Diverse gene cassettes in class 1 integrons of facultative oligotrophic bacteria of River Mahananda,West Bengal, India. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
83301.0000Diverse gene cassettes in class 1 integrons of facultative oligotrophic bacteria of River Mahananda,West Bengal, India. BACKGROUND: In this study a large random collection (n=2188) of facultative oligotrophic bacteria, from 90 water samples gathered in three consecutive years (2007-2009) from three different sampling sites of River Mahananda in Siliguri, West Bengal, India, were investigated for the presence of class 1 integrons and sequences of the amplification products. METHODOLOGY/PRINCIPAL FINDINGS: Replica plating method was employed for determining the antibiotic resistance profile of the randomly assorted facultative oligotrophic isolates. Genomic DNA from each isolate was analyzed by PCR for the presence of class 1 integron. Amplicons were cloned and sequenced. Numerical taxonomy and 16S rRNA gene sequence analyses were done to ascertain putative genera of the class 1 integron bearing isolates. Out of 2188 isolates, 1667 (76.19%) were antibiotic-resistant comprising of both single-antibiotic resistance (SAR) and multiple-antibiotic resistant (MAR), and 521 (23.81%) were sensitive to all twelve different antibiotics used in this study. Ninety out of 2188 isolates produced amplicon(s) of varying sizes from 0.15 to 3.45 KB. Chi-square (χ(2)) test revealed that the possession of class 1 integron in sensitive, SAR and MAR is not equally probable at the 1% level of significance. Diverse antibiotic-resistance gene cassettes, aadA1, aadA2, aadA4, aadA5, dfrA1, dfrA5, dfrA7, dfrA12, dfrA16, dfrA17, dfrA28, dfrA30, dfr-IIe, blaIMP-9, aacA4, Ac-6'-Ib, oxa1, oxa10 and arr2 were detected in 64 isolates. The novel cassettes encoding proteins unrelated to any known antibiotic resistance gene function were identified in 26 isolates. Antibiotic-sensitive isolates have a greater propensity to carry gene cassettes unrelated to known antibiotic-resistance genes. The integron-positive isolates under the class Betaproteobacteria comprised of only two genera, Comamonas and Acidovorax of family Comamonadaceae, while isolates under class Gammaproteobacteria fell under the families, Moraxellaceae, Pseudomonadaceae, Aeromonadaceae and Enterobacteriaceae. CONCLUSIONS: Oligotrophic bacteria are good sources of novel genes as well as potential reservoirs of antibiotic resistance gene casettes.201323951238
96610.9994Classes 1 and 2 integrons in faecal Escherichia coli strains isolated from mother-child pairs in Nigeria. BACKGROUND: Antimicrobial resistance among enteric bacteria in Africa is increasingly mediated by integrons on horizontally acquired genetic elements. There have been recent reports of such elements in invasive pathogens across Africa, but very little is known about the faecal reservoir of integron-borne genes. METHODS AND FINDINGS: We screened 1098 faecal Escherichia coli isolates from 134 mother-child pairs for integron cassettes by PCR using primers that anneal to the 5' and 3' conserved ends of the cassette regions and for plasmid replicons. Genetic relatedness of isolates was determined by flagellin and multi-locus sequence typing. Integron cassettes were amplified in 410 (37.5%) isolates and were significantly associated with resistance to trimethoprim and multiple resistance. Ten cassette combinations were found in class 1 and two in class 2 integrons. The most common class 1 cassette configurations were single aadA1 (23.4%), dfrA7 (18.3%) and dfrA5 (14.4%). Class 2 cassette configurations were all either dfrA1-satI-aadA1 (n = 31, 7.6%) or dfrA1-satI (n = 13, 3.2%). A dfr cassette was detected in 294 (31.1%) of trimethoprim resistant strains and an aadA cassette in 242 (23%) of streptomycin resistant strains. Strains bearing integrons carried a wide range of plasmid replicons of which FIB/Y (n = 169; 41.2%) was the most frequently detected. Nine isolates from five different individuals carried the dfrA17-aadA5-bearing ST69 clonal group A (CGA). The same integron cassette combination was identified from multiple distinct isolates within the same host and between four mother-child pairs. CONCLUSIONS: Integrons are important determinants of resistance in faecal E. coli. Plasmids in integron-containing strains may contribute to dispersing resistance genes. There is a need for improved surveillance for resistance and its mechanisms of dissemination and persistence and mobility of resistance genes in the community and clinical settings.201728829804
277320.9994Genotypic Characterization of Aminoglycoside Resistance Genes from Bacteria Isolates in Selected Municipal Drinking Water Distribution Sources in Southwestern Nigeria. BACKGROUND: Multi-drug Resistant (MDR) bacteria could lead to treatment failure of infectious diseases and could be transferred by non-potable water. Few studies have investigated occurrence of Antibiotic Resistance Genes (ARGs) among bacteria including Aminoglycoside Modifying Genes (AMGs) from Drinking Water Distribution Systems (DWDS) in Nigeria. Here, we aimed at characterization of AMGs from DWDS from selected states in southwestern Nigeria. METHODS: One hundred and eighty one (181) MDR bacteria that had been previously characterized using 16S rDNA and showed resistance to at least one aminoglycoside antibiotic were selected from treated and untreated six water distribution systems in southwestern Nigeria. MDR bacteria were PCR genotyped for three AMGs:aph (3″)(c), ant (3″)(b) and aph(6)-1d(d). RESULTS: Out of 181 MDR bacteria genotyped, 69(38.12%) tested positive for at least one of the genotyped AMGs. Highest (50, 27.62%) detected gene was ant (3″)(c) followed by aph (3″)(c)(33, 18.23%). Combination of aph(3″)(c) and ant (3″)(b) in a single bacteria was observed as the highest (14, 7.73%) among the detected gene combination. Alcaligenes sp showed the highest (10/20) occurrence of ant (3″)(b) while aph(3″)(c) was the highest detected among Proteus sp (11/22). Other bacteria that showed the presence of AMGs include: Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoae, Proteus, Providencia, Psychrobacter and Serratia. CONCLUSIONS: High occurrence of ant (3″)(c) and aph (3″)(c) among these bacteria call for urgent attention among public health workers, because these genes can be easily disseminated to consumers of these water samples if present on mobile genetic elements like plasmids, integrons and transposons.201931447500
201830.9994Genetic diversity of three classes of integrons in antibiotic-resistant bacteria isolated from Jiulong River in southern China. We identified antibiotic-resistant bacterial isolates from the surface waters of Jiulong River basin in southern China and determined their extent of resistance, as well as the prevalence and characterization of three classes of integrons. A phylogenetic analysis of 16S ribosomal DNA (rDNA) sequences showed that 20 genera were sampled from a total of 191 strains and the most common genus was Acinetobacter. Antimicrobial susceptibility testing revealed that the 191 isolates were all multiresistant and there were high levels of resistance to 19 antimicrobials that were tested, particularly the β-lactam, sulfonamide, amphenicol, macrolide, and rifamycin classes. Moreover, class 1 integrons were ubiquitous while only five out of 191 strains harbored class 2 integrons and no class 3 integrons were detected. The variable region of the class 1 integrons contained 30 different gene cassette arrays. Nine novel arrays were found in 65 strains, and seven strains had empty integrons. Among these 30 arrays, there were 34 different gene cassettes that included 25 resistance genes, six genes with unknown functions, two mutant transposase genes, and a new gene. The unique array dfrA1-sat2-aadA1 was detected in all five isolates carrying the class 2 integron. We found that antibiotic-resistant bacterial isolates from Jiulong River were diverse and antibiotic resistance genes associated with integrons were widespread.201525869436
202740.9994In Silico Detection of Integrons and Their Relationship with Resistance Phenotype of Salmonella Isolates from a Brazilian Pork Production Chain. The pork production chain is an important reservoir of antimicrobial resistant bacteria. This study identified and characterized integrons in Salmonella isolates from a Brazilian pork production chain and associate them with their antibiotic resistance pattern. A total of 41 whole-genome sequencing data of nontyphoidal Salmonella were analyzed using PlasmidSPAdes and IntegronFinder software. Nine isolates (21.9%) had some integrons identified (complete and/or incomplete). Six complete class 1 integrons were found, with streptomycin resistance genes (aadA1, aadA2) alone or downstream of a trimethoprim resistance gene (dfrA1, dfrA12), and some also containing resistance genes for sulfonamides (sul1, sul3) and chloramphenicol (cmlA1). Class 2 integron was detected in only one isolate, containing dfrA1-sat2-aadA1 gene cassettes. Five isolates harbored CALINs-clusters attC but lacking integrases-with antimicrobial resistance genes typically found in integron structures. In all, integrons were observed among four serotypes: Derby, Bredeney, Panama, and monophasic var. Typhimurium I 4,[5],12:i:-. The association of integrons with antibiotic resistance phenotype showed that these elements were predominantly identified in multidrug resistance isolates, and six of the seven gentamicin-resistant isolates had integrons. So, surveillance of integrons in Salmonella should be performed to identify the potential for the spread of antimicrobial resistance genes among bacteria.202438917456
292450.9994Molecular characterization of selected multidrug resistant Pseudomonas from water distribution systems in southwestern Nigeria. BACKGROUND: Persistence of antibiotic resistant bacteria, including multidrug resistant (MDR) pseudomonads, is an important environmental health problem associated with drinking water distribution systems (DWDS) worldwide. There is paucity of data on the molecular characteristics of antibiotic resistance genes and their mode of transfer among pseudomonads from DWDS located in resource-challenged areas such as southwestern Nigeria. METHODS: MDR pseudomonads (n = 22) were selected from a panel of 296 different strains that were isolated from treated and untreated water in six DWDS located across southwest Nigeria. Primarily, the isolated pseudomonads strains were identified by 16S rDNA sequencing and antibiotic-resistance testing was completed using agar breakpoints assays. The final panel of strains of resistant to more than three classes of antibiotics (i.e. MDR), were further characterized by PCR genotyping, Sanger sequencing, and plasmid profiling. RESULTS: Pseudomonad resistance to gentamicin and streptomycin ranged from 22.7 to 54.6 % while resistance to tetracycline, ceftiofur and sulphamethoxazole ranged from 40.9 to 77.3 %. The most commonly detected antibiotic resistance genes were tet(A) (31.8 % of isolates), sul1 (31.8 %), bla TEM (40.9 %) and aph(3″) (c) (36.4 %). Class 1 integron sequences were evident in 27.3 % of isolates and they harbored genes encoding resistance to aminoglycosides (aadA2, aadA1), trimethoprim (dfrA15, dfr7) and sulphonamide (sul1) while the plasmid ranged between 22 and 130 kb. CONCLUSIONS: Pseudomonas spp, isolated from these DWDS possess resistance genes and factors that are of public and environmental health significance. Therefore, has the potential of contributing to the global scourge of resistance genes transfer in human, animals and environments, thereby, useful in the epidemiology of antimicrobial resistance.201526328550
117960.9994Detection of 5 Kinds of Genes Related to Plasmid-Mediated Quinolone Resistance in Four Species of Nonfermenting Bacteria with 2 Drug Resistant Phenotypes. OBJECTIVE: This study aimed to detect 5 kinds of genes related to plasmid-mediated quinolone resistance in four species of nonfermenting bacteria with 2 drug resistance phenotypes (multidrug resistance and pandrug resistance), which were Acinetobacter baumannii (Ab), Pseudomonas aeruginosa (Pa), Stenotrophomonas maltophilia (Sm), and Elizabethkingia meningoseptica (Em). METHODS: The Phoenix NMIC/ID-109 panel and API 20NE panel were applied to 19 isolated strains, including 6 Ab strains (2 strains with multidrug resistance and 4 strains with pandrug resistance), 6 Pa strains (3 strains with multidrug resistance and 3 strains with pandrug resistance), 4 Sm strains (2 strains with multidrug resistance and 2 strains with pandrug resistance), and 3 Cm strains (2 strains with multidrug resistance and 1 strain with pandrug resistance). After strain identification and drug susceptibility test, PCR was applied to detect 5 genes related to plasmid-mediated quinolone resistance. The genes detected were quinolone resistance A (qnrA), aminoglycoside acetyltransferase ciprofloxacin resistance variant, acc(6')-Ib-cr, and 3 integrons (intI1, intI2, and intI3). The amplified products were analyzed by 1% agarose gel electrophoresis and sequenced. Sequence alignment was carried out using the bioinformatics technique. RESULTS: Of 19 strains tested, 8 strains carried acc(6')-Ib-cr and 6 of them were of pandrug resistance phenotype (3 Ab strains, 2 Pa strains, and 1 Sm strain). The carrying rate of acc(6')-Ib-cr was 60.0% for strains of pandrug resistance (6/10). Two strains were of multidrug resistance (1 Ab strain and 1 Pa strain), and the carrying rate of acc(6')-Ib-cr was 22.0% (2/9). The carrying rate was significantly different between strains of multidrug resistance and pandrug resistance (P < 0.05). The class 1 integron was detected in 11 strains, among which 6 strains were of pandrug resistance (3 Ab strains, 2 Pa strains, and 1 Sm strain). The carrying rate of the class 1 integron was 60.0% (6/10). Five strains were of multidrug resistance (3 Pa strains, 1 Ab strain, and 1 Em strain), and the carrying rate was 55.6% (5/9). The carrying rate of the class 1 integron was not significantly different between strains of multidrug resistance and pandrug resistance (P > 0.05). Both acc(6')-Ib-cr and intI1 were detected in 6 strains, which were negative for qnrA, intI2, and intI3. CONCLUSION: Quinolone resistance of isolated strains was related to acc(6')-Ib-cr and intI1 but not to qnrA, intI2, or intI3. The carrying rate of acc(6')-Ib-cr among the strains of pandrug resistance was much higher than that among the strains of multidrug resistance. But, the strains of two drug resistant phenotypes were not significantly different in the carrying rate of intI1. The detection rates of the two genes were high and similar in Ab and Pa strains. 1 Em strain carried the class 1 integron.202032351636
201770.9994Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant. OBJECTIVES: To investigate the presence and distribution of integron-carrying bacteria from a slaughterhouse wastewater treatment plant (WWTP). METHODS: Enterobacteriaceae and aeromonads were isolated at different stages of the wastewater treatment process and screened for the presence of integrase genes by dot-blot hybridization. Integrase-positive strains were characterized in terms of phylogenetic affiliation, genetic content of integrons and antimicrobial resistance profiles. Plasmid location of some integrons was established by Southern-blot hybridization. Strains containing integron-carrying plasmids were selected for mating experiments. RESULTS: Integrase genes were present in all samples, including the final effluent. The global prevalence was determined to be 35%, higher than in other aquatic environments. Forty-two integrase-positive isolates were further characterized. Nine distinct cassette arrays were found, containing genes encoding resistance to beta-lactams (bla(OXA-30)), aminoglycosides (aadA1, aadA2, aadA13, aadB), streptothricin (sat1, sat2), trimethoprim (dfrA1, dfrA12), a putative esterase (estX) and a protein with unknown function (orfF). Gene cassette arrays aadA1, dfrAI-aadA1 and estX-sat2-aadA1 were common to aeromonads and Enterobacteriaceae. The class 2 integron containing an estX-sat2-aadA1 cassette array was detected for the first time in Aeromonas sp. Nearly 12% (5 out of 43) of intI genes were located in plasmids. intI genes from isolates MM.1.3 and MM.1.5 were successfully conjugated into Escherichia coli at frequencies of 3.79 x 10(-5) and 5.46 x 10(-5) per recipient cell, respectively. CONCLUSIONS: Our data support the hypothesis that WWTPs constitute a potential hot spot for horizontal gene transfer and for selection of antimicrobial resistance genes among aquatic bacteria. Moreover, water discharges represent a possible risk for dissemination of undesirable genetic traits.200717913715
292380.9993Molecular analysis of florfenicol-resistant bacteria isolated from drinking water distribution systems in Southwestern Nigeria. OBJECTIVES: Use of chloramphenicol or its veterinary analogue florfenicol can selectively favour antibiotic-resistant bacteria. Understanding how resistance is mobilised and disseminated among pathogens is vital in knowing how different bacterial taxa might serve as reservoirs of these genes for pathogenic bacteria. METHODS: Bacterial isolates (n=30) were selected on the basis of multidrug resistance and resistance to florfenicol from among 296 bacteria originally isolated from drinking water distribution systems in Southwestern Nigeria. Bacterial identification, minimum inhibitory concentration (MIC) determination for florfenicol, PCR detection of florfenicol resistance genes (floR, fexA and cfx) and sequence analysis were employed to characterise the isolates. RESULTS: According to sequence data (16S rDNA, v2-v3 region), 30strains were selected, includingPseudomonas spp. (43.3%), Serratia spp. (13.3%), Proteus spp. (26.7%), Acinetobacter spp. (13.3%) and Providencia rettgeri (3.3%). MICs ranged between >16μg/mL and >1024μg/mL. floR was the only resistance gene detected (11/30; 36.7%). The majority of floR-positive isolates (8/11; 72.7%) were Proteus spp. All floR sequences shared 100% identity and 1-2 synonymous substitutions relative to other published sequences. CONCLUSIONS: floR-positive strains in this study were originally selected randomly without antibiotics. Finding floR in four genera without selective enrichment is consistent with widespread distribution of this resistance trait in drinking water systems in Nigeria. Further work is needed to determine whether human and veterinary antibiotic use practices in Nigeria are contributing to proliferation of this important antibiotic resistance trait and to determine whether the presence of floR-producing strains is compromising human and animal health.202033166759
292590.9993Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. An increasing incidence of multidrug resistance amongst Aeromonas spp. isolates, which are both fish pathogens and emerging opportunistic human pathogens, has been observed worldwide. This can be attributed to the horizontal transfer of mobile genetic elements, viz.: plasmids and class 1 integrons. The antimicrobial susceptibilities of 37 Aeromonas spp. isolates, from tilapia, trout and koi aquaculture systems, were determined by disc-diffusion testing. The plasmid content of each isolate was examined using the alkaline lysis protocol. Tet determinant type was determined by amplification using two degenerate primer sets and subsequent HaeIII restriction. The presence of integrons was determined by PCR amplification of three integrase genes, as well as gene cassettes, and the qacEDelta1-sulI region. Thirty-seven Aeromonas spp. isolates were differentiated into six species by aroA PCR-RFLP, i.e., A. veronii biovar sobria, A. hydrophila, A. encheleia, A. ichtiosoma, A. salmonicida, and A. media. High levels of resistance to tetracycline (78.3%), amoxicillin (89.2%), and augmentin (86.5%) were observed. Decreased susceptibility to erythromycin was observed for 67.6% of isolates. Although 45.9% of isolates displayed nalidixic acid resistance, majority of isolates were susceptible to the fluoroquinolones. The MAR index ranged from 0.12 to 0.59, with majority of isolates indicating high-risk contamination originating from humans or animals where antibiotics are often used. Plasmids were detected in 21 isolates, with 14 of the isolates displaying multiple plasmid profiles. Single and multiple class A family Tet determinants were observed in 27% and 48.7% of isolates, respectively, with Tet A being the most prevalent Tet determinant type. Class 1 integron and related structures were amplified and carried different combinations of the antibiotic resistance gene cassettes ant(3'')Ia, aac(6')Ia, dhfr1, oxa2a and/or pse1. Class 2 integrons were also amplified, but the associated resistance cassettes could not be identified. Integrons and Tet determinants were carried by 68.4% of isolates bearing plasmids, although it was not a strict association. These plasmids could potentially mobilize the integrons and Tet determinants, thus transferring antimicrobial resistance to other water-borne bacteria or possible human pathogens. The identification of a diversity of resistance genes in the absence of antibiotic selective pressure in Aeromonas spp. from aquaculture systems highlights the risk of these bacteria serving as a reservoir of resistance genes, which may be transferred to other bacteria in the aquaculture environment.200717173998
2015100.9993Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds. The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored.201627409235
1188110.9993High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China. Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4%) were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2) and 32 isolates (17.0%) were positive for aac(6')-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6')-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05). In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05). All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388-16,197 bp) and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6')-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids.201627427763
2766120.9993Identification of new bacteria harboring qnrS and aac(6')-Ib/cr and mutations possibly involved in fluoroquinolone resistance in raw sewage and activated sludge samples from a full-scale WWTP. Wastewater treatment plants (WWTPs) harbor bacteria and antimicrobial resistance genes, favoring gene exchange events and resistance dissemination. Here, a culture-based and metagenomic survey of qnrA, qnrB, qnrS, and aac(6')-Ib genes from raw sewage (RS) and activated sludge (AS) of a full-scale municipal WWTP was performed. A total of 96 bacterial isolates were recovered from nalidixic acid-enrichment cultures. Bacteria harboring the aac(6')-Ib gene predominated in RS, whereas qnrS-positive isolates were specific to AS. Novel qnrS- and aac(6')-Ib-cr positive species were identified: Morganella morganii, Providencia rettgeri, and Pseudomonas guangdongensis (qnrS), and Alcaligenes faecalis and P. rettgeri (aac(6')-Ib-cr). Analysis of qnrS and aac(6')-Ib sequences from isolates and clone libraries suggested that the diversity of qnrS is wider than that of aac(6')-Ib. A large number of amino acid mutations were observed in the QnrS and AAC(6')-Ib proteins at previously undetected positions, whose structural implications are not clear. An accumulation of mutations at the C72, Q73, L74, A75 and M76 positions of QnrS, and D181 of AAC(6')-Ib might be important for resistance. These findings add significant information on bacteria harboring qnrS and aac(6')-Ib genes, and the presence of novel mutations that may eventually emerge in clinical isolates.201727984803
2025130.9993Diverse Gene Cassette Arrays Prevail in Commensal Escherichia coli From Intensive Farming Swine in Four Provinces of China. Multiple-drug resistance bacteria containing antimicrobial resistance genes (ARGs) are a concern for public health. Integrons are bacterial genetic elements that can capture, rearrange, and express mobile gene cassettes responsible for the spread of ARGs. Few studies link genotype and phenotype of swine-related ARGs in the context of mobile gene cassette arrays among commensal Escherichia coli (E. coli) in nonclinical livestock isolates from intensive farms. In the present study, a total of 264 isolates were obtained from 330 rectal swabs to determine the prevalence and characteristics of antibiotic-resistant gene being carried by commensal E. coli in the healthy swine from four intensive farms at Anhui, Hebei, Shanxi, and Shaanxi, in China. Antimicrobial resistance phenotypes of the recovered isolates were determined for 19 antimicrobials. The E. coli isolates were commonly nonsusceptible to doxycycline (75.8%), tetracycline (73.5%), sulfamethoxazole-trimethoprim (71.6%), amoxicillin (68.2%), sulfasalazine (67.1%), ampicillin (58.0%), florfenicol (56.1%), and streptomycin (53.0%), but all isolates were susceptible to imipenem (100%). Isolates [184 (69.7%)] exhibited multiple drug resistance with 11 patterns. Moreover, 197 isolates (74.6%) were detected carrying the integron-integrase gene (intI1) of class 1 integrons. A higher incidence of antimicrobial resistance was observed in the intI1-positive E. coli isolates than in the intI1-negative E. coli isolates. Furthermore, there were 17 kinds of gene cassette arrays in the 70 integrons as detected by sequencing amplicons of variable regions, with 66 isolates (94.3%) expressing their gene cassettes encoding for multiple drug resistance phenotypes for streptomycin, neomycin, gentamicin, kanamycin, amikacin, sulfamethoxazole-trimethoprim, sulfasalazine, and florfenicol. Notably, due to harboring multiple, hybrid, and recombination cassettes, complex cassette arrays were attributed to multiple drug resistance patterns than simple arrays. In conclusion, we demonstrated that the prevalence of multiple drug resistance and the incidence of class 1 integrons were 69.7 and 74.6% in commensal E. coli isolated from healthy swine, which were lower in frequency than that previously reported in China.202033154738
2917140.9993Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Tetracycline-resistant (Tet(r)) bacteria were isolated from fishes collected at three different fish farms in the southern part of Japan in August and September 2000. Of the 66 Tet(r) gram-negative strains, 29 were identified as carrying tetB only. Four carried tetY, and another four carried tetD. Three strains carried tetC, two strains carried tetB and tetY, and one strain carried tetC and tetG. Sequence analyses indicated the identity in Tet(r) genes between the fish farm bacteria and clinical bacteria: 99.3 to 99.9% for tetB, 98.2 to 100% for tetC, 99.7 to 100% for tetD, 92.0 to 96.2% for tetG, and 97.1 to 100% for tetY. Eleven of the Tet(r) strains transferred Tet(r) genes by conjugation to Escherichia coli HB-101. All transconjugants were resistant to tetracycline, oxycycline, doxycycline, and minocycline. The donors included strains of Photobacterium, Vibrio, Pseudomonas, Alteromonas, Citrobacter, and Salmonella spp., and they transferred tetB, tetY, or tetD to the recipients. Because NaCl enhanced their growth, these Tet(r) strains, except for the Pseudomonas, Citrobacter, and Salmonella strains, were recognized as marine bacteria. Our results suggest that tet genes from fish farm bacteria have the same origins as those from clinical strains.200312957921
5862150.9993Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Twenty-five distinct tetracycline-resistant gram-negative bacteria recovered from four Chilean fish farms with no history of recent antibiotic use were examined for the presence of tetracycline resistance (tet) genes. Sixty percent of the isolates carried 1 of the 22 known tet genes examined. The distribution was as follows. The tet(A) gene was found in six isolates. The tet(B) gene was found in two isolates, including the first description in the genus Brevundimonas: Two isolates carried the tet(34) and tet(B) genes, including the first description of the tet(34) gene in Pseudomonas and Serratia and the first description of the tet(B) gene in Pseudomonas: The tet(H) gene was found in two isolates, which includes the first description in the genera Moraxella and Acinetobacter: One isolate carried tet(E), and one isolate carried tet(35), the first description of the gene in the genus Stenotrophomonas: Finally, one isolate carried tet(L), found for the first time in the genus Morganella: By DNA sequence analysis, the two tet(H) genes were indistinguishable from the previously sequenced tet(H) gene from Tn5706 found in Pasteurella multocida. The Acinetobacter radioresistens isolate also harbored the Tn5706-associated 1,063-bp IS element IS1597, while the Moraxella isolate carried a 1,026-bp IS-like element whose 293-amino-acid transposase protein exhibited 69% identity and 84% similarity to the transposase protein of IS1597, suggesting the presence of a novel IS element. The distribution of tet genes from the Chilean freshwater ponds was different than those that have previously been described from other geographical locations, with 40% of the isolates carrying unidentified tetracycline resistance genes.200312604516
1376160.9993Incidence of class 1 integron and other antibiotic resistance determinants in Aeromonas spp. from rainbow trout farms in Australia. There is limited information on antibiotic resistance determinants present in bacteria of aquaculture origin in Australia. The presence of integron and other resistance determinants was investigated in 90 Aeromonas isolates derived from nine freshwater trout farms in Victoria (Australia). Polymerase chain reaction was carried out for the detection of integrase genes Int1, Int2 and Int3, gene cassette array, integron-associated aadA, sul1 and qac1 genes, streptomycin resistance genes strA-strB, β-lactamase resistance genes bla(TEM) and bla(SHV) , and tetracycline resistance genes tetA-E and tetM. Clonal analysis was performed by pulsed-field gel electrophoresis (PFGE). Class 1 integrons were detected in 28/90 (31%) and class 2 and class 3 in none of the strains, aadA gene in 19/27 (70%) streptomycin-resistant strains, sul1 in 13/15 (86.7%) sulphonamide-resistant strains and qac1 gene in 8/28 (28.6%) integron-bearing strains. Five strains from two different farms carried gene cassettes of 1000 bp each containing the aadA2 gene and PFGE analysis revealed genetic relatedness. tetC was detected in all and tetA in 9/18 (50%) tetracycline-resistant strains. The strA-strB, bla(TEM) or bla(SHV) genes were not detected in any of the strains. Aeromonas spp. carrying integrons and other resistance genes are present in farm-raised fish and sediments even though no antibiotics were licensed for use in Australian aquaculture at the time of the study.201121762170
2065170.9993Exogenous plasmid capture to characterize tetracycline-resistance plasmids in sprouts obtained from retail in Germany. This study aimed to characterize antibiotic-resistance plasmids present in microorganisms from sprout samples using exogenous plasmid capture. Fresh mung bean sprouts were predominantly colonized by bacteria from the phyla Proteobacteria and Bacteroidetes. To capture plasmids, a plasmid-free Escherichia (E.) coli CV601 strain, containing a green fluorescent protein gene for selection, was used as the recipient strain in exogenous plasmid capture experiments. Transconjugants were selected on media containing cefotaxime or tetracycline antibiotics. While no cefotaxime-resistant transconjugants were obtained, 40 tetracycline-resistant isolates were obtained and sequenced by Illumina NextSeq short read and Nanopore MinION long read sequencing. Sequences were assembled using Unicycler hybrid assembly. Most of the captured long plasmids carried either the tet(A) or tet(D) resistance gene, belonged to the IncFI or IncFII replicon types, and were predicted as conjugative. While the smaller plasmids contained the tet(A) tetracycline resistance gene as well as additional quinolone (qnrS1), sulfonamide (sul1) and trimethoprim (dfrA1) resistance genes, the larger plasmids only contained the tet(D) resistance gene. An exception was the largest 192 kbp plasmid isolated, which contained the tet(D), as well as sulfonamide (sul1) and streptomycin (aadA1) resistance genes. The smaller plasmid was isolated from different sprout samples more often and showed a 100% identity in size (71,155 bp), while the 180 kbp plasmids showed some smaller or larger differences (in size between 157,683 to 192,360 bp). This suggested that the plasmids obtained from the similar sprout production batches could be clonally related. Nanopore MinION based 16S metagenomics showed the presence of Enterobacter (En.) cloacae, En. ludwigii, En. kobei, Citrobacter (C.) werkmanii, C. freundii, Klebsiella (K.) oxytoca and K. pneumonia, which have previously been isolated from fresh produce in Germany. These bacteria may harbor antibiotic resistance genes on plasmids that could potentially be transferred to similar genera. This study demonstrated that bacteria present in sprouts may act as the donors of antibiotic resistance plasmids which can transfer resistance to other bacteria on this product via conjugation.202540012786
1372180.9993Incidence of antimicrobial resistance genes and class 1 integron gene cassettes in multidrug-resistant motile Aeromonas sp. isolated from ornamental guppy (Poecilia reticulata). Aeromonas sp. are opportunistic pathogenic bacteria which are associated with various diseases in ornamental fish, aquaculture raised species and wild fisheries. In our study, antimicrobial resistance patterns, antimicrobial resistance genes and class 1 integron gene cassettes of 52 guppy-borne Aeromonas sp. were examined. The isolates were identified as A. veronii (n = 34), A. dhakensis (n = 10), A. hydrophila (n = 3), A. caviae (n = 3) and A. enteropelogenes (n = 2) by gyrB gene sequencing. Every isolate was resistant to at least four antimicrobials in disc diffusion test. The resistance to amoxicillin, nalidixic acid and oxytetracycline was 100% among the tested isolates. 92·30, 76·92, 71·15, 51·92, 51·92 and 50·00% of the isolates were resistant to ampicillin, rifampicin, imipenem, cephalothin, tetracycline and trimethoprim respectively. The multiple antibiotic resistance index values ranged from 0·28 to 0·67. PCR amplification of antimicrobial resistance genes implied the occurrence of tetracycline resistance (tetA (65·39%), tetE (25·00%) and tetB (15·38%)), plasmid-mediated quinolone resistance (qnrS (26·92%) and qnrB (17·31%)) and aminoglycoside resistance (aphaAI-IAB (7·69%) and aac (6')-Ib (3·84%)) genes in the isolates. The IntI gene was positive for 36·54% of the isolates and four class 1 integron gene cassette profiles (aadA2, qacE2-orfD, aadA2-catB2 and dfrA12-aadA2) were identified. These data suggest that ornamental guppy can be a reservoir of multidrug-resistant Aeromonas sp. which comprise different antimicrobial resistance genes and class 1 integrons. SIGNIFICANCE AND IMPACT OF THE STUDY: Antimicrobial resistance genes and integron gene cassettes of ornamental fish-borne aeromonads are poorly studied. The antimicrobial resistance patterns, antimicrobial resistance genes and class 1 integron gene cassettes of Aeromonas sp. isolated from ornamental guppy were characterized for the first time in Korea. The incidence of different antimicrobial resistance genes and class 1 integron gene cassettes were observed in multidrug-resistant Aeromonas isolates. This result suggests that better management practices are necessary to prevent and address the serious consequences of indiscriminate and inappropriate antimicrobial use, and the distribution of multidrug-resistant bacteria.201930980564
5918190.9993Resistance to Antibiotics, Biocides, Preservatives and Metals in Bacteria Isolated from Seafoods: Co-Selection of Strains Resistant or Tolerant to Different Classes of Compounds. Multi-drug resistant bacteria (particularly those producing extended-spectrum β-lactamases) have become a major health concern. The continued exposure to antibiotics, biocides, chemical preservatives, and metals in different settings such as the food chain or in the environment may result in development of multiple resistance or co-resistance. The aim of the present study was to determine multiple resistances (biocides, antibiotics, chemical preservatives, phenolic compounds, and metals) in bacterial isolates from seafoods. A 75.86% of the 87 isolates studied were resistant to at least one antibiotic or one biocide, and 6.90% were multiply resistant to at least three biocides and at least three antibiotics. Significant (P < 0.05) moderate or strong positive correlations were detected between tolerances to biocides, between antibiotics, and between antibiotics with biocides and other antimicrobials. A sub-set of 30 isolates selected according to antimicrobial resistance profile and food type were identified by 16S rDNA sequencing and tested for copper and zinc tolerance. Then, the genetic determinants for biocide and metal tolerance and antibiotic resistance were investigated. The selected isolates were identified as Pseudomonas (63.33%), Acinetobacter (13.33%), Aeromonas (13.33%), Shewanella, Proteus and Listeria (one isolate each). Antibiotic resistance determinants detected included sul1 (43.33% of tested isolates), sul2 (6.66%), bla(TEM) (16.66%), bla(CTX-M) (16.66%), bla(PSE) (10.00%), bla(IMP) (3.33%), bla(NDM-1) (3.33%), floR (16.66%), aadA1 (20.0%), and aac(6')-Ib (16.66%). The only biocide resistance determinant detected among the selected isolates was qacEΔ1 (10.00%). A 23.30 of the selected isolates were able to grow on media containing 32 mM copper sulfate, and 46.60% on 8 mM zinc chloride. The metal resistance genes pcoA/copA, pcoR, and chrB were detected in 36.66, 6.66, and 13.33% of selected isolates, respectively. Twelve isolates tested positive for both metal and antibiotic resistance genes, including one isolate positive for the carbapenemase gene bla(NDM-1) and for pcoA/copA. These results suggest that exposure to metals could co-select for antibiotic resistance and also highlight the potential of bacteria on seafoods to be involved in the transmission of antimicrobial resistance genes.201728912764