# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8393 | 0 | 1.0000 | The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BACKGROUND: The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security. RESULTS: We report the 615-Mb high-quality genome sequence of B. tabaci Middle East-Asia Minor 1 (MEAM1), the first genome sequence in the Aleyrodidae family, which contains 15,664 protein-coding genes. The B. tabaci genome is highly divergent from other sequenced hemipteran genomes, sharing no detectable synteny. A number of known detoxification gene families, including cytochrome P450s and UDP-glucuronosyltransferases, are significantly expanded in B. tabaci. Other expanded gene families, including cathepsins, large clusters of tandemly duplicated B. tabaci-specific genes, and phosphatidylethanolamine-binding proteins (PEBPs), were found to be associated with virus acquisition and transmission and/or insecticide resistance, likely contributing to the global invasiveness and efficient virus transmission capacity of B. tabaci. The presence of 142 horizontally transferred genes from bacteria or fungi in the B. tabaci genome, including genes encoding hopanoid/sterol synthesis and xenobiotic detoxification enzymes that are not present in other insects, offers novel insights into the unique biological adaptations of this insect such as polyphagy and insecticide resistance. Interestingly, two adjacent bacterial pantothenate biosynthesis genes, panB and panC, have been co-transferred into B. tabaci and fused into a single gene that has acquired introns during its evolution. CONCLUSIONS: The B. tabaci genome contains numerous genetic novelties, including expansions in gene families associated with insecticide resistance, detoxification and virus transmission, as well as numerous horizontally transferred genes from bacteria and fungi. We believe these novelties likely have shaped B. tabaci as a highly invasive polyphagous crop pest and efficient vector of plant viruses. The genome serves as a reference for resolving the B. tabaci cryptic species complex, understanding fundamental biological novelties, and providing valuable genetic information to assist the development of novel strategies for controlling whiteflies and the viruses they transmit. | 2016 | 27974049 |
| 8459 | 1 | 0.9991 | A physical map of traits of agronomic importance based on potato and tomato genome sequences. Potato, tomato, pepper, and eggplant are worldwide important crop and vegetable species of the Solanaceae family. Molecular linkage maps of these plants have been constructed and used to map qualitative and quantitative traits of agronomic importance. This research has been undertaken with the vision to identify the molecular basis of agronomic characters on the one hand, and on the other hand, to assist the selection of improved varieties in breeding programs by providing DNA-based markers that are diagnostic for specific agronomic characters. Since 2011, whole genome sequences of tomato and potato became available in public databases. They were used to combine the results of several hundred mapping and map-based cloning studies of phenotypic characters between 1988 and 2022 in physical maps of the twelve tomato and potato chromosomes. The traits evaluated were qualitative and quantitative resistance to pathogenic oomycetes, fungi, bacteria, viruses, nematodes, and insects. Furthermore, quantitative trait loci for yield and sugar content of tomato fruits and potato tubers and maturity or earliness were physically mapped. Cloned genes for pathogen resistance, a few genes underlying quantitative trait loci for yield, sugar content, and maturity, and several hundred candidate genes for these traits were included in the physical maps. The comparison between the physical chromosome maps revealed, in addition to known intrachromosomal inversions, several additional inversions and translocations between the otherwise highly collinear tomato and potato genomes. The integration of the positional information from independent mapping studies revealed the colocalization of qualitative and quantitative loci for resistance to different types of pathogens, called resistance hotspots, suggesting a similar molecular basis. Synteny between potato and tomato with respect to genomic positions of quantitative trait loci was frequently observed, indicating eventual similarity between the underlying genes. | 2023 | 37564870 |
| 8407 | 2 | 0.9990 | Breeding for disease resistance in soybean: a global perspective. This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies. | 2022 | 35790543 |
| 8378 | 3 | 0.9989 | Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria. BACKGROUND: Antibiotic resistance in bacteria spreads quickly, overtaking the pace at which new compounds are discovered and this emphasizes the immediate need to discover new compounds for control of infectious diseases. Terrestrial bacteria have for decades been investigated as a source of bioactive compounds leading to successful applications in pharmaceutical and biotech industries. Marine bacteria have so far not been exploited to the same extent; however, they are believed to harbor a multitude of novel bioactive chemistry. To explore this potential, genomes of 21 marine Alpha- and Gammaproteobacteria collected during the Galathea 3 expedition were sequenced and mined for natural product encoding gene clusters. RESULTS: Independently of genome size, bacteria of all tested genera carried a large number of clusters encoding different potential bioactivities, especially within the Vibrionaceae and Pseudoalteromonadaceae families. A very high potential was identified in pigmented pseudoalteromonads with up to 20 clusters in a single strain, mostly NRPSs and NRPS-PKS hybrids. Furthermore, regulatory elements in bioactivity-related pathways including chitin metabolism, quorum sensing and iron scavenging systems were investigated both in silico and in vitro. Genes with siderophore function were identified in 50% of the strains, however, all but one harboured the ferric-uptake-regulator gene. Genes encoding the syntethase of acylated homoserine lactones were found in Roseobacter-clade bacteria, but not in the Vibrionaceae strains and only in one Pseudoalteromonas strains. The understanding and manipulation of these elements can help in the discovery and production of new compounds never identified under regular laboratory cultivation conditions. High chitinolytic potential was demonstrated and verified for Vibrio and Pseudoalteromonas species that commonly live in close association with eukaryotic organisms in the environment. Chitin regulation by the ChiS histidine-kinase seems to be a general trait of the Vibrionaceae family, however it is absent in the Pseudomonadaceae. Hence, the degree to which chitin influences secondary metabolism in marine bacteria is not known. CONCLUSIONS: Utilizing the rapidly developing sequencing technologies and software tools in combination with phenotypic in vitro assays, we demonstrated the high bioactive potential of marine bacteria in an efficient, straightforward manner - an approach that will facilitate natural product discovery in the future. | 2015 | 25879706 |
| 8394 | 4 | 0.9989 | Expanding Diversity of Firmicutes Single-Strand Annealing Proteins: A Putative Role of Bacteriophage-Host Arms Race. Bacteriophage-encoded single strand annealing proteins (SSAPs) are recombinases which can substitute the classical, bacterial RecA and manage the DNA metabolism at different steps of phage propagation. SSAPs have been shown to efficiently promote recombination between short and rather divergent DNA sequences and were exploited for in vivo genetic engineering mainly in Gram-negative bacteria. In opposition to the conserved and almost universal bacterial RecA protein, SSAPs display great sequence diversity. The importance for SSAPs in phage biology and phage-bacteria evolution is underlined by their role as key players in events of horizontal gene transfer (HGT). All of the above provoke a constant interest for the identification and study of new phage recombinase proteins in vivo, in vitro as well as in silico. Despite this, a huge body of putative ssap genes escapes conventional classification, as they are not properly annotated. In this work, we performed a wide-scale identification, classification and analysis of SSAPs encoded by the Firmicutes bacteria and their phages. By using sequence similarity network and gene context analyses, we created a new high quality dataset of phage-related SSAPs, substantially increasing the number of annotated SSAPs. We classified the identified SSAPs into seven distinct families, namely RecA, Gp2.5, RecT/Redβ, Erf, Rad52/22, Sak3, and Sak4, organized into three superfamilies. Analysis of the relationships between the revealed protein clusters led us to recognize Sak3-like proteins as a new distinct SSAP family. Our analysis showed an irregular phylogenetic distribution of ssap genes among different bacterial phyla and specific phages, which can be explained by the high rates of ssap HGT. We propose that the evolution of phage recombinases could be tightly linked to the dissemination of bacterial phage-resistance mechanisms (e.g., abortive infection and CRISPR/Cas systems) targeting ssap genes and be a part of the constant phage-bacteria arms race. | 2021 | 33959107 |
| 8405 | 5 | 0.9989 | Mapping Major Disease Resistance Genes in Soybean by Genome-Wide Association Studies. Soybean is one of the most valuable agricultural crops in the world. Besides, this legume is constantly attacked by a wide range of pathogens (fungi, bacteria, viruses, and nematodes) compromising yield and increasing production costs. One of the major disease management strategies is the genetic resistance provided by single genes and quantitative trait loci (QTL). Identifying the genomic regions underlying the resistance against these pathogens on soybean is one of the first steps performed by molecular breeders. In the past, genetic mapping studies have been widely used to discover these genomic regions. However, over the last decade, advances in next-generation sequencing technologies and their subsequent cost decreasing led to the development of cost-effective approaches to high-throughput genotyping. Thus, genome-wide association studies applying thousands of SNPs in large sets composed of diverse soybean accessions have been successfully done. In this chapter, a comprehensive review of the majority of GWAS for soybean diseases published since this approach was developed is provided. Important diseases caused by Heterodera glycines, Phytophthora sojae, and Sclerotinia sclerotiorum have been the focus of the several GWAS. However, other bacterial and fungi diseases also have been targets of GWAS. As such, this GWAS summary can serve as a guide for future studies of these diseases. The protocol begins by describing several considerations about the pathogens and bringing different procedures of molecular characterization of them. Advice to choose the best isolate/race to maximize the discovery of multiple R genes or to directly map an effective R gene is provided. A summary of protocols, methods, and tools to phenotyping the soybean panel is given to several diseases. We also give details of options of DNA extraction protocols and genotyping methods, and we describe parameters of SNP quality to soybean data. Websites and their online tools to obtain genotypic and phenotypic data for thousands of soybean accessions are highlighted. Finally, we report several tricks and tips in Subheading 4, especially related to composing the soybean panel as well as generating and analyzing the phenotype data. We hope this protocol will be helpful to achieve GWAS success in identifying resistance genes on soybean. | 2022 | 35641772 |
| 8406 | 6 | 0.9988 | Available cloned genes and markers for genetic improvement of biotic stress resistance in rice. Biotic stress is one of the major threats to stable rice production. Climate change affects the shifting of pest outbreaks in time and space. Genetic improvement of biotic stress resistance in rice is a cost-effective and environment-friendly way to control diseases and pests compared to other methods such as chemical spraying. Fast deployment of the available and suitable genes/alleles in local elite varieties through marker-assisted selection (MAS) is crucial for stable high-yield rice production. In this review, we focused on consolidating all the available cloned genes/alleles conferring resistance against rice pathogens (virus, bacteria, and fungus) and insect pests, the corresponding donor materials, and the DNA markers linked to the identified genes. To date, 48 genes (independent loci) have been cloned for only major biotic stresses: seven genes for brown planthopper (BPH), 23 for blast, 13 for bacterial blight, and five for viruses. Physical locations of the 48 genes were graphically mapped on the 12 rice chromosomes so that breeders can easily find the locations of the target genes and distances among all the biotic stress resistance genes and any other target trait genes. For efficient use of the cloned genes, we collected all the publically available DNA markers (~500 markers) linked to the identified genes. In case of no available cloned genes yet for the other biotic stresses, we provided brief information such as donor germplasm, quantitative trait loci (QTLs), and the related papers. All the information described in this review can contribute to the fast genetic improvement of biotic stress resistance in rice for stable high-yield rice production. | 2023 | 37731986 |
| 8375 | 7 | 0.9988 | Genome-scale identification method applied to find cryptic aminoglycoside resistance genes in Pseudomonas aeruginosa. BACKGROUND: The ability of bacteria to rapidly evolve resistance to antibiotics is a critical public health problem. Resistance leads to increased disease severity and death rates, as well as imposes pressure towards the discovery and development of new antibiotic therapies. Improving understanding of the evolution and genetic basis of resistance is a fundamental goal in the field of microbiology. RESULTS: We have applied a new genomic method, Scalar Analysis of Library Enrichments (SCALEs), to identify genomic regions that, given increased copy number, may lead to aminoglycoside resistance in Pseudomonas aeruginosa at the genome scale. We report the result of selections on highly representative genomic libraries for three different aminoglycoside antibiotics (amikacin, gentamicin, and tobramycin). At the genome-scale, we show significant (p<0.05) overlap in genes identified for each aminoglycoside evaluated. Among the genomic segments identified, we confirmed increased resistance associated with an increased copy number of several genomic regions, including the ORF of PA5471, recently implicated in MexXY efflux pump related aminoglycoside resistance, PA4943-PA4946 (encoding a probable GTP-binding protein, a predicted host factor I protein, a delta 2-isopentenylpyrophosphate transferase, and DNA mismatch repair protein mutL), PA0960-PA0963 (encoding hypothetical proteins, a probable cold shock protein, a probable DNA-binding stress protein, and aspartyl-tRNA synthetase), a segment of PA4967 (encoding a topoisomerase IV subunit B), as well as a chimeric clone containing two inserts including the ORFs PA0547 and PA2326 (encoding a probable transcriptional regulator and a probable hypothetical protein, respectively). CONCLUSIONS: The studies reported here demonstrate the application of new a genomic method, SCALEs, which can be used to improve understanding of the evolution of antibiotic resistance in P. aeruginosa. In our demonstration studies, we identified a significant number of genomic regions that increased resistance to multiple aminoglycosides. We identified genetic regions that include open reading frames that encode for products from many functional categories, including genes related to O-antigen synthesis, DNA repair, and transcriptional and translational processes. | 2009 | 19907650 |
| 8377 | 8 | 0.9988 | Genome-Wide Association Analyses in the Model Rhizobium Ensifer meliloti. Genome-wide association studies (GWAS) can identify genetic variants responsible for naturally occurring and quantitative phenotypic variation. Association studies therefore provide a powerful complement to approaches that rely on de novo mutations for characterizing gene function. Although bacteria should be amenable to GWAS, few GWAS have been conducted on bacteria, and the extent to which nonindependence among genomic variants (e.g., linkage disequilibrium [LD]) and the genetic architecture of phenotypic traits will affect GWAS performance is unclear. We apply association analyses to identify candidate genes underlying variation in 20 biochemical, growth, and symbiotic phenotypes among 153 strains of Ensifer meliloti For 11 traits, we find genotype-phenotype associations that are stronger than expected by chance, with the candidates in relatively small linkage groups, indicating that LD does not preclude resolving association candidates to relatively small genomic regions. The significant candidates show an enrichment for nucleotide polymorphisms (SNPs) over gene presence-absence variation (PAV), and for five traits, candidates are enriched in large linkage groups, a possible signature of epistasis. Many of the variants most strongly associated with symbiosis phenotypes were in genes previously identified as being involved in nitrogen fixation or nodulation. For other traits, apparently strong associations were not stronger than the range of associations detected in permuted data. In sum, our data show that GWAS in bacteria may be a powerful tool for characterizing genetic architecture and identifying genes responsible for phenotypic variation. However, careful evaluation of candidates is necessary to avoid false signals of association.IMPORTANCE Genome-wide association analyses are a powerful approach for identifying gene function. These analyses are becoming commonplace in studies of humans, domesticated animals, and crop plants but have rarely been conducted in bacteria. We applied association analyses to 20 traits measured in Ensifer meliloti, an agriculturally and ecologically important bacterium because it fixes nitrogen when in symbiosis with leguminous plants. We identified candidate alleles and gene presence-absence variants underlying variation in symbiosis traits, antibiotic resistance, and use of various carbon sources; some of these candidates are in genes previously known to affect these traits whereas others were in genes that have not been well characterized. Our results point to the potential power of association analyses in bacteria, but also to the need to carefully evaluate the potential for false associations. | 2018 | 30355664 |
| 9858 | 9 | 0.9988 | Genomic analysis reveals the role of integrative and conjugative elements in plant pathogenic bacteria. BACKGROUND: ICEs are mobile genetic elements found integrated into bacterial chromosomes that can excise and be transferred to a new cell. They play an important role in horizontal gene transmission and carry accessory genes that may provide interesting phenotypes for the bacteria. Here, we seek to research the presence and the role of ICEs in 300 genomes of phytopathogenic bacteria with the greatest scientific and economic impact. RESULTS: Seventy-eight ICEs (45 distinct elements) were identified and characterized in chromosomes of Agrobacterium tumefaciens, Dickeya dadantii, and D. solani, Pectobacterium carotovorum and P. atrosepticum, Pseudomonas syringae, Ralstonia solanacearum Species Complex, and Xanthomonas campestris. Intriguingly, the co-occurrence of four ICEs was observed in some P. syringae strains. Moreover, we identified 31 novel elements, carrying 396 accessory genes with potential influence on virulence and fitness, such as genes coding for functions related to T3SS, cell wall degradation and resistance to heavy metals. We also present the analysis of previously reported data on the expression of cargo genes related to the virulence of P. atrosepticum ICEs, which evidences the role of these genes in the infection process of tobacco plants. CONCLUSIONS: Altogether, this paper has highlighted the potential of ICEs to affect the pathogenicity and lifestyle of these phytopathogens and direct the spread of significant putative virulence genes in phytopathogenic bacteria. | 2022 | 35962419 |
| 8711 | 10 | 0.9988 | Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. In soil ecosystems, microorganisms produce diverse secondary metabolites such as antibiotics, antifungals and siderophores that mediate communication, competition and interactions with other organisms and the environment(1,2). Most known antibiotics are derived from a few culturable microbial taxa (3) , and the biosynthetic potential of the vast majority of bacteria in soil has rarely been investigated (4) . Here we reconstruct hundreds of near-complete genomes from grassland soil metagenomes and identify microorganisms from previously understudied phyla that encode diverse polyketide and nonribosomal peptide biosynthetic gene clusters that are divergent from well-studied clusters. These biosynthetic loci are encoded by newly identified members of the Acidobacteria, Verrucomicobia and Gemmatimonadetes, and the candidate phylum Rokubacteria. Bacteria from these groups are highly abundant in soils(5-7), but have not previously been genomically linked to secondary metabolite production with confidence. In particular, large numbers of biosynthetic genes were characterized in newly identified members of the Acidobacteria, which is the most abundant bacterial phylum across soil biomes (5) . We identify two acidobacterial genomes from divergent lineages, each of which encodes an unusually large repertoire of biosynthetic genes with up to fifteen large polyketide and nonribosomal peptide biosynthetic loci per genome. To track gene expression of genes encoding polyketide synthases and nonribosomal peptide synthetases in the soil ecosystem that we studied, we sampled 120 time points in a microcosm manipulation experiment and, using metatranscriptomics, found that gene clusters were differentially co-expressed in response to environmental perturbations. Transcriptional co-expression networks for specific organisms associated biosynthetic genes with two-component systems, transcriptional activation, putative antimicrobial resistance and iron regulation, linking metabolite biosynthesis to processes of environmental sensing and ecological competition. We conclude that the biosynthetic potential of abundant and phylogenetically diverse soil microorganisms has previously been underestimated. These organisms may represent a source of natural products that can address needs for new antibiotics and other pharmaceutical compounds. | 2018 | 29899444 |
| 5166 | 11 | 0.9988 | Illegitimate recombination: an efficient method for random mutagenesis in Mycobacterium avium subsp. hominissuis. BACKGROUND: The genus Mycobacterium (M.) comprises highly pathogenic bacteria such as M. tuberculosis as well as environmental opportunistic bacteria called non-tuberculous mycobacteria (NTM). While the incidence of tuberculosis is declining in the developed world, infection rates by NTM are increasing. NTM are ubiquitous and have been isolated from soil, natural water sources, tap water, biofilms, aerosols, dust and sawdust. Lung infections as well as lymphadenitis are most often caused by M. avium subsp. hominissuis (MAH), which is considered to be among the clinically most important NTM. Only few virulence genes from M. avium have been defined among other things due to difficulties in generating M. avium mutants. More efforts in developing new methods for mutagenesis of M. avium and identification of virulence-associated genes are therefore needed. RESULTS: We developed a random mutagenesis method based on illegitimate recombination and integration of a Hygromycin-resistance marker. Screening for mutations possibly affecting virulence was performed by monitoring of pH resistance, colony morphology, cytokine induction in infected macrophages and intracellular persistence. Out of 50 randomly chosen Hygromycin-resistant colonies, four revealed to be affected in virulence-related traits. The mutated genes were MAV_4334 (nitroreductase family protein), MAV_5106 (phosphoenolpyruvate carboxykinase), MAV_1778 (GTP-binding protein LepA) and MAV_3128 (lysyl-tRNA synthetase LysS). CONCLUSIONS: We established a random mutagenesis method for MAH that can be easily carried out and combined it with a set of phenotypic screening methods for the identification of virulence-associated mutants. By this method, four new MAH genes were identified that may be involved in virulence. | 2012 | 22966811 |
| 8374 | 12 | 0.9987 | Importance of RpoD- and Non-RpoD-Dependent Expression of Horizontally Acquired Genes in Cupriavidus metallidurans. The genome of the metal-resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans contains a large number of horizontally acquired plasmids and genomic islands that were integrated into its chromosome or chromid. For the C. metallidurans CH34 wild-type strain growing under nonchallenging conditions, 5,763 transcriptional starting sequences (TSSs) were determined. Using a custom-built motif discovery software based on hidden Markov models, patterns upstream of the TSSs were identified. The pattern TTGACA, -35.6 ± 1.6 bp upstream of the TSSs, in combination with a TATAAT sequence 15.8 ± 1.4 bp upstream occurred frequently, especially upstream of the TSSs for 48 housekeeping genes, and these were assigned to promoters used by RNA polymerase containing the main housekeeping sigma factor RpoD. From patterns upstream of the housekeeping genes, a score for RpoD-dependent promoters in C. metallidurans was derived and applied to all 5,763 TSSs. Among these, 2,572 TSSs could be associated with RpoD with high probability, 373 with low probability, and 2,818 with no probability. In a detailed analysis of horizontally acquired genes involved in metal resistance and not involved in this process, the TSSs responsible for the expression of these genes under nonchallenging conditions were assigned to RpoD- or non-RpoD-dependent promoters. RpoD-dependent promoters occurred frequently in horizontally acquired metal resistance and other determinants, which should allow their initial expression in a new host. However, other sigma factors and sense/antisense effects also contribute-maybe to mold in subsequent adaptation steps the assimilated gene into the regulatory network of the cell. IMPORTANCE In their natural environment, bacteria are constantly acquiring genes by horizontal gene transfer. To be of any benefit, these genes should be expressed. We show here that the main housekeeping sigma factor RpoD plays an important role in the expression of horizontally acquired genes in the metal-resistant hydrogen-oxidizing bacterium C. metallidurans. By conservation of the RpoD recognition consensus sequence, a newly arriving gene has a high probability to be expressed in the new host cell. In addition to integrons and genes travelling together with that for their sigma factor, conservation of the RpoD consensus sequence may be an important contributor to the overall evolutionary success of horizontal gene transfer in bacteria. Using C. metallidurans as an example, this publication sheds some light on the fate and function of horizontally acquired genes in bacteria. | 2022 | 35311568 |
| 9410 | 13 | 0.9987 | Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei. Burkholderia pseudomallei and its host-adapted deletion clone Burkholderia mallei cause the potentially fatal human diseases melioidosis and glanders, respectively. The antibiotic resistance profile and ability to infect via aerosol of these organisms and the absence of protective vaccines have led to their classification as major biothreats and select agents. Although documented infections by these bacteria date back over 100 years, relatively little is known about their virulence and pathogenicity mechanisms. We used in silico genomic subtraction to generate their virulome, a set of 650 putative virulence-related genes shared by B. pseudomallei and B. mallei but not present in five closely related nonpathogenic Burkholderia species. Although most of these genes are clustered in putative operons, the number of targets for mutant construction and verification of reduced virulence in animal models is formidable. Therefore, Galleria mellonella (wax moth) larvae were evaluated as a surrogate host; we found that B. pseudomallei and B. mallei, but not other phylogenetically related bacteria, were highly pathogenic for this insect. More importantly, four previously characterized B. mallei mutants with reduced virulence in hamsters or mice had similarly reduced virulence in G. mellonella larvae. Site-specific inactivation of selected genes in the computationally derived virulome identified three new potential virulence genes, each of which was required for rapid and efficient killing of larvae. Thus, this approach may provide a means to quickly identify high-probability virulence genes in B. pseudomallei, B. mallei, and other pathogens. | 2008 | 18223084 |
| 5145 | 14 | 0.9987 | Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BACKGROUND: Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. RESULTS: We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99% sequence identity in rDNA sequence and orthology across 85.6% of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8%) were present in Serratia while 33 (84.6%) and 35 (89%) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. CONCLUSION: The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result - killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes. | 2015 | 26187596 |
| 8402 | 15 | 0.9987 | Exploring phage-host interactions in Burkholderia cepacia complex bacterium to reveal host factors and phage resistance genes using CRISPRi functional genomics and transcriptomics. Complex interactions of bacteriophages with their bacterial hosts determine phage host range and infectivity. While phage defense systems and host factors have been identified in model bacteria, they remain challenging to predict in non-model bacteria. In this paper, we integrate functional genomics and transcriptomics to investigate phage-host interactions, revealing active phage resistance and host factor genes in Burkholderia cenocepacia K56-2. Burkholderia cepacia complex species are commonly found in soil and are opportunistic pathogens in immunocompromised patients. We studied infection of B. cenocepacia K56-2 with Bcep176, a temperate phage isolated from Burkholderia multivorans. A genome-wide dCas9 knockdown library targeting B. cenocepacia K56-2 was constructed, and a pooled infection experiment identified 63 novel genes or operons coding for candidate host factors or phage resistance genes. The activities of a subset of candidate host factor and resistance genes were validated via single-gene knockdowns. Transcriptomics of B. cenocepacia K56-2 during Bcep176 infection revealed that expression of genes coding for host factor and resistance candidates identified in this screen was significantly altered during infection by 4 h post-infection. Identifying which bacterial genes are involved in phage infection is important to understand the ecological niches of B. cenocepacia and its phages, and for designing phage therapies.IMPORTANCEBurkholderia cepacia complex bacteria are opportunistic pathogens inherently resistant to antibiotics, and phage therapy is a promising alternative treatment for chronically infected patients. Burkholderia bacteria are also ubiquitous in soil microbiomes. To develop improved phage therapies for pathogenic Burkholderia bacteria, or engineer phages for applications, such as microbiome editing, it's essential to know the bacterial host factors required by the phage to kill bacteria, as well as how the bacteria prevent phage infection. This work identified 65 genes involved in phage-host interactions in Burkholderia cenocepacia K56-2 and tracked their expression during infection. These findings establish a knowledge base to select and engineer phages infecting or transducing Burkholderia bacteria. | 2025 | 41036840 |
| 6309 | 16 | 0.9987 | Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using more than 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxin) was present on the same clone. Clustering of these genes revealed TA families widespread in bacterial genomes, some of which deviate from the classical characteristics previously described for such modules. Introduction of these genes into E. coli validated that the toxin toxicity is mitigated by the antitoxin. Infection experiments with T7 phage showed that two of the new modules can provide resistance against phage. Moreover, our experiments revealed an "antidefense" protein in phage T7 that neutralizes phage resistance. Our results expose active fronts in the arms race between bacteria and phage. | 2013 | 23478446 |
| 9409 | 17 | 0.9987 | Immunogenomics for identification of disease resistance genes in pigs: a review focusing on Gram-negative bacilli. Over the past years, infectious disease has caused enormous economic loss in pig industry. Among the pathogens, gram negative bacteria not only cause inflammation, but also cause different diseases and make the pigs more susceptible to virus infection. Vaccination, medication and elimination of sick pigs are major strategies of controlling disease. Genetic methods, such as selection of disease resistance in the pig, have not been widely used. Recently, the completion of the porcine whole genome sequencing has provided powerful tools to identify the genome regions that harboring genes controlling disease or immunity. Immunogenomics, which combines DNA variations, transcriptome, immune response, and QTL mapping data to illustrate the interactions between pathogen and host immune system, will be an effective genomics tool for identification of disease resistance genes in pigs. These genes will be potential targets for disease resistance in breeding programs. This paper reviewed the progress of disease resistance study in the pig focusing on Gram-negative bacilli. Major porcine Gram-negative bacilli and diseases, suggested candidate genes/pathways against porcine Gram-negative bacilli, and distributions of QTLs for immune capacity on pig chromosomes were summarized. Some tools for immunogenomics research were described. We conclude that integration of sequencing, whole genome associations, functional genomics studies, and immune response information is necessary to illustrate molecular mechanisms and key genes in disease resistance. | 2012 | 23137309 |
| 9859 | 18 | 0.9987 | Investigating the impact of insertion sequences and transposons in the genomes of the most significant phytopathogenic bacteria. Genetic variability in phytopathogens is one of the main problems encountered for effective plant disease control. This fact may be related to the presence of transposable elements (TEs), but little is known about their role in host genomes. Here, we performed the most comprehensive analysis of insertion sequences (ISs) and transposons (Tns) in the genomes of the most important bacterial plant pathogens. A total of 35 692 ISs and 71 transposons were identified in 270 complete genomes. The level of pathogen-host specialization was found to be a significant determinant of the element distribution among the species. Some Tns were identified as carrying virulence factors, such as genes encoding effector proteins of the type III secretion system and resistance genes for the antimicrobial streptomycin. Evidence for IS-mediated ectopic recombination was identified in Xanthomonas genomes. Moreover, we found that IS elements tend to be inserted in regions near virulence and fitness genes, such ISs disrupting avirulence genes in X. oryzae genomes. In addition, transcriptome analysis under different stress conditions revealed differences in the expression of genes encoding transposases in the Ralstonia solanacearum, X. oryzae, and P. syringae species. Lastly, we also investigated the role of Tns in regulation via small noncoding regulatory RNAs and found these elements may target plant-cell transcriptional activators. Taken together, the results indicate that TEs may have a fundamental role in variability and virulence in plant pathogenic bacteria. | 2024 | 38568199 |
| 8271 | 19 | 0.9987 | Genome-Wide Sensitivity Analysis of the Microsymbiont Sinorhizobium meliloti to Symbiotically Important, Defensin-Like Host Peptides. The model legume species Medicago truncatula expresses more than 700 nodule-specific cysteine-rich (NCR) signaling peptides that mediate the differentiation of Sinorhizobium meliloti bacteria into nitrogen-fixing bacteroids. NCR peptides are essential for a successful symbiosis in legume plants of the inverted-repeat-lacking clade (IRLC) and show similarity to mammalian defensins. In addition to signaling functions, many NCR peptides exhibit antimicrobial activity in vitro and in vivo Bacterial resistance to these antimicrobial activities is likely to be important for symbiosis. However, the mechanisms used by S. meliloti to resist antimicrobial activity of plant peptides are poorly understood. To address this, we applied a global genetic approach using transposon mutagenesis followed by high-throughput sequencing (Tn-seq) to identify S. meliloti genes and pathways that increase or decrease bacterial competitiveness during exposure to the well-studied cationic NCR247 peptide and also to the unrelated model antimicrobial peptide polymyxin B. We identified 78 genes and several diverse pathways whose interruption alters S. meliloti resistance to NCR247. These genes encode the following: (i) cell envelope polysaccharide biosynthesis and modification proteins, (ii) inner and outer membrane proteins, (iii) peptidoglycan (PG) effector proteins, and (iv) non-membrane-associated factors such as transcriptional regulators and ribosome-associated factors. We describe a previously uncharacterized yet highly conserved peptidase, which protects S. meliloti from NCR247 and increases competitiveness during symbiosis. Additionally, we highlight a considerable number of uncharacterized genes that provide the basis for future studies to investigate the molecular basis of symbiotic development as well as chronic pathogenic interactions.IMPORTANCE Soil rhizobial bacteria enter into an ecologically and economically important symbiotic interaction with legumes, in which they differentiate into physiologically distinct bacteroids that provide essential ammonia to the plant in return for carbon sources. Plant signal peptides are essential and specific to achieve these physiological changes. These peptides show similarity to mammalian defensin peptides which are part of the first line of defense to control invading bacterial populations. A number of these legume peptides are indeed known to possess antimicrobial activity, and so far, only the bacterial BacA protein is known to protect rhizobial bacteria against their antimicrobial action. This study identified numerous additional bacterial factors that mediate protection and belong to diverse biological pathways. Our results significantly contribute to our understanding of the molecular roles of bacterial factors during legume symbioses and, second, provide insights into the mechanisms that pathogenic bacteria may use to resist the antimicrobial effects of defensins during infections. | 2017 | 28765224 |