Phage-resistant Pseudomonas aeruginosa against a novel lytic phage JJ01 exhibits hypersensitivity to colistin and reduces biofilm production. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
836901.0000Phage-resistant Pseudomonas aeruginosa against a novel lytic phage JJ01 exhibits hypersensitivity to colistin and reduces biofilm production. Pseudomonas aeruginosa, a major cause of nosocomial infections, has been categorized by World Health Organization as a critical pathogen urgently in need of effective therapies. Bacteriophages or phages, which are viruses that specifically kill bacteria, have been considered as alternative agents for the treatment of bacterial infections. Here, we discovered a lytic phage targeting P. aeruginosa, designated as JJ01, which was classified as a member of the Myoviridae family due to the presence of an icosahedral capsid and a contractile tail under TEM. Phage JJ01 requires at least 10 min for 90% of its particles to be adsorbed to the host cells and has a latent period of 30 min inside the host cell for its replication. JJ01 has a relatively large burst size, which releases approximately 109 particles/cell at the end of its lytic life cycle. The phage can withstand a wide range of pH values (3-10) and temperatures (4-60°C). Genome analysis showed that JJ01 possesses a complete genome of 66,346 base pairs with 55.7% of GC content, phylogenetically belonging to the genus Pbunavirus. Genome annotation further revealed that the genome encodes 92 open reading frames (ORFs) with 38 functionally predictable genes, and it contains neither tRNA nor toxin genes, such as drug-resistant or lysogenic-associated genes. Phage JJ01 is highly effective in suppressing bacterial cell growth for 12 h and eradicating biofilms established by the bacteria. Even though JJ01-resistant bacteria have emerged, the ability of phage resistance comes with the expense of the bacterial fitness cost. Some resistant strains were found to produce less biofilm and grow slower than the wild-type strain. Among the resistant isolates, the resistant strain W10 which notably loses its physiological fitness becomes eight times more susceptible to colistin and has its cell membrane compromised, compared to the wild type. Altogether, our data revealed the potential of phage JJ01 as a candidate for phage therapy against P. aeruginosa and further supports that even though the use of phages would subsequently lead to the emergence of phage-resistant bacteria, an evolutionary trade-off would make them more sensitive to antibiotics.202236274728
887310.9996Selection for Phage Resistance Reduces Virulence of Shigella flexneri. There is an increasing interest in phage therapy as an alternative to antibiotics for treating bacterial infections, especially using phages that select for evolutionary trade-offs between increased phage resistance and decreased fitness traits, such as virulence, in target bacteria. A vast repertoire of virulence factors allows the opportunistic bacterial pathogen Shigella flexneri to invade human gut epithelial cells, replicate intracellularly, and evade host immunity through intercellular spread. It has been previously shown that OmpA is necessary for the intercellular spread of S. flexneri. We hypothesized that a phage which uses OmpA as a receptor to infect S. flexneri should select for phage-resistant mutants with attenuated intercellular spread. Here, we show that phage A1-1 requires OmpA as a receptor and selects for reduced virulence in S. flexneri. We characterized five phage-resistant mutants by measuring phenotypic changes in various traits: cell-membrane permeability, total lipopolysaccharide (LPS), sensitivity to antibiotics, and susceptibility to other phages. The results separated the mutants into two groups: R1 and R2 phenotypically resembled ompA knockouts, whereas R3, R4, and R5 were similar to LPS-deficient strains. Whole-genome sequencing confirmed that R1 and R2 had mutations in ompA, while R3, R4, and R5 had mutations in the LPS inner-core biosynthesis genes gmhA and gmhC. Bacterial plaque assays confirmed that all the phage-resistant mutants were incapable of intercellular spread. We concluded that selection for S. flexneri resistance to phage A1-1 generally reduced virulence (i.e., intercellular spread), but this trade-off could be mediated by mutations either in ompA or in LPS-core genes that likely altered OmpA conformation. IMPORTANCE Shigella flexneri is a facultative intracellular pathogen of humans and a leading cause of bacillary dysentery. With few effective treatments and rising antibiotic resistance in these bacteria, there is increasing interest in alternatives to classical infection management of S. flexneri infections. Phage therapy poses an attractive alternative, particularly if a therapeutic phage can be found that results in an evolutionary trade-off between phage resistance and bacterial virulence. Here, we isolate a novel lytic phage from water collected in Cuatro Cienegas, Mexico, which uses the OmpA porin of S. flexneri as a receptor. We use phenotypic assays and genome sequencing to show that phage A1-1 selects for phage-resistant mutants which can be grouped into two categories: OmpA-deficient mutants and LPS-deficient mutants. Despite these underlying mechanistic differences, we confirmed that naturally occurring phage A1-1 selected for evolved phage resistance which coincided with impaired intercellular spread of S. flexneri in a eukaryotic infection model.202234788068
891620.9995Increased mutations in lipopolysaccharide biosynthetic genes cause time-dependent development of phage resistance in Salmonella. Understanding how bacteria evolve resistance to phages has implications for phage-based therapies and microbial evolution. In this study, the susceptibility of 335 Salmonella isolates to the wide host range Salmonella phage BPSELC-1 was tested. Potentially significant gene sets that could confer resistance were identified using bioinformatics approaches based on phage susceptibility phenotypes; more than 90 potential antiphage defense gene sets, including those involved in lipopolysaccharide (LPS) biosynthesis, DNA replication, secretion systems, and respiratory chain, were found. The evolutionary dynamics of Salmonella resistance to phage were assessed through laboratory evolution experiments, which showed that phage-resistant mutants rapidly developed and exhibited genetic heterogeneity. Most representative Salmonella hosts (58.1% of 62) rapidly developed phage resistance within 24 h. All phage-resistant mutant clones exhibited genetic heterogeneity and observed mutations in LPS-related genes (rfaJ and rfaK) as well as other genes such as cellular respiration, transport, and cell replication-related genes. The study also identified potential trade-offs, indicating that bacteria tend to escape fitness trade-offs through multi-site mutations, all tested mutants increased sensitivity to polymyxin B, but this does not always affect their relative fitness or biofilm-forming capacity. Furthermore, complementing the rfaJ mutant gene could partially restore the phage sensitivity of phage-resistant mutants. These results provide insight into the phage resistance mechanisms of Salmonella and the complexity of bacterial evolution resulting from phage predation, which can inform future strategies for phage-based therapies and microbial evolution.202438193669
630830.9995A shotgun antisense approach to the identification of novel essential genes in Pseudomonas aeruginosa. BACKGROUND: Antibiotics in current use target a surprisingly small number of cellular functions: cell wall, DNA, RNA, and protein biosynthesis. Targeting of novel essential pathways is expected to play an important role in the discovery of new antibacterial agents against bacterial pathogens, such as Pseudomonas aeruginosa, that are difficult to control because of their ability to develop resistance, often multiple, to all current classes of clinical antibiotics. RESULTS: We aimed to identify novel essential genes in P. aeruginosa by shotgun antisense screening. This technique was developed in Staphylococcus aureus and, following a period of limited success in Gram-negative bacteria, has recently been used effectively in Escherichia coli. To also target low expressed essential genes, we included some variant steps that were expected to overcome the non-stringent regulation of the promoter carried by the expression vector used for the shotgun antisense libraries. Our antisense screenings identified 33 growth-impairing single-locus genomic inserts that allowed us to generate a list of 28 "essential-for-growth" genes: five were "classical" essential genes involved in DNA replication, transcription, translation, and cell division; seven were already reported as essential in other bacteria; and 16 were "novel" essential genes with no homologs reported to have an essential role in other bacterial species. Interestingly, the essential genes in our panel were suggested to take part in a broader range of cellular functions than those currently targeted by extant antibiotics, namely protein secretion, biosynthesis of cofactors, prosthetic groups and carriers, energy metabolism, central intermediary metabolism, transport of small molecules, translation, post-translational modification, non-ribosomal peptide synthesis, lipopolysaccharide synthesis/modification, and transcription regulation. This study also identified 43 growth-impairing inserts carrying multiple loci targeting 105 genes, of which 25 have homologs reported as essential in other bacteria. Finally, four multigenic growth-impairing inserts belonged to operons that have never been reported to play an essential role. CONCLUSIONS: For the first time in P. aeruginosa, we applied regulated antisense RNA expression and showed the feasibility of this technology for the identification of novel essential genes.201424499134
438540.9995Genes Contributing to the Unique Biology and Intrinsic Antibiotic Resistance of Enterococcus faecalis. The enterococci, which are among the leading causes of multidrug-resistant (MDR) hospital infection, are notable for their environmental ruggedness, which extends to intrinsic antibiotic resistance. To identify genes that confer this unique property, we used Tn-seq to comprehensively explore the genome of MDR Enterococcus faecalis strain MMH594 for genes important for growth in nutrient-containing medium and with low-level antibiotic challenge. As expected, a large core of genes for DNA replication, expression, and central metabolism, shared with other bacteria, are intolerant to transposon disruption. However, genes were identified that are important to E. faecalis that are either absent from or unimportant for Staphylococcus aureus and Streptococcus pneumoniae fitness when similarly tested. Further, 217 genes were identified that when challenged by sub-MIC antibiotic levels exhibited reduced tolerance to transposon disruption, including those previously shown to contribute to intrinsic resistance, and others not previously ascribed this role. E. faecalis is one of the few Gram-positive bacteria experimentally shown to possess a functional Entner-Doudoroff pathway for carbon metabolism, a pathway that contributes to stress tolerance in other microbes. Through functional genomics and network analysis we defined the unusual structure of this pathway in E. faecalis and assessed its importance. These approaches also identified toxin-antitoxin and related systems that are unique and active in E. faecalis Finally, we identified genes that are absent in the closest nonenterococcal relatives, the vagococci, and that contribute importantly to fitness with and without antibiotic selection, advancing an understanding of the unique biology of enterococci.IMPORTANCE Enterococci are leading causes of antibiotic-resistant infection transmitted in hospitals. The intrinsic hardiness of these organisms allows them to survive disinfection practices and then proliferate in the gastrointestinal tracts of antibiotic-treated patients. The objective of this study was to identify the underlying genetic basis for its unusual hardiness. Using a functional genomic approach, we identified traits and pathways of general importance for enterococcal survival and growth that distinguish them from closely related pathogens as well as ancestrally related species. We further identified unique traits that enable them to survive antibiotic challenge, revealing a large set of genes that contribute to intrinsic antibiotic resistance and a smaller set of uniquely important genes that are rare outside enterococci.202033234689
885550.9995Transposon Insertion Sequencing Elucidates Novel Gene Involvement in Susceptibility and Resistance to Phages T4 and T7 in Escherichia coli O157. Experiments using bacteriophage (phage) to infect bacterial strains have helped define some basic genetic concepts in microbiology, but our understanding of the complexity of bacterium-phage interactions is still limited. As the global threat of antibiotic resistance continues to increase, phage therapy has reemerged as an attractive alternative or supplement to treating antibiotic-resistant bacterial infections. Further, the long-used method of phage typing to classify bacterial strains is being replaced by molecular genetic techniques. Thus, there is a growing need for a complete understanding of the precise molecular mechanisms underpinning phage-bacterium interactions to optimize phage therapy for the clinic as well as for retrospectively interpreting phage typing data on the molecular level. In this study, a genomics-based fitness assay (TraDIS) was used to identify all host genes involved in phage susceptibility and resistance for a T4 phage infecting Shiga-toxigenic Escherichia coli O157. The TraDIS results identified both established and previously unidentified genes involved in phage infection, and a subset were confirmed by site-directed mutagenesis and phenotypic testing of 14 T4 and 2 T7 phages. For the first time, the entire sap operon was implicated in phage susceptibility and, conversely, the stringent starvation protein A gene (sspA) was shown to provide phage resistance. Identifying genes involved in phage infection and replication should facilitate the selection of bespoke phage combinations to target specific bacterial pathogens.IMPORTANCE Antibiotic resistance has diminished treatment options for many common bacterial infections. Phage therapy is an alternative option that was once popularly used across Europe to kill bacteria within humans. Phage therapy acts by using highly specific viruses (called phages) that infect and lyse certain bacterial species to treat the infection. Whole-genome sequencing has allowed modernization of the investigations into phage-bacterium interactions. Here, using E. coli O157 and T4 bacteriophage as a model, we have exploited a genome-wide fitness assay to investigate all genes involved in defining phage resistance or susceptibility. This knowledge of the genetic determinants of phage resistance and susceptibility can be used to design bespoke phage combinations targeted to specific bacterial infections for successful infection eradication.201830042196
438660.9995Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors. Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence). For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i) resistance to oxidative stress, ii) antibiotic resistance, iii) resistance to opsonophagocytosis, iv) adherence to the human colon carcinoma Caco-2 epithelial cells and v) virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence.201122194979
885370.9995Collateral sensitivity increases the efficacy of a rationally designed bacteriophage combination to control Salmonella enterica. The ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen Salmonella enterica. To determine phage host range, a diverse collection of Enterobacteriaceae and Salmonella enterica was used and genes involved in infection by six SPLA phages were identified using Salmonella Typhimurium strain ST4/74. Candidate host receptors included lipopolysaccharide (LPS), cellulose, and BtuB. Lipopolysaccharide was identified as a susceptibility factor for phage SPLA1a and mutations in LPS biosynthesis genes spontaneously emerged during culture with S. Typhimurium. Conversely, LPS was a resistance factor for phage SPLA5b which suggested that emergence of LPS mutations in culture with SPLA1a represented collateral sensitivity to SPLA5b. We show that bacteria-phage co-culture with SPLA1a and SPLA5b was more successful in limiting the emergence of phage resistance compared to single phage co-culture. Identification of host susceptibility and resistance genes and understanding infection dynamics are critical steps in the rationale design of phage cocktails against specific bacterial pathogens.IMPORTANCEAs antibiotic resistance continues to emerge in bacterial pathogens, bacterial viruses (phage) represent a potential alternative or adjunct to antibiotics. One challenge for their implementation is the predisposition of bacteria to rapidly acquire resistance to phages. We describe a functional genomics approach to identify mechanisms of susceptibility and resistance for newly isolated phages that infect and lyse Salmonella enterica and use this information to identify phage combinations that exploit collateral sensitivity, thus increasing efficacy. Collateral sensitivity is a phenomenon where resistance to one class of antibiotics increases sensitivity to a second class of antibiotics. We report a functional genomics approach to rationally design a phage combination with a collateral sensitivity dynamic which resulted in increased efficacy. Considering such evolutionary trade-offs has the potential to manipulate the outcome of phage therapy in favor of resolving infection without selecting for escape mutants and is applicable to other virus-host interactions.202438376991
627880.9994Genome evolution drives transcriptomic and phenotypic adaptation in Pseudomonas aeruginosa during 20 years of infection. The opportunistic pathogen Pseudomonas aeruginosa chronically infects the lungs of patients with cystic fibrosis (CF). During infection the bacteria evolve and adapt to the lung environment. Here we use genomic, transcriptomic and phenotypic approaches to compare multiple isolates of P. aeruginosa collected more than 20 years apart during a chronic infection in a CF patient. Complete genome sequencing of the isolates, using short- and long-read technologies, showed that a genetic bottleneck occurred during infection and was followed by diversification of the bacteria. A 125 kb deletion, an 0.9 Mb inversion and hundreds of smaller mutations occurred during evolution of the bacteria in the lung, with an average rate of 17 mutations per year. Many of the mutated genes are associated with infection or antibiotic resistance. RNA sequencing was used to compare the transcriptomes of an earlier and a later isolate. Substantial reprogramming of the transcriptional network had occurred, affecting multiple genes that contribute to continuing infection. Changes included greatly reduced expression of flagellar machinery and increased expression of genes for nutrient acquisition and biofilm formation, as well as altered expression of a large number of genes of unknown function. Phenotypic studies showed that most later isolates had increased cell adherence and antibiotic resistance, reduced motility, and reduced production of pyoverdine (an iron-scavenging siderophore), consistent with genomic and transcriptomic data. The approach of integrating genomic, transcriptomic and phenotypic analyses reveals, and helps to explain, the plethora of changes that P. aeruginosa undergoes to enable it to adapt to the environment of the CF lung during a chronic infection.202134826267
376890.9994The Concerted Action of Two B3-Like Prophage Genes Excludes Superinfecting Bacteriophages by Blocking DNA Entry into Pseudomonas aeruginosa. In this study, we describe seven vegetative phage genomes homologous to the historic phage B3 that infect Pseudomonas aeruginosa Like other phage groups, the B3-like group contains conserved (core) and variable (accessory) open reading frames (ORFs) grouped at fixed regions in their genomes; however, in either case, many ORFs remain without assigned functions. We constructed lysogens of the seven B3-like phages in strain Ps33 of P. aeruginosa, a novel clinical isolate, and assayed the exclusion phenotype against a variety of temperate and virulent superinfecting phages. In addition to the classic exclusion conferred by the phage immunity repressor, the phenotype observed in B3-like lysogens suggested the presence of other exclusion genes. We set out to identify the genes responsible for this exclusion phenotype. Phage Ps56 was chosen as the study subject since it excluded numerous temperate and virulent phages. Restriction of the Ps56 genome, cloning of several fragments, and resection of the fragments that retained the exclusion phenotype allowed us to identify two core ORFs, so far without any assigned function, as responsible for a type of exclusion. Neither gene expressed separately from plasmids showed activity, but the concurrent expression of both ORFs is needed for exclusion. Our data suggest that phage adsorption occurs but that phage genome translocation to the host's cytoplasm is defective. To our knowledge, this is the first report on this type of exclusion mediated by a prophage in P. aeruginosaIMPORTANCEPseudomonas aeruginosa is a Gram-negative bacterium frequently isolated from infected immunocompromised patients, and the strains are resistant to a broad spectrum of antibiotics. Recently, the use of phages has been proposed as an alternative therapy against multidrug-resistant bacteria. However, this approach may present various hurdles. This work addresses the problem that pathogenic bacteria may be lysogenized by phages carrying genes encoding resistance against secondary infections, such as those used in phage therapy. Discovering phage genes that exclude superinfecting phages not only assigns novel functions to orphan genes in databases but also provides insight into selection of the proper phages for use in phage therapy.202032461312
6280100.9994Genomic variation in Pseudomonas aeruginosa clinical respiratory isolates with de novo resistance to a bacteriophage cocktail. Pseudomonas aeruginosa is an opportunistic pathogen that can cause sinus infections and pneumonia in cystic fibrosis (CF) patients. Bacteriophage therapy is being investigated as a treatment for antibiotic-resistant P. aeruginosa infections. Although virulent bacteriophages have shown promise in treating P. aeruginosa infections, the development of bacteriophage-insensitive mutants (BIMs) in the presence of bacteriophages has been described. The aim of this study was to examine the genetic changes associated with the BIM phenotype. Biofilms of three genetically distinct P. aeruginosa strains, including PAO1 (ATCC 15692), and two clinical respiratory isolates (one CF and one non-CF) were grown for 7 days and treated with either a cocktail of four bacteriophages or a vehicle control for 7 consecutive days. BIMs isolated from the biofilms were detected by streak assays, and resistance to the phage cocktail was confirmed using spot test assays. Comparison of whole genome sequencing between the recovered BIMs and their respective vehicle control-treated phage-sensitive isolates revealed structural variants in two strains, and several small variants in all three strains. These variations involved a TonB-dependent outer membrane receptor in one strain, and mutations in lipopolysaccharide synthesis genes in two strains. Prophage deletion and induction were also noted in two strains, as well as mutations in several genes associated with virulence factors. Mutations in genes involved in susceptibility to conventional antibiotics were also identified in BIMs, with both decreased and increased antibiotic sensitivity to various antibiotics being observed. These findings may have implications for future applications of lytic phage therapy.IMPORTANCELytic bacteriophages are viruses that infect and kill bacteria and can be used to treat difficult-to-treat bacterial infections, including biofilm-associated infections and multidrug-resistant bacteria. Pseudomonas aeruginosa is a bacterium that can cause life-threatening infections. Lytic bacteriophage therapy has been trialed in the treatment of P. aeruginosa infections; however, sometimes bacteria develop resistance to the bacteriophages. This study sheds light on the genetic mechanisms of such resistance, and how this might be harnessed to restore the sensitivity of multidrug-resistant P. aeruginosa to conventional antibiotics.202540162801
8839110.9994Bacteriophage infection drives loss of β-lactam resistance in methicillin-resistant Staphylococcus aureus. Bacteriophage (phage) therapy is a promising means to combat drug-resistant bacterial pathogens. Infection by phage can select for mutations in bacterial populations that confer resistance against phage infection. However, resistance against phage can yield evolutionary trade-offs of biomedical relevance. Here, we report the discovery that infection by certain staphylococcal phages sensitizes different strains of methicillin-resistant Staphylococcus aureus (MRSA) to β-lactams, a class of antibiotics against which MRSA is typically resistant. MRSA cells that survive infection by these phages display significant reductions in minimal inhibitory concentration against different β-lactams compared to uninfected bacteria. Transcriptomic profiling reveals that these evolved MRSA strains possess highly modulated transcriptional profiles, where numerous genes involved in S. aureus virulence are downregulated. Phage-treated MRSA exhibited attenuated virulence phenotypes in the form of reduced hemolysis and clumping. Despite sharing similar phenotypes, whole-sequencing analysis revealed that the different MRSA strains evolved unique genetic profiles during infection. These results suggest complex evolutionary trajectories in MRSA during phage predation and open up new possibilities to reduce drug resistance and virulence in MRSA infections.202540637714
6309120.9994Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using more than 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxin) was present on the same clone. Clustering of these genes revealed TA families widespread in bacterial genomes, some of which deviate from the classical characteristics previously described for such modules. Introduction of these genes into E. coli validated that the toxin toxicity is mitigated by the antitoxin. Infection experiments with T7 phage showed that two of the new modules can provide resistance against phage. Moreover, our experiments revealed an "antidefense" protein in phage T7 that neutralizes phage resistance. Our results expose active fronts in the arms race between bacteria and phage.201323478446
9662130.9994Species-Scale Genomic Analysis of Staphylococcus aureus Genes Influencing Phage Host Range and Their Relationships to Virulence and Antibiotic Resistance Genes. Phage therapy has been proposed as a possible alternative treatment for infections caused by the ubiquitous bacterial pathogen Staphylococcus aureus. However, successful therapy requires understanding the genetic basis of host range-the subset of strains in a species that could be killed by a particular phage. We searched diverse sets of S. aureus public genome sequences against a database of genes suggested from prior studies to influence host range to look for patterns of variation across the species. We found that genes encoding biosynthesis of molecules that were targets of S. aureus phage adsorption to the outer surface of the cell were the most conserved in the pangenome. Putative phage resistance genes that were core components of the pangenome genes had similar nucleotide diversity, ratio of nonsynonymous to synonymous substitutions, and functionality (measured by delta-bitscore) to other core genes. However, phage resistance genes that were not part of the core genome were significantly less consistent with the core genome phylogeny than all noncore genes in this set, suggesting more frequent movement between strains by horizontal gene transfer. Only superinfection immunity genes encoded by temperate phages inserted in the genome correlated with experimentally determined temperate phage resistance. Taken together, these results suggested that, while phage adsorption genes are heavily conserved in the S. aureus species, HGT may play a significant role in strain-specific evolution of host range patterns. IMPORTANCE Staphylococcus aureus is a widespread, hospital- and community-acquired pathogen that is commonly antibiotic resistant. It causes diverse diseases affecting both the skin and internal organs. Its ubiquity, antibiotic resistance, and disease burden make new therapies urgent, such as phage therapy, in which viruses specific to infecting bacteria clear infection. S. aureus phage host range not only determines whether phage therapy will be successful by killing bacteria but also horizontal gene transfer through transduction of host genetic material by phages. In this work, we comprehensively reviewed existing literature to build a list of S. aureus phage resistance genes and searched our database of almost 43,000 S. aureus genomes for these genes to understand their patterns of evolution, finding that prophages' superinfection immunity correlates best with phage resistance and HGT. These findings improved our understanding of the relationship between known phage resistance genes and phage host range in the species.202235040700
9470140.9994Practical Method for Isolation of Phage Deletion Mutants. The growing concern about multi-drug resistant pathogenic bacteria has led to a renewed interest in the study of bacteriophages as antimicrobials and as therapeutic agents against infectious diseases (phage therapy). Phages to be used for this purpose have to be subjected to in-depth genomic characterization. It is essential to ascribe specific functions to phage genes, which will give information to unravel phage biology and to ensure the lack of undesirable genes, such as virulence and antibiotic resistance genes. Here, we describe a simple protocol for the selection of phage mutants carrying random deletions along the phage genome. Theoretically, any DNA region might be removed with the only requirement that the phage particle viability remains unaffected. This technique is based on the instability of phage particles in the presence of chelating compounds. A fraction of the phage population naturally lacking DNA segments will survive the treatment. Within the context of phages as antimicrobials, this protocol is useful to select lytic variants from temperate phages. In terms of phage efficiency, virulent phages are preferred over temperate ones to remove undesirable bacteria. This protocol has been used to obtain gene mutations that are involved in the lysogenic cycle of phages infecting Gram-positive bacteria (Staphylococcus and Lactobacillus).201831164553
4828150.9994Generating Transposon Insertion Libraries in Gram-Negative Bacteria for High-Throughput Sequencing. Transposon sequencing (Tn-seq) is a powerful method that combines transposon mutagenesis and massive parallel sequencing to identify genes and pathways that contribute to bacterial fitness under a wide range of environmental conditions. Tn-seq applications are extensive and have not only enabled examination of genotype-phenotype relationships at an organism level but also at the population, community and systems levels. Gram-negative bacteria are highly associated with antimicrobial resistance phenotypes, which has increased incidents of antibiotic treatment failure. Antimicrobial resistance is defined as bacterial growth in the presence of otherwise lethal antibiotics. The "last-line" antimicrobial colistin is used to treat Gram-negative bacterial infections. However, several Gram-negative pathogens, including Acinetobacter baumannii can develop colistin resistance through a range of molecular mechanisms, some of which were characterized using Tn-seq. Furthermore, signal transduction pathways that regulate colistin resistance vary within Gram-negative bacteria. Here we propose an efficient method of transposon mutagenesis in A. baumannii that streamlines generation of a saturating transposon insertion library and amplicon library construction by eliminating the need for restriction enzymes, adapter ligation, and gel purification. The methods described herein will enable in-depth analysis of molecular determinants that contribute to A. baumannii fitness when challenged with colistin. The protocol is also applicable to other Gram-negative ESKAPE pathogens, which are primarily associated with drug resistant hospital-acquired infections.202032716393
8932160.9994Alternative Evolutionary Paths to Bacterial Antibiotic Resistance Cause Distinct Collateral Effects. When bacteria evolve resistance against a particular antibiotic, they may simultaneously gain increased sensitivity against a second one. Such collateral sensitivity may be exploited to develop novel, sustainable antibiotic treatment strategies aimed at containing the current, dramatic spread of drug resistance. To date, the presence and molecular basis of collateral sensitivity has only been studied in few bacterial species and is unknown for opportunistic human pathogens such as Pseudomonas aeruginosa. In the present study, we assessed patterns of collateral effects by experimentally evolving 160 independent populations of P. aeruginosa to high levels of resistance against eight commonly used antibiotics. The bacteria evolved resistance rapidly and expressed both collateral sensitivity and cross-resistance. The pattern of such collateral effects differed to those previously reported for other bacterial species, suggesting interspecific differences in the underlying evolutionary trade-offs. Intriguingly, we also identified contrasting patterns of collateral sensitivity and cross-resistance among the replicate populations adapted to the same drug. Whole-genome sequencing of 81 independently evolved populations revealed distinct evolutionary paths of resistance to the selective drug, which determined whether bacteria became cross-resistant or collaterally sensitive towards others. Based on genomic and functional genetic analysis, we demonstrate that collateral sensitivity can result from resistance mutations in regulatory genes such as nalC or mexZ, which mediate aminoglycoside sensitivity in β-lactam-adapted populations, or the two-component regulatory system gene pmrB, which enhances penicillin sensitivity in gentamicin-resistant populations. Our findings highlight substantial variation in the evolved collateral effects among replicates, which in turn determine their potential in antibiotic therapy.201728541480
8922170.9994Transitioning from Soil to Host: Comparative Transcriptome Analysis Reveals the Burkholderia pseudomallei Response to Different Niches. Burkholderia pseudomallei, a soil and water saprophyte, is responsible for the tropical human disease melioidosis. A hundred years since its discovery, there is still much to learn about B. pseudomallei proteins that are essential for the bacterium's survival in and interaction with the infected host, as well as their roles within the bacterium's natural soil habitat. To address this gap, bacteria grown under conditions mimicking the soil environment were subjected to transcriptome sequencing (RNA-seq) analysis. A dual RNA-seq approach was used on total RNA from spleens isolated from a B. pseudomallei mouse infection model at 5 days postinfection. Under these conditions, a total of 1,434 bacterial genes were induced, with 959 induced in the soil environment and 475 induced in bacteria residing within the host. Genes encoding metabolism and transporter proteins were induced when the bacteria were present in soil, while virulence factors, metabolism, and bacterial defense mechanisms were upregulated during active infection of mice. On the other hand, capsular polysaccharide and quorum-sensing pathways were inhibited during infection. In addition to virulence factors, reactive oxygen species, heat shock proteins, siderophores, and secondary metabolites were also induced to assist bacterial adaptation and survival in the host. Overall, this study provides crucial insights into the transcriptome-level adaptations which facilitate infection by soil-dwelling B. pseudomallei. Targeting novel therapeutics toward B. pseudomallei proteins required for adaptation provides an alternative treatment strategy given its intrinsic antimicrobial resistance and the absence of a vaccine. IMPORTANCE Burkholderia pseudomallei, a soil-dwelling bacterium, is the causative agent of melioidosis, a fatal infectious disease of humans and animals. The bacterium has a large genome consisting of two chromosomes carrying genes that encode proteins with important roles for survival in diverse environments as well as in the infected host. While a general mechanism of pathogenesis has been proposed, it is not clear which proteins have major roles when the bacteria are in the soil and whether the same proteins are key to successful infection and spread. To address this question, we grew the bacteria in soil medium and then in infected mice. At 5 days postinfection, bacteria were recovered from infected mouse organs and their gene expression was compared against that of bacteria grown in soil medium. The analysis revealed a list of genes expressed under soil growth conditions and a different set of genes encoding proteins which may be important for survival, replication, and dissemination in an infected host. These proteins are a potential resource for understanding the full adaptation mechanism of this pathogen. In the absence of a vaccine for melioidosis and with treatment being reliant on combinatorial antibiotic therapy, these proteins may be ideal targets for designing antimicrobials to treat melioidosis.202336856434
4383180.9994Importance of Core Genome Functions for an Extreme Antibiotic Resistance Trait. Extreme antibiotic resistance in bacteria is associated with the expression of powerful inactivating enzymes and other functions encoded in accessory genomic elements. The contribution of core genome processes to high-level resistance in such bacteria has been unclear. In the work reported here, we evaluated the relative importance of core and accessory functions for high-level resistance to the aminoglycoside tobramycin in the nosocomial pathogen Acinetobacter baumannii Three lines of evidence establish the primacy of core functions in this resistance. First, in a genome scale mutant analysis using transposon sequencing and validation with 594 individual mutants, nearly all mutations reducing tobramycin resistance inactivated core genes, some with stronger phenotypes than those caused by the elimination of aminoglycoside-inactivating enzymes. Second, the core functions mediating resistance were nearly identical in the wild type and a deletion mutant lacking a genome resistance island that encodes the inactivating enzymes. Thus, most or all of the core resistance determinants important in the absence of the enzymes are also important in their presence. Third, reductions in tobramycin resistance caused by different core mutations were additive, and highly sensitive double and triple mutants (with 250-fold reductions in the MIC) that retained accessory resistance genes could be constructed. Core processes that contribute most strongly to intrinsic tobramycin resistance include phospholipid biosynthesis, phosphate regulation, and envelope homeostasis.IMPORTANCE The inexorable increase in bacterial antibiotic resistance threatens to undermine many of the procedures that transformed medicine in the last century. One strategy to meet the challenge antibiotic resistance poses is the development of drugs that undermine resistance. To identify potential targets for such adjuvants, we identified the functions underlying resistance to an important class of antibiotics for one of the most highly resistant pathogens known.201729233894
8230190.9994Functional characterization and biological significance of Yersinia pestis lipopolysaccharide biosynthesis genes. In silico analysis of available bacterial genomes revealed the phylogenetic proximity levels of enzymes responsible for biosynthesis of lipopolysaccharide (LPS) of Yersinia pestis, the cause of plague, to homologous proteins of closely related Yersinia spp. and some other bacteria (Serratia proteamaculans, Erwinia carotovora, Burkholderia dolosa, Photorhabdus luminescens and others). Isogenic Y. pestis mutants with single or double mutations in 14 genes of LPS biosynthetic pathways were constructed by site-directed mutagenesis on the base of the virulent strain 231 and its attenuated derivative. Using high-resolution electrospray ionization mass spectrometry, the full LPS structures were elucidated in each mutant, and the sequence of monosaccharide transfers in the assembly of the LPS core was inferred. Truncation of the core decreased significantly the resistance of bacteria to normal human serum and polymyxin B, the latter probably as a result of a less efficient incorporation of 4-amino-4-deoxyarabinose into lipid A. Impairing of LPS biosynthesis resulted also in reduction of LPS-dependent enzymatic activities of plasminogen activator and elevation of LD(50) and average survival time in mice and guinea pigs infected with experimental plague. Unraveling correlations between biological properties of bacteria and particular LPS structures may help a better understanding of pathogenesis of plague and implication of appropriate genes as potential molecular targets for treatment of plague.201121999543