclear, but detailed examination of several cases of acquisition of eukaryotic genes by bacteria seems to reveal the evolutionary forces involved. Examples include isoleucyl-tRNA synthetases whose acquisition from eukaryotes by several bacteria is linked to antibiotic resistance, ATP/ADP translocases acquired by intracellular parasitic bacteria, Chlamydia and Rickettsia, apparently from plants, and proteases that may be implicated in chlamydial pathogenesis. | 2001 | 11544372 |
| 9284 | 17 | 0.9991 | The population and evolutionary dynamics of homologous gene recombination in bacterial populations. In bacteria, recombination is a rare event, not a part of the reproductive process. Nevertheless, recombination -- broadly defined to include the acquisition of genes from external sources, i.e., horizontal gene transfer (HGT) -- plays a central role as a source of variation for adaptive evolution in many species of bacteria. Much of niche expansion, resistance to antibiotics and other environmental stresses, virulence, and other characteristics that make bacteria interesting and problematic, is achieved through the expression of genes and genetic elements obtained from other populations of bacteria of the same and different species, as well as from eukaryotes and archaea. While recombination of homologous genes among members of the same species has played a central role in the development of the genetics and molecular biology of bacteria, the contribution of homologous gene recombination (HGR) to bacterial evolution is not at all clear. Also, not so clear are the selective pressures responsible for the evolution and maintenance of transformation, the only bacteria-encoded form of HGR. Using a semi-stochastic simulation of mutation, recombination, and selection within bacterial populations and competition between populations, we explore (1) the contribution of HGR to the rate of adaptive evolution in these populations and (2) the conditions under which HGR will provide a bacterial population a selective advantage over non-recombining or more slowly recombining populations. The results of our simulation indicate that, under broad conditions: (1) HGR occurring at rates in the range anticipated for bacteria like Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae, and Bacillus subtilis will accelerate the rate at which a population adapts to environmental conditions; (2) once established in a population, selection for this capacity to increase rates of adaptive evolution can maintain bacteria-encoded mechanisms of recombination and prevent invasion of non-recombining populations, even when recombination engenders a modest fitness cost; and (3) because of the density- and frequency-dependent nature of HGR in bacteria, this capacity to increase rates of adaptive evolution is not sufficient as a selective force to provide a recombining population a selective advantage when it is rare. Under realistic conditions, homologous gene recombination will increase the rate of adaptive evolution in bacterial populations and, once established, selection for higher rates of evolution will promote the maintenance of bacteria-encoded mechanisms for HGR. On the other hand, increasing rates of adaptive evolution by HGR is unlikely to be the sole or even a dominant selective pressure responsible for the original evolution of transformation. | 2009 | 19680442 |
| 9312 | 18 | 0.9991 | Why There Are No Essential Genes on Plasmids. Mobile genetic elements such as plasmids are important for the evolution of prokaryotes. It has been suggested that there are differences between functions coded for by mobile genes and those in the "core" genome and that these differences can be seen between plasmids and chromosomes. In particular, it has been suggested that essential genes, such as those involved in the formation of structural proteins or in basic metabolic functions, are rarely located on plasmids. We model competition between genotypically varying bacteria within a single population to investigate whether selection favors a chromosomal location for essential genes. We find that in general, chromosomal locations for essential genes are indeed favored. This is because the inheritance of chromosomes is more stable than that for plasmids. We define the "degradation" rate as the rate at which chance genetic processes, for example, mutation, deletion, or translocation, render essential genes nonfunctioning. The only way in which plasmids can be a location for functioning essential genes is if chromosomal genes degrade faster than plasmid genes. If the two degradation rates are equal, or if plasmid genes degrade faster than chromosomal genes, functioning essential genes will be found only on chromosomes. | 2015 | 25540453 |
| 9348 | 19 | 0.9991 | Widespread horizontal gene transfer between plants and bacteria. Plants host a large array of commensal bacteria that interact with the host. The growth of both bacteria and plants is often dependent on nutrients derived from the cognate partners, and the bacteria fine-tune host immunity against pathogens. This ancient interaction is common in all studied land plants and is critical for proper plant health and development. We hypothesized that the spatial vicinity and the long-term relationships between plants and their microbiota may promote cross-kingdom horizontal gene transfer (HGT), a phenomenon that is relatively rare in nature. To test this hypothesis, we analyzed the Arabidopsis thaliana genome and its extensively sequenced microbiome to detect events of horizontal transfer of full-length genes that transferred between plants and bacteria. Interestingly, we detected 75 unique genes that were horizontally transferred between plants and bacteria. Plants and bacteria exchange in both directions genes that are enriched in carbohydrate metabolism functions, and bacteria transferred to plants genes that are enriched in auxin biosynthesis genes. Next, we provided a proof of concept for the functional similarity between a horizontally transferred bacterial gene and its Arabidopsis homologue in planta. The Arabidopsis DET2 gene is essential for biosynthesis of the brassinosteroid phytohormones, and loss of function of the gene leads to dwarfism. We found that expression of the DET2 homologue from Leifsonia bacteria of the Actinobacteria phylum in the Arabidopsis det2 background complements the mutant and leads to normal plant growth. Together, these data suggest that cross-kingdom HGT events shape the metabolic capabilities and interactions between plants and bacteria. | 2024 | 38808121 |