Outbreak of colistin and carbapenem-resistant Klebsiella pneumoniae ST16 co-producing NDM-1 and OXA-48 isolates in an Iranian hospital. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
84001.0000Outbreak of colistin and carbapenem-resistant Klebsiella pneumoniae ST16 co-producing NDM-1 and OXA-48 isolates in an Iranian hospital. BACKGROUND: Colistin and carbapenem-resistant Klebsiella pneumoniae (Col-CRKP) represent a significant and constantly growing threat to global public health. We report here an outbreak of Col-CRKP infections during the fifth wave of COVID-19 pandemic. METHODS: The outbreak occurred in an intensive care unit with 22 beds at a teaching university hospital, Isfahan, Iran. We collected eight Col-CRKP strains from seven patients and characterized these strains for their antimicrobial susceptibility, determination of hypermucoviscous phenotype, capsular serotyping, molecular detection of virulence and resistance genes. Clonal relatedness of the isolates was performed using MLST. RESULTS: The COVID-19 patients were aged 24-75 years with at least 50% pulmonary involvement and were admitted to the intensive care unit. They all had superinfection caused by Col-CRKP, and poor responses to antibiotic treatment and died. With the exception of one isolate that belonged to the ST11, all seven representative Col-CRKP strains belonged to the ST16. Of these eight isolates, one ST16 isolate carried the iucA and ybtS genes was identified as serotype K20 hypervirulent Col-CRKP. The bla(SHV) and bla(NDM-1) genes were the most prevalent resistance genes, followed by bla(OXA-48) and bla(CTX-M-15) and bla(TEM) genes. Mobilized colistin-resistance genes were not detected in the isolates. CONCLUSIONS: The continual emergence of ST16 Col-CRKP strains is a major threat to public health worldwide due to multidrug-resistant and highly transmissible characteristics. It seems that the potential dissemination of these clones highlights the importance of appropriate monitoring and strict infection control measures to prevent the spread of resistant bacteria in hospitals.202438368365
84110.9999blaOXA-48 carrying clonal colistin resistant-carbapenem resistant Klebsiella pneumoniae in neonate intensive care unit, India. Bacteria resistant to colistin, a last resort antibiotic reflect the pre-antibiotic era. In this study, colistin resistance carbapenem-resistant K. pneumoniae (COL(R)- CRKP) strains from neonate's intensive care unit were evaluated. Molecular analysis showed that all the four colistin resistant K. pneumoniae isolates were clonally related with strong biofilm formation ability and harbored bla(SHV-34) and bla(OXA-48) genes. Our result suggested the need of proper surveillance and adequate infection control to limiting the spread of these organisms.201627622347
211520.9998Assessment of carbapenemase genes and antibiotic resistance profiles in ceftazidime-avibactam resistant Klebsiella pneumoniae isolates: A single-center cross-sectional study. BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKp) is an urgent global health threat due to its rapid spread and limited treatment options. Ceftazidime-avibactam exhibits broad efficacy against gram-negative bacteria, including CRKp; however, emerging resistance to this agent is increasingly reported. Understanding the prevalence of ceftazidime-avibactam resistance and the underlying carbapenemase genes is critical for optimizing antimicrobial stewardship and guiding clinical management. This study aimed to determine the prevalence of ceftazidime avibactam resistance among CRKp isolates collected from various clinical specimens, and to analyze their associated carbapenemase genes and antibiotic resistance profiles. METHODS: This cross-sectional study analyzed 312 K pneumoniae isolates obtained from various clinical specimens of hospitalized patients at a tertiary care hospital in Turkey. Antibiotic susceptibility testing was performed using the disk diffusion method for ceftazidime-avibactam and broth microdilution for both colistin and ceftazidime-avibactam. Molecular detection of carbapenemase genes was carried out using polymerase chain reaction. RESULTS: Ceftazidime-avibactam resistance was identified in 21.5% (67/312) of CRKp isolates. Among these isolates, 37.3% harbored both OXA-48 and NDM genes, 13.4% carried NDM alone, 10.4% carried OXA-48 alone, and 38.8% lacked these genes. The majority of resistant isolates originated from urine (31.3%), followed by tracheal aspirate (29.9%), and blood (22.4%) specimens. The prevalence of colistin susceptibility among ceftazidime-avibactam-resistant CRKp isolates was 56.7%. CONCLUSIONS: The coexistence of NDM and OXA-48 genes is a major contributor to ceftazidime-avibactam resistance in CRKp isolates, particularly in urinary and respiratory tract infections. These findings underscore the need for ongoing surveillance and tailored antibiotic stewardship programs to control the spread of resistance in hospital settings.202541088587
86730.9998Epidemiology and Mechanism of Drug Resistance of Multidrug-Resistant Klebsiella Pneumoniae Isolated from Patients with Urinary Tract Infection in Beijing Teaching Hospital, China. PURPOSE: Klebsiella pneumoniae is an important pathogenic bacterium in causing urinary tract infection. With the overuse of antibiotics, bacteria resistant to quinolones combined with carbapenems are increasing. In this study, we investigated the epidemiology, molecular characteristics, drug resistance of multidrug-resistant Klebsiella pneumoniae (MDR-KPN) isolated from urine samples. It provides theoretical basis for the treatment of urinary tract infection by clinicians. PATIENTS AND METHODS: Fifty-one strains of Klebsiella pneumonia were obtained from urine samples collected between 2012 and 2017 in total. All the strains are multi-drug resistant bacteria. This paper used multilocus sequence typing (MLST) to determine molecular epidemiological typing. We performed antimicrobial susceptibility testing and investigated quinolones and carbapenems resistance genes. RESULTS: The strains which we collected were resistant to ciprofloxacin and Levofloxacin. In an epidemiological analysis using MLST, 86.27% (44/51) of isolates were confirmed to be ST11. The main carbapenem resistance gene was KPC-19, 78.43(40/51). Among the quinolone resistance genes, the major resistance genes were aac(6')-Ib-cr, oqxA and oqxB. CONCLUSION: The main molecular epidemiological types we detected was ST11. The main resistance gene of carbapenems was KPC-19. The quinolone resistance genes are mainly aac(6')-Ib-cr, oqxA and oqxB. The experimental results can help control the use of quinolones and carbapenems, and we could provide rational drug use basis for clinicians to treat urinary tract infection. For MDR-KPN, a combination of multiple antibiotics is necessary.202539803309
212740.9998Molecular characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary university hospital in Turkey. The aim of this study was to identify the resistance genes and genetic relationship of carbapenemase-resistant Klebsiella pneumoniae (CRKP) identified in a tertiary university hospital in Turkey. During the study, CRKP was isolated from 137 patients. Resistance genes were studied in 94 isolates. Among these isolates, most of the CRKP produced only oxacillinase (OXA)-48 (91.5%); however, 4.3% of the isolates produced only New Delhi metallo-beta-lactamase 1 (NDM-1), 1% produced both OXA-48 and NDM-1, and 3.2% produced imipenem. This study adds Turkey to the growing list of countries with NDM-1-producing bacteria and shows that NDM-1 may easily spread worldwide.201323623803
211650.9998Antibiotic Resistance Genes Among Carbapenem-resistant Enterobacterales (CRE) Isolates of Prapokklao Hospital, Chanthaburi Province, Thailand. BACKGROUND: The global spread of carbapenem-resistant Enterobacterales (CRE) inflicts a severe threat to human health. The CRE infections have resulted in an increased mortality rate in hospitals and other health-care settings worldwide. In this study, the antibiotic-resistance pattern and prevalence of carbapenemase-encoding genes among CRE isolated from patients of one hospital in Thailand were investigated. METHODS: By using conventional biochemical tests, we identified and isolated all species of Enterobacterales from the clinical samples kept at Prapokklao Hospital, Chanthaburi, Thailand, which were collected during 2016-2017. Multidrug-resistant (MDR) bacteria were determined by disc diffusion method and minimum inhibitory concentration (MIC) test strips. Carbapenemase genes were detected by PCR and confirmed by Sanger sequencing. RESULTS: Klebsiella pneumoniae complex, Escherichia coli, and Enterobacter spp. were isolated from the specimens. Of 9,564 isolated Enterobacterales, 282 were multidrug-resistance (MDR). The MIC test strips revealed that the MDR CRE were resistant to ertapenem (92.9%) and meropenem (81.3%). All these isolates carried carbapenemase-coding genes, including bla (NDM) (90%) and bla (IMP) (71%), the two most commonly found genes among CRE strains. There were 39.2% of the isolates that carried a combination of bla (NDM)-bla (IMP) and 22.6% carried combined bla (NDM)-bla (IMP)-bla (OXA-48-like) genes. CONCLUSION: This study demonstrates a significantly high prevalence of CRE isolates with the MDR phenotypes. A minority of the isolates carried a single carbapenem-resistant gene, while the majority harbored multiple genes in combination. Regular monitoring of MDR CRE and characterization of their drug resistance are important for guiding treatment, intervention and control of the CRE spread and outbreak in a health-care setting.202134511940
90960.9998First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of resistance and virulence determinants were performed. PCR screening identified the presence of the resistance genes bla(KPC-3), bla(TEM-1) and bla(SHV-1) in both isolates. The KPC-3 K. pneumoniae isolate belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance profile including tigecycline and colistin.201830404152
93070.9998Isolation of Carbapenem and Colistin Resistant Gram-Negative Bacteria Colonizing Immunocompromised SARS-CoV-2 Patients Admitted to Some Libyan Hospitals. The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating effect, globally. We describe, for the first time, the occurrence of carbapenem-resistant bacteria colonizing SARS-CoV-2 patients who developed hospital-associated infections with carbapenemase-producing, Gram-negative bacteria at some isolation centers of SARS-CoV-2 in the eastern part of Libya. In total, at first, 109 samples were collected from 43 patients, with the samples being recovered from oral (n = 35), nasal (n = 45), and rectal (n = 29) cavities. Strain identification was performed via matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Antibiotic susceptibility testing was carried out on Mueller-Hinton agar, using the standard disk diffusion method. MIC determination was confirmed via E-TEST and microdilution standard methods. A molecular study was carried out to characterize the carbapenem and colistin resistance in Gram-negative bacterial strains. All of the positive results were confirmed via sequencing. Klebsiella pneumoniae (n = 32), Citrobacter freundii (n = 21), Escherichia coli (n = 7), and Acinetobacter baumannii (n = 21) were the predominant isolated bacteria. Gram-negative isolates were multidrug-resistant and carried different carbapenem resistance-associated genes, including NDM-1 (56/119; 47.05%), OXA-48 (15/119; 12.60%), OXA-23 (19/119; 15.96%), VIM (10/119; 8.40%), and the colistin resistance mobile gene mcr-1 (4/119; 3.36%). The overuse of antimicrobials, particularly carbapenem antibiotics, during the SARS-CoV-2 pandemic has led to the emergence of multidrug-resistant bacteria, mainly K. pneumoniae, A. baumannii, and colistin-resistant E. coli strains. Increased surveillance as well as the rational use of carbapenem antibiotics and, recently, colistin are required to reduce the propagation of multidrug-resistant strains and to optimally maintain the efficacy of these antibiotics. IMPORTANCE In this work, we describe, for the first time, the occurrence of carbapenem-resistant bacteria colonizing COVID-19 patients who developed hospital-associated infections with carbapenemase-producing, Gram-negative bacteria at some isolation centers of COVID-19 in the eastern part of Libya. Our results confirmed that the overuse of antimicrobials, such as carbapenem antibiotics, during the COVID-19 pandemic has led to the emergence of multidrug-resistant bacteria, mainly K. pneumoniae and A. baumannii, as well as colistin resistance.202337042782
212380.9998Phenotypic and genotypic detection of resistance mechanisms in carbapenem-resistant gram-negative bacteria isolated from Egyptian ICU patients with first emergence of NDM-1 producing Klebsiella oxytoca. BACKGROUND AND OBJECTIVES: Carbapenems are considered the last resort to treat several infections, particularly in intensive care units (ICUs). However, increasing carbapenem resistance is problematic because it leads to high morbidity and mortality rates. This study aimed to determine the rate of carbapenem resistance among Gram-negative bacteria collected from patients in ICUs and to identify their resistance mechanisms using phenotypic and genotypic methods. MATERIALS AND METHODS: Antimicrobial susceptibility testing was carried out using the disc diffusion method among 180 Gram-negative bacterial isolates. Productions of carbapenemases, metallo-beta-lactamases (MBLs) and the harboring of carbapenemase-encoding genes, were detected in 40 selected carbapenem-resistant Gram-negative bacteria (CR-GNB). RESULTS: Of 40 selected CR-GNB isolates, 28 (70%), and 20 (50%) isolates were phenotypically positive for carbapenemase, and MBL production, respectively. Furthermore, 22 (55%) showed amplification of one or more of the carbapenemase-encoding genes, including bla (NDM-1), bla (VIM-2), and bla (OXA-48). This study described the first emergence of NDM-1 producing Klebsiella oxytoca in Egyptian ICUs. CONCLUSION: High incidence of CR-GNB detected in the ICUs in our study area may be attributed to the overuse of antibiotics, including carbapenems, and improper application of infection control measures. These findings confirm the need for the application of a strict antibiotic stewardship program.202236721446
91890.9998Carbapenem Resistance in Gram-Negative Bacteria: A Hospital-Based Study in Egypt. Background and Objectives: The global spread of carbapenem resistance and the resulting increase in mortality forced the World Health Organization (WHO) to claim carbapenem-resistant enterobacteriaceae (CRE) as global priority pathogens. Our study aimed to determine the prevalence of carbapenemase-encoding genes and major plasmid incompatibility groups among Gram-negative hospital-based isolates in Egypt. Material and Methods: This cross-sectional study was carried out at Mansoura University Hospitals over 12 months, from January to December 2019. All the isolates were tested for carbapenem resistance. The selected isolates were screened by conventional polymerase chain reaction (PCR) for the presence of carbapenemase genes, namely bla(KPC), bla(IMP), bla(VIM), and bla(NDM-1). PCR-based plasmid replicon typing was performed using the commercial PBRT kit. Results: Out of 150 isolates, only 30 (20.0%) demonstrated carbapenem resistance. Klebsiella pneumoniae was the most resistant of all isolated bacteria, and bla(NDM) was the predominant carbapenemases gene, while the most prevalent plasmid replicons were the F replicon combination (FIA, FIB, and FII) and A/C. Plasmids were detected only in Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. Remarkably, we found a statistically significant association between carbapenemase genes and plasmid replicons, including bla(NDM), IncA/C, and IncX. Conclusions: Our study demonstrated an alarming rise of plasmid-mediated carbapenem-resistant bacteria in our locality. The coexistence of resistance genes and plasmids highlights the importance of a targeted antibiotic surveillance program and the development of alternative therapeutic options at the local and international levels. Based on our results, we suggest a large-scale study with more Enterobacteriaceae isolates, testing other carbapenemase-encoding genes, and comparing the replicon typing method with other plasmid detection methods. We also recommend a national action plan to control the irrational use of antibiotics in Egypt.202336837486
2126100.9998Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. The burden of antimicrobial resistance (AMR) is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB) isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35%) were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59%) and 28 (12%) isolates, respectively. Carbapenemase genes were most detected in K. pneumoniae 24 (11%), followed by P. aeruginosa 23 (10%), and E. coli with 19 isolates (8%). We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections.201424707481
907110.9998Clonal Dissemination of Plasmid-Mediated Carbapenem and Colistin Resistance in Refugees Living in Overcrowded Camps in North Lebanon. Carbapenem and colistin-resistant bacteria represent a global public health problem. Refugees carrying these bacteria and living in inadequate shelters can spread these microorganisms. The aim of this study was to investigate the intestinal carriage of these bacteria in Syrian refugees in Lebanon. Between June and July 2019, 250 rectal swabs were collected from two refugee camps in North Lebanon. Swabs were cultured on different selective media. Antibiotic susceptibility testing was performed using the disk diffusion method. Carbapenemase-encoding genes and mcr genes were investigated using real-time polymerase chain reaction (RT-PCR) and standard polymerase chain reaction (PCR). Epidemiological relatedness was studied using multilocus sequence typing (MLST). From 250 rectal swabs, 16 carbapenem-resistant, 5 colistin-resistant, and 4 colistin and carbapenem-resistant Enterobacteriaceae were isolated. The isolates exhibited multidrug-resistant phenotypes. Seven Klebsiella pneumoniae isolates harboured the bla(OXA-48) gene, and in addition four K. pneumoniae had mutations in the two component systems pmrA/pmrB, phoP/phoQ and co-harboured the bla(NDM-1) gene. Moreover, the bla(NDM-1) gene was detected in six Escherichia coli and three Enterobacter cloacae isolates. The remaining five E. coli isolates harboured the mcr-1 gene. MLST results showed several sequence types, with a remarkable clonal dissemination. An urgent strategy needs to be adopted in order to avoid the spread of such resistance in highly crowded underserved communities.202134943690
839120.9997Molecular characterization of carbapenemase-producing Enterobacterales in a tertiary hospital in Lima, Peru. Carbapenemase-producing Enterobacterales (CPE) are a growing threat to global health and the economy. Understanding the interactions between resistance and virulence mechanisms of CPE is crucial for managing difficult-to-treat infections and informing outbreak prevention and control programs. Here, we report the characterization of 21 consecutive, unique clinical isolates of CPE collected in 2018 at a tertiary hospital in Lima, Peru. Isolates were characterized by phenotypic antimicrobial susceptibility testing and whole-genome sequencing to identify resistance determinants and virulence factors. Seven Klebsiella pneumoniae isolates were classified as extensively drug-resistant. The remaining Klebsiella, Enterobacter hormaechei, and Escherichia coli isolates were multidrug-resistant. Eighteen strains carried the metallo-β-lactamase NDM-1, two the serine-carbapenemase KPC-2, and one isolate had both carbapenemases. The bla(NDM-1) gene was located in the truncated ΔISAba125 element, and the bla(KPC-2) gene was in the Tn4401a transposon. ST147 was the most frequent sequence type among K. pneumoniae isolates. Our findings highlight the urgent need to address the emergence of CPE and strengthen control measures and antibiotic stewardship programs in low- and middle-income settings.IMPORTANCEGenomic surveillance of antimicrobial resistance contributes to monitoring the spread of resistance and informs treatment and prevention strategies. We characterized 21 carbapenemase-producing Enterobacterales collected at a Peruvian tertiary hospital in 2018, which exhibited very high levels of resistance and carried numerous resistance genes. We detected the coexistence of carbapenemase-encoding genes (bla(NDM-1) and bla(KPC-2)) in a Klebsiella pneumoniae isolate that also had the PmrB(R256G) mutation associated with colistin resistance. The bla(KPC-2) genes were located in Tn4401a transposons, while the bla(NDM-1) genes were in the genetic structure Tn125 (ΔISAba125). The presence of high-risk clones among Klebsiella pneumoniae (ST11 and ST147) and Escherichia coli (ST410) isolates is also reported. The study reveals the emergence of highly resistant bacteria in a Peruvian hospital, which could compromise the effectiveness of current treatments and control.202438193666
2122130.9997Phenotypic and genotypic characteristics of carbapenemase- and extended spectrum β-lactamase-producing Klebsiella pneumoniae ozaenae clinical isolates within a hospital in Panama City. Klebsiella pneumoniae spp ozaenae is a versatile bacterial species able to acquire antimicrobial resistance; the species presents a higher antimicrobial resistance profile compared to Klebsiella pneumoniae spp pneumoniae. Carbapenemase and extended spectrum β-lactamase (ESBL)-producing bacteria commonly arise in clinical settings where antimicrobial stewardship is limited. Our study aims to report the phenotypical and genetic characteristics of nosocomial Klebsiella pneumoniae spp ozaenae isolates associated with mortality collected from a tertiary-level hospital in Panama City. In October 2020, 11 consecutive multidrug-resistant Gram-negative isolates were recovered from secretions and blood cultures from hospitalized patients. Nearly 90% (10/11) of these patients died, and bacteria was obtained from six patients for investigation. Biochemical evaluation of the six isolates revealed the presence of multidrug-resistant Klebsiella pneumoniae spp ozaenae. Phenotypic evaluation indicated resistance to carbapenemase and EBSL. In contrast, genetic evaluation by PCR showed that only 30% (2/6) were resistant to CTX-M-1 (CTX-M group 1), whereas 60.7% (4/6) presented carbapenemase resistance genes, and 33.3% (2/6) presented New Delhi metallo-β-lactamase (NDM) resistance genes. Klebsiella pneumoniae ST258 was identified in 83.3% (5/6) of the isolates. Phylogenetic analysis using 16S revealed low homology among the six isolates. These results suggest that antibiotic resistance genes may have been incorporated into these Klebsiella pneumoniae spp ozaenae isolates within the hospital environment. We recommend strengthening the antimicrobial stewardship program and antibiotic control policy, as well as heightened infection control and prevention measures, such as ward sanitation and increased hand washing frequency.202134733509
922140.9997Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems-A Pilot Study. Carbapenem-resistant Acinetobacter baumannii is one of the major problems among hospitalized patients. The presence of multiple virulence factors results in bacteria persistence in the hospital environment. It facilitates bacterial transmission between patients, causing various types of infections, mostly ventilator-associated pneumonia and wound and bloodstream infections. A. baumannii has a variable number of resistance mechanisms, but the most commonly produced are carbapenem-hydrolyzing class D β-lactamases (CHDLs). In our study, the presence of bla(OXA-23), bla(OXA-40) and bla(OXA-51) genes was investigated among 88 clinical isolates of A. baumannii, including 53 (60.2%) strains resistant to both carbapenems (meropenem and imipenem) and 35 (39.8%) strains susceptible to at least meropenem. Among these bacteria, all the isolates carried the bla(OXA-51) gene. The bla(OXA-23) and bla(OXA-40) genes were detected in two (5.7%) and three (8.6%) strains, respectively. Among the OXA-23 carbapenemase-producing A. baumannii strains (n = 55), insertion sequences (ISAba1) were detected upstream of the bla(OXA-23) gene in fifty-two (94.5%) carbapenem-resistant and two (3.6%) meropenem-susceptible isolates. A. baumannii clinical strains from Poland have a similar antimicrobial resistance profile as those worldwide, with the presence of ISAba1 among bla(OXA-23)-positive isolates also being quite common. Carbapenem resistance among A. baumannii strains is associated with the presence of CHDLs, especially when insertion sequences are present.202439458366
917150.9997Virulence characterization and clonal analysis of uropathogenic Escherichia coli metallo-beta-lactamase-producing isolates. BACKGROUND: Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infection (UTI); however, treatment of UTI has been challenging due to increased antimicrobial resistance (AMR). One of the most important types of AMR is carbapenem resistance (CR). CR bacteria are known as an important threat to global public health today. Class B metallo-beta-lactamases (MBLs) are one of the major factors for resistance against carbapenems. We aimed to investigate the characteristics of UPEC isolates producing MBL. METHODS: A cross-sectional study was conducted from October 2018 to December 2019 in Ahvaz; Iran. UPEC isolates were identified by biochemical and molecular methods. Metallo-beta-lactamase-producing isolates were detected using modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) tests. MBL genes, phylogenetic group, and virulence genes profile of carbapenem resistant isolates were determined. Conjugation assay and plasmid profiling were conducted to evaluate the ability of transferring of CR to other E. coli isolates. Clonal similarity of isolates were assessed using Enterobacterial intergenic repetitive element sequence (ERIC)-PCR. RESULTS: Among 406 UPEC isolates, 12 (2.95%) carbapenem-resistant were detected of which 11 were phenotypically MBL-producing strains. Four isolates were resistant to all investigated antimicrobial agents and were considered possible pandrug-resistant (PDR). bla(NDM), bla(OXA-48), bla(IMP-1), and bla(IMP-2) genes were found in 9, 5, 1, and 1 isolates, respectively. Among 30 virulence genes investigated, the traT, fyuA followed by fimH, and iutA with the frequency of 8 (66.7%), 8 (66.7%), 7 (58.3%), and 7 (58.3%) were the most identified genes, respectively. Siderophore production was the main virulence trait among carbapenem-resistant UPEC isolates. Except for two, all other isolates showed weak to moderate virulence index. In all recovered isolates, CR was readily transmitted via plasmids to other isolates during conjugation experiments. CONCLUSION: MBL and carbapenemase genes, especially bla(NDM) and bla(OXA-48) are spreading rapidly among bacteria, which can be a threat to global public health. Therefore monitoring the emergence and dissemination of new AMR is necessary to continuously refine guidelines for empiric antimicrobial therapy. Understanding the mechanisms of resistance and virulence in this group of bacteria can play an effective role in providing new therapeutic methods.202134344363
2125160.9997Emergence of Carbapenem-Resistant Gram-Negative Isolates in Hospital Settings in Djibouti. Introduction: The antimicrobial resistance (AMR) of bacteria is increasing rapidly against all classes of antibiotics, with the increasing detection of carbapenem-resistant isolates. However, while growing prevalence has been reported around the world, data on the prevalence of carbapenem resistance in developing countries are fairly limited. In this study, we investigated and determined the resistance rate to carbapenems among multidrug-resistant Gram-negative bacteria (MDR-GNB) isolated in Djibouti and characterized their resistance mechanisms. Results: Of the 256 isolates, 235 (91.8%) were identified as Gram-negative bacteria (GNB). Of these GNBs, 225 (95.7%) isolates exhibited a multidrug resistance phenotype, and 20 (8.5%) isolates were resistant to carbapenems, including 13 Escherichia coli, 4 Acinetobacter baumannii, 2 Klebsiella pneumoniae and 1 Proteus mirabilis. The most predominant GNB in this hospital setting were E. coli and K. pneumoniae species. Carbapenemase genes such as bla(OXA-48) and bla(NDM-5) were identified, respectively, in six and four E. coli isolates, whereas the carbapenemase bla(NDM-1) was identified in three E. coli, two K. pneumoniae, one P. mirabilis and one A. baumannii. Moreover, three A. baumannii isolates co-hosted bla(OXA-23) and bla(NDM-1). Materials and Methods: A total of 256 clinical strains collected between 2019 and 2020 were identified using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). Antibiotic susceptibility testing was performed using disk diffusion and E-test methods. Real-time polymerase chain reaction (RT-PCR), standard PCR and sequencing were used to investigate genes encoding for extended-spectrum-β-lactamases, carbapenemases and colistin resistance genes. Conclusions: We report, for the first time, the presence of MDR-GNB clinical isolates and the emergence of carbapenem-resistant isolates in Djibouti. In addition to performing antimicrobial susceptibility testing, we recommend phenotypic and molecular screening to track the spread of carbapenemase genes among clinical GNB isolates.202337508230
934170.9997High Carbapenem Resistance Caused by VIM and NDM Enzymes and OprD Alteration in Nonfermenter Bacteria Isolated from a Libyan Hospital. Acinetobacter baumannii and Pseudomonas aeruginosa are among the most prevalent pathogens causing a wide range of serious infections in hospitalized patients and contaminating intensive care units and inanimate surfaces. The purpose of this study was to investigate the mechanism of carbapenem resistance in clinical and hospital environmental isolates of A. baumannii and P. aeruginosa recovered from a Libyan hospital. From a total of 82 Gram-negative bacteria, 8 isolates of A. baumannii and 3 isolates of P. aeruginosa exhibited resistance to imipenem with minimum inhibitory concentrations ranging from 16 to >32 μg/mL. Five isolates of A. baumannii harbored bla(OXA-23) gene, from which three isolates were collected from patients and two from hospital environment. Only one isolate harbored bla(NDM-1) gene, which was responsible for carbapenem resistance in A. baumannii. The OprD gene seems to be disturbed by an insertion sequence (IS) in two isolates and affected by polymorphism in one isolate. Pulsed-field gel electrophoresis results showed high genetic diversity among carbapenemase producing A. baumannii. This study highlights the dissemination of bla(OXA-23) and bla(NDM-1) genes in a Libyan setting. Therefore, infection prevention and control practices, antimicrobial stewardship initiatives, and antimicrobial resistance surveillance systems should be implemented to prevent the wide spread of antimicrobial resistance.202134029121
843180.9997Whole Genome Sequencing Reveals Presence of High-Risk Global Clones of Klebsiella pneumoniae Harboring Multiple Antibiotic Resistance Genes in Multiple Plasmids in Mwanza, Tanzania. BACKGROUND: Klebsiella pneumoniae is an important multidrug-resistant (MDR) pathogen, causing both community- and healthcare-associated infections. The resistance is due to the continuous accumulation of multiple antibiotic-resistance-genes (ARGs) through spontaneous genomic mutations and the acquisition of conjugative plasmids. This study presents antibiotics resistance genes, plasmids replicons, and virulence genes of K. pneumoniae isolates from clinical specimens in a tertiary hospital, Mwanza, Tanzania. METHODS: Whole genome sequencing (WGS) of 34 K. pneumoniae was performed, using an Illumina NextSeq 500, followed by in silco analysis. RESULTS: A total of 34 extended-spectrum beta-lactamase-producing K. pneumoniae, isolated from blood samples from neonatal units were whole-genome sequenced. Of these, 28 (82.4%) had an identified sequence type (ST), with ST14 (39.3%, n = 11) being frequently identified. Moreover, 18 (52.9%) of the bacteria harbored at least one plasmid, from which a total of 25 plasmid replicons were identified with a predominance of IncFIB(K) 48.0% (n = 12). Out of 34 sequenced K. pneumoniae, 32 (94.1%) were harboring acquired antibiotic/biocides-resistance-genes (ARGs) with a predominance of bla(CTX-M-15) (90.6%), followed by oqxB (87.5%), oqxA (84.4%), bla(TEM-1B) (84.4%) and sul2 (84.4%). Interestingly, we observed the ColRNAI plasmid-replicon (n = 1) and qacE gene (n = 4) for the first time in this setting. CONCLUSION: Global high-risk clones of K. pneumoniae isolates carry multiple ARGs in multiple plasmid-replicons. Findings from this study warrant genomic-based surveillance to monitor high-risk global clones, epidemic plasmids and ARGs in low- and middle-income countries.202236557648
919190.9997Molecular Characteristics of Carbapenem-Resistant Enterobacter cloacae in Ningxia Province, China. The emergence of carbapenem-resistant Enterobacteriaceae (CRE) has become a major public health concern worldwide and a new challenge in the treatment of infectious diseases. The molecular characteristics of Enterobacter cloacae in Ningxia China are unknown. In this study, we reported 10 carbapenem-resistant E. cloacae isolates from the General Hospital of Ningxia Medical University, the largest university hospital in Ningxia between January 2012 and December 2013. Bacteria isolates were identified by Vitek2 compact and the identity of non-duplicate E. cloacae isolates was further confirmed by PCR and sequencing. The drug susceptibility and phenotype identification of these isolates were analyzed by agar dilution method, modified Hodge test (MHT), and EDTA synergy test. Beta-lactamase (bla) genes bla(NDM-1) was found in 8 out of 10 isolates. Most isolates harbored multiple resistance genes including bla(ESBL), bla(AmpC), quinolones, aminoglycosides, and disinfectant resistance genes. Pulsed field gel electrophoresis (PFGE) showed that these E. cloacae isolates were grouped into 6 clusters based on a cutoff of 80% genetic similarity. In conjugative assay, 9 out of 10 isolates transferred carbapenem-resistant genes to Escherichia coli. Our study has revealed that NDM-1-producing isolates are the most prevalent carbapenem-resistant E. cloacae in Ningxia. These isolates also carry several other carbapenem-resistant genes and can transfer these genes to other bacteria through conjugation. These findings highlight an urgent need to monitor these isolates to prevent their further spread in this region.201728197140