# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8328 | 0 | 1.0000 | The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence. The viruses that infect bacteria, known as phages, are the most abundant biological entity on earth. They play critical roles in controlling bacterial populations through phage-mediated killing, as well as through formation of bacterial lysogens. In this form, the survival of the phage depends on the survival of the bacterial host in which it resides. Thus, it is advantageous for phages to encode genes that contribute to bacterial fitness and expand the environmental niche. In many cases, these fitness factors also make the bacteria better able to survive in human infections and are thereby considered pathogenesis or virulence factors. The genes that encode these fitness factors, known as "morons," have been shown to increase bacterial fitness through a wide range of mechanisms and play important roles in bacterial diseases. This review outlines the benefits provided by phage morons in various aspects of bacterial life, including phage and antibiotic resistance, motility, adhesion and quorum sensing. | 2019 | 30635074 |
| 9583 | 1 | 0.9998 | Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Phages are the obligate parasite of bacteria and have complex interactions with their hosts. Phages can live in, modify, and shape bacterial communities by bringing about changes in their abundance, diversity, physiology, and virulence. In addition, phages mediate lateral gene transfer, modify host metabolism and reallocate bacterially-derived biochemical compounds through cell lysis, thus playing an important role in ecosystem. Phages coexist and coevolve with bacteria and have developed several antidefense mechanisms in response to bacterial defense strategies against them. Phages owe their existence to their bacterial hosts, therefore they bring about alterations in their host genomes by transferring resistance genes and genes encoding toxins in order to improve the fitness of the hosts. Application of phages in biotechnology, environment, agriculture and medicines demands a deep insight into the myriad of phage-bacteria interactions. However, to understand their complex interactions, we need to know how unique phages are to their bacterial hosts and how they exert a selective pressure on the microbial communities in nature. Consequently, the present review focuses on phage biology with respect to natural selection of bacterial populations. | 2020 | 33170167 |
| 9582 | 2 | 0.9998 | Humans and Microbes: A Systems Theory Perspective on Coevolution. The issue of rapid adaptation of microorganisms to changing environments is examined. The mechanism of adaptive mutations is analyzed. The possibility that horizontal gene transfer is a random process is discussed. Bacteria, unicellular fungi, and other microorganisms successfully adapt to fast-changing conditions (such as exposure to drugs) because their evolution is not a random process. Adaptation to antibiotics, adaptive mutations, and related phenomena occur because microbial evolution is inherently directed and purposefully oriented toward potential external changes. Rejecting gene-centricity plays a crucial role in understanding the coevolution of humans and pathogens. This means that beyond genes, there exists a higher-level system-an organism with its own unique properties that cannot be reduced to genes. The problem of human adaptation to infectious agents (viruses, bacteria, and protozoa) is also analyzed. Based on general systems theory, it is concluded that humans and pathogens coevolve in a controlled manner. | 2025 | 41176022 |
| 9591 | 3 | 0.9998 | Interaction of phages, bacteria, and the human immune system: Evolutionary changes in phage therapy. Phages and bacteria are known to undergo dynamic and co-evolutionary arms race interactions in order to survive. Recent advances from in vitro and in vivo studies have improved our understanding of the complex interactions between phages, bacteria, and the human immune system. This insight is essential for the development of phage therapy to battle the growing problems of antibiotic resistance. It is also pivotal to prevent the development of phage-resistance during the implementation of phage therapy in the clinic. In this review, we discuss recent progress of the interactions between phages, bacteria, and the human immune system and its clinical application for phage therapy. Proper phage therapy design will ideally produce large burst sizes, short latent periods, broad host ranges, and a low tendency to select resistance. | 2019 | 31145517 |
| 8327 | 4 | 0.9998 | 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. This review synthesizes recent and past observations on filamentous phages and describes how these phages contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae encodes the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the emergence of new pathogenic strains. Other effects of filamentous phage include horizontal gene transfer, biofilm development, motility, metal resistance and the formation of host morphotypic variants, important for the biofilm stress resistance. These phages infect a wide range of Gram-negative bacteria, including deep-sea, pressure-adapted bacteria. Many filamentous phages integrate into the host genome as prophage. In some cases, filamentous phages encode their own integrase genes to facilitate this process, while others rely on host-encoded genes. These differences are mediated by different sets of 'core' and 'accessory' genes, with the latter group accounting for some of the mechanisms that alter the host behaviours in unique ways. It is increasingly clear that despite their relatively small genomes, these phages exert signficant influence on their hosts and ultimately alter the fitness and other behaviours of their hosts. | 2015 | 25670735 |
| 9472 | 5 | 0.9997 | Bacteriophage and Bacterial Susceptibility, Resistance, and Tolerance to Antibiotics. Bacteriophages, viruses that infect and replicate within bacteria, impact bacterial responses to antibiotics in complex ways. Recent studies using lytic bacteriophages to treat bacterial infections (phage therapy) demonstrate that phages can promote susceptibility to chemical antibiotics and that phage/antibiotic synergy is possible. However, both lytic and lysogenic bacteriophages can contribute to antimicrobial resistance. In particular, some phages mediate the horizontal transfer of antibiotic resistance genes between bacteria via transduction and other mechanisms. In addition, chronic infection filamentous phages can promote antimicrobial tolerance, the ability of bacteria to persist in the face of antibiotics. In particular, filamentous phages serve as structural elements in bacterial biofilms and prevent the penetration of antibiotics. Over time, these contributions to antibiotic tolerance favor the selection of resistance clones. Here, we review recent insights into bacteriophage contributions to antibiotic susceptibility, resistance, and tolerance. We discuss the mechanisms involved in these effects and address their impact on bacterial fitness. | 2022 | 35890320 |
| 9498 | 6 | 0.9997 | The role of bacteriophages in periodontal health and disease. The human periodontium health is commonly compromised by chronic inflammatory conditions and has become a major public health concern. Dental plaque, the precursor of periodontal disease, is a complex biofilm consisting mainly of bacteria, but also archaea, protozoa, fungi and viruses. Viruses that specifically infect bacteria - bacteriophages - are most common in the oral cavity. Despite this, their role in the progression of periodontal disease remains poorly explored. This review aims to summarize how bacteriophages interact with the oral microbiota, their ability to increase bacterial virulence and mediate the transfer of resistance genes and suggests how bacteriophages can be used as an alternative to the current periodontal disease therapies. | 2016 | 27633580 |
| 8285 | 7 | 0.9997 | Bacterial stress response: understanding the molecular mechanics to identify possible therapeutic targets. INTRODUCTION: Bacteria are ubiquitous and many of them are pathogenic in nature. Entry of bacteria in host and its recognition by host defense system induce stress in host cells. With time, bacteria have also developed strategies including drug resistance to escape from antibacterial therapy as well as host defense mechanism. AREAS COVERED: Bacterial stress initiates and promotes adaptive immune response through several integrated mechanisms. The mechanisms of bacteria to up and down regulate different pathways involved in these responses have been discussed. The genetic expression of these pathways can be manipulated by the pharmacological interventions. Present review discusses in these contexts and explores the possibilities to overcome stress induced by bacterial pathogens and to suggest new possible therapeutic targets. EXPERT OPINION: In our opinion, there are two important fronts to regulate the bacterial stress. One is to target caspase involved in the process of transformation and translation at gene level and protein expression. Second is the identification of bacterial genes that lead to synthesis of abnormal end products supporting bacterial survival in host environment and also to surpass the host defense mechanism. Identification of such genes and their expression products could be an effective option to encounter bacterial resistance. | 2021 | 32811215 |
| 8266 | 8 | 0.9997 | Remarkable Mechanisms in Microbes to Resist Phage Infections. Bacteriophages (phages) specifically infect bacteria and are the most abundant biological entities on Earth. The constant exposure to phage infection imposes a strong selective pressure on bacteria to develop viral resistance strategies that promote prokaryotic survival. Thus, this parasite-host relationship results in an evolutionary arms race of adaptation and counteradaptation between the interacting partners. The evolutionary outcome is a spectrum of remarkable strategies used by the bacteria and phages as they attempt to coexist. These approaches include adsorption inhibition, injection blocking, abortive infection, toxin-antitoxin, and CRISPR-Cas systems. In this review, we highlight the diverse and complementary antiphage systems in bacteria, as well as the evasion mechanisms used by phages to escape these resistance strategies. | 2014 | 26958724 |
| 9722 | 9 | 0.9997 | The Role of Temperate Phages in Bacterial Pathogenicity. Bacteriophages are viruses that infect bacteria and archaea and are classified as virulent or temperate phages based on their life cycles. A temperate phage, also known as a lysogenic phage, integrates its genomes into host bacterial chromosomes as a prophage. Previous studies have indicated that temperate phages are beneficial to their susceptible bacterial hosts by introducing additional genes to bacterial chromosomes, creating a mutually beneficial relationship. This article reviewed three primary ways temperate phages contribute to the bacterial pathogenicity of foodborne pathogens, including phage-mediated virulence gene transfer, antibiotic resistance gene mobilization, and biofilm formation. This study provides insights into mechanisms of phage-bacterium interactions in the context of foodborne pathogens and provokes new considerations for further research to avoid the potential of phage-mediated harmful gene transfer in agricultural environments. | 2023 | 36985115 |
| 9581 | 10 | 0.9997 | Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Lateral gene transfer (LGT) has significantly influenced bacterial evolution since the origins of life. It helped bacteria generate flexible, mosaic genomes and enables individual cells to rapidly acquire adaptive phenotypes. In turn, this allowed bacteria to mount strong defenses against human attempts to control their growth. The widespread dissemination of genes conferring resistance to antimicrobial agents has precipitated a crisis for modern medicine. Our actions can promote increased rates of LGT and also provide selective forces to fix such events in bacterial populations. For instance, the use of selective agents induces the bacterial SOS response, which stimulates LGT. We create hotspots for lateral transfer, such as wastewater systems, hospitals, and animal production facilities. Conduits of gene transfer between humans and animals ensure rapid dissemination of recent transfer events, as does modern transport and globalization. As resistance to antibacterial compounds becomes universal, there is likely to be increasing selection pressure for phenotypes with adverse consequences for human welfare, such as enhanced virulence, pathogenicity, and transmission. Improved understanding of the ecology of LGT could help us devise strategies to control this fundamental evolutionary process. | 2017 | 27706829 |
| 8242 | 11 | 0.9997 | New antibacterial targets: Regulation of quorum sensing and secretory systems in zoonotic bacteria. Quorum sensing (QS) is a communication mechanism that controls bacterial communication and can influence the transcriptional expression of multiple genes through one or more signaling molecules, thereby coordinating the population response of multiple bacterial pathogens. Secretion systems (SS) play an equally important role in bacterial information exchange, relying on the secretory systems to secrete proteins that act as virulence factors to promote adhesion to host cells. Eight highly efficient SS have been described, all of which are involved in the secretion or transfer of virulence factors, and the effector proteins they secrete play a key role in the virulence and pathogenicity of bacteria. It has been shown that many bacterial SS are directly or indirectly regulated by QS and thus influence bacterial virulence and antibiotic resistance. This review describes the relationship between QS and SS of several common zoonotic pathogenic bacteria and outlines the molecular mechanisms of how QS systems regulate SS, to provide a theoretical basis for the study of bacterial pathogenicity and the development of novel antibacterial drugs. | 2023 | 37343493 |
| 9589 | 12 | 0.9997 | Phage Therapy: Going Temperate? Strictly lytic phages have been consensually preferred for phage therapy purposes. In contrast, temperate phages have been avoided due to an inherent capacity to mediate transfer of genes between bacteria by specialized transduction - an event that may increase bacterial virulence, for example, by promoting antibiotic resistance. Now, advances in sequencing technologies and synthetic biology are providing new opportunities to explore the use of temperate phages for therapy against bacterial infections. By doing so we can considerably expand our armamentarium against the escalating threat of antibiotic-resistant bacteria. | 2019 | 30466900 |
| 9205 | 13 | 0.9997 | Resistance induction based on the understanding of molecular interactions between plant viruses and host plants. BACKGROUND: Viral diseases cause significant damage to crop yield and quality. While fungi- and bacteria-induced diseases can be controlled by pesticides, no effective approaches are available to control viruses with chemicals as they use the cellular functions of their host for their infection cycle. The conventional method of viral disease control is to use the inherent resistance of plants through breeding. However, the genetic sources of viral resistance are often limited. Recently, genome editing technology enabled the publication of multiple attempts to artificially induce new resistance types by manipulating host factors necessary for viral infection. MAIN BODY: In this review, we first outline the two major (R gene-mediated and RNA silencing) viral resistance mechanisms in plants. We also explain the phenomenon of mutations of host factors to function as recessive resistance genes, taking the eIF4E genes as examples. We then focus on a new type of virus resistance that has been repeatedly reported recently due to the widespread use of genome editing technology in plants, facilitating the specific knockdown of host factors. Here, we show that (1) an in-frame mutation of host factors necessary to confer viral resistance, sometimes resulting in resistance to different viruses and that (2) certain host factors exhibit antiviral resistance and viral-supporting (proviral) properties. CONCLUSION: A detailed understanding of the host factor functions would enable the development of strategies for the induction of a new type of viral resistance, taking into account the provision of a broad resistance spectrum and the suppression of the appearance of resistance-breaking strains. | 2021 | 34454519 |
| 9140 | 14 | 0.9997 | Polyamine as a microenvironment factor in resistance to antibiotics. One of the main issues in modern medicine is the decrease in the efficacy of antibiotic therapy against resistant microorganisms. The advent of antimicrobial resistance has added significantly to the impact of infectious diseases, in number of infections, as well as added healthcare costs. The development of antibiotic tolerance and resistance is influenced by a variety of environmental variables, and it is important to identify these environmental factors as part of any strategy for combating antibiotic resistance. The review aims to emphasize that biogenic polyamines are one of such environmental cues that impacts the antibiotic resistance in bacteria. The biogenic polyamines can help bacteria acquire resistance to antibiotics either by regulating the level of number of porin channels in the outer membrane, by modifying the outer membrane liposaccharides or by protecting macromolecule from antibiotic stress. Thus, understanding the way polyamines function in bacteria can thus be beneficial while designing the drugs to combat diseases. | 2024 | 37339480 |
| 9204 | 15 | 0.9997 | Susceptibility Genes in Bacterial Diseases of Plants. Plant susceptibility (S) genes exploited by pathogenic bacteria play critical roles in disease development, collectively contributing to symptoms, pathogen proliferation, and spread. S genes may support pathogen establishment within the host, suppress host immunity, regulate host physiology or development, or function in other ways. S genes can be passive, e.g., involved in pathogen attraction or required for pathogen effector localization or activity, or active, contributing directly to symptoms or pathogen proliferation. Knowledge of S genes is important for understanding disease and other aspects of plant biology. It is also useful for disease management, as nonfunctional alleles can slow or prevent disease and, because they are often quantitative, can exert less selection on pathogens than dominant resistance genes, allowing greater durability. In this review, we discuss bacterial exploitation of S genes, S-gene functional diversity, approaches for identifying S genes, translation of S-gene knowledge for disease control, and future perspectives on this exciting area of plant pathology. | 2025 | 40446167 |
| 9533 | 16 | 0.9997 | The disparate effects of bacteriophages on antibiotic-resistant bacteria. Faced with the crisis of multidrug-resistant bacteria, bacteriophages, viruses that infect and replicate within bacteria, have been reported to have both beneficial and detrimental effects with respect to disease management. Bacteriophages (phages) have important ecological and evolutionary impacts on their bacterial hosts and have been associated with therapeutic use to kill bacterial pathogens, but can lead to the transmission of antibiotic resistance. Although the process known as transduction has been reported for many bacterial species by classic and modern genetic approaches, its contribution to the spread of antibiotic resistance in nature remains unclear. In addition, detailed molecular studies have identified phages residing in bacterial genomes, revealing unexpected interactions between phages and their bacterial hosts. Importantly, antibiotics can induce the production of phages and phage-encoded products, disseminating these viruses and virulence-related genes, which have dangerous consequences for disease severity. These unwanted side-effects of antibiotics cast doubt on the suitability of some antimicrobial treatments and may require new strategies to prevent and limit the selection for virulence. Foremost among these treatments is phage therapy, which could be used to treat many bacterial infectious diseases and confront the pressing problem of antibiotic resistance in pathogenic bacteria. This review discusses the interactions between bacteriophages, antibiotics, and bacteria and provides an integrated perspective that aims to inspire the development of successful antibacterial therapies. | 2018 | 30302018 |
| 8286 | 17 | 0.9997 | RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications. | 2021 | 34440299 |
| 9590 | 18 | 0.9997 | Recent advances in phage defense systems and potential overcoming strategies. Bacteriophages are effective in the prevention and control of bacteria, and many phage products have been permitted and applied in the field. Because bacteriophages are expected to replace other antimicrobial agents like antibiotics, the antibacterial effect of bacteriophage has attracted widespread attention. Recently, the diversified defense systems discovered in the target host have become potential threats to the continued effective application of phages. Therefore, a systematic summary and in-depth illustration of the interaction between phages and bacteria is conducive to the development of this biological control approach. In this review, we introduce different defense systems in bacteria against phages and emphasize newly discovered defense mechanisms in recent years. Additionally, we draw attention to the striking resemblance between defense system genes and antibiotic resistance genes, which raises concerns about the potential transfer of phage defense systems within bacterial populations and its future impact on phage efficacy. Thus, attention should be given to the effects of phage defense genes in practical applications. This article is not exhaustive, but strategies to overcome phage defense systems are also discussed to further promote more efficient use of phages. | 2023 | 37037289 |
| 9623 | 19 | 0.9997 | Prokaryotic toxin-antitoxin systems--the role in bacterial physiology and application in molecular biology. Bacteria have developed multiple complex mechanisms ensuring an adequate response to environmental changes. In this context, bacterial cell division and growth are subject to strict control to ensure metabolic balance and cell survival. A plethora of studies cast light on toxin-antitoxin (TA) systems as metabolism regulators acting in response to environmental stress conditions. Many of those studies suggest direct relations between the TA systems and the pathogenic potential or antibiotic resistance of relevant bacteria. Other studies point out that TA systems play a significant role in ensuring stability of mobile genetic material. The evolutionary origin and relations between various TA systems are still a subject of a debate. The impact of toxin-antitoxin systems on bacteria physiology prompted their application in molecular biology as tools allowing cloning of some hard-to-maintain genes, plasmid maintenance and production of recombinant proteins. | 2011 | 21394325 |