# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8319 | 0 | 1.0000 | Mechanisms of resistance to commercially relevant entomopathogenic bacteria. Bacteria represent the most commercially successful entomopathogenic microbial group, with most commercialized insecticides containing gram-positive bacteria in the Bacillaceae family. Resistance to entomopathogenic bacteria threatens sustainable agriculture, and information on the mechanisms and genes involved is vital to develop management practices aimed at reducing this risk. We provide an integrative summary on mechanisms responsible for resistance to commercialized entomopathogenic bacteria, including information on resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt crops). The available experimental evidence identifies alterations in binding of insecticidal proteins to receptors in the host as the main mechanism for high levels of resistance to entomopathogenic bacteria. | 2019 | 31358196 |
| 9416 | 1 | 0.9998 | Mechanisms of bacterial resistance and response to bile. Enteric bacteria are resistant to the bactericidal effects of intestinal bile, but these resistance mechanisms are not completely understood. It is becoming increasingly apparent that enteric bacteria have evolved to utilize bile as a signal for the temporal production of virulence factors and other adaptive mechanisms. A greater understanding of the resistance and response of bacteria to bile may assist the development of novel therapeutic, prevention, and diagnostic strategies to treat enteric and extraintestinal infections. | 2000 | 10962274 |
| 9204 | 2 | 0.9997 | Susceptibility Genes in Bacterial Diseases of Plants. Plant susceptibility (S) genes exploited by pathogenic bacteria play critical roles in disease development, collectively contributing to symptoms, pathogen proliferation, and spread. S genes may support pathogen establishment within the host, suppress host immunity, regulate host physiology or development, or function in other ways. S genes can be passive, e.g., involved in pathogen attraction or required for pathogen effector localization or activity, or active, contributing directly to symptoms or pathogen proliferation. Knowledge of S genes is important for understanding disease and other aspects of plant biology. It is also useful for disease management, as nonfunctional alleles can slow or prevent disease and, because they are often quantitative, can exert less selection on pathogens than dominant resistance genes, allowing greater durability. In this review, we discuss bacterial exploitation of S genes, S-gene functional diversity, approaches for identifying S genes, translation of S-gene knowledge for disease control, and future perspectives on this exciting area of plant pathology. | 2025 | 40446167 |
| 9356 | 3 | 0.9997 | The expression of antibiotic resistance genes in antibiotic-producing bacteria. Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance. | 2014 | 24964724 |
| 8922 | 4 | 0.9997 | Transitioning from Soil to Host: Comparative Transcriptome Analysis Reveals the Burkholderia pseudomallei Response to Different Niches. Burkholderia pseudomallei, a soil and water saprophyte, is responsible for the tropical human disease melioidosis. A hundred years since its discovery, there is still much to learn about B. pseudomallei proteins that are essential for the bacterium's survival in and interaction with the infected host, as well as their roles within the bacterium's natural soil habitat. To address this gap, bacteria grown under conditions mimicking the soil environment were subjected to transcriptome sequencing (RNA-seq) analysis. A dual RNA-seq approach was used on total RNA from spleens isolated from a B. pseudomallei mouse infection model at 5 days postinfection. Under these conditions, a total of 1,434 bacterial genes were induced, with 959 induced in the soil environment and 475 induced in bacteria residing within the host. Genes encoding metabolism and transporter proteins were induced when the bacteria were present in soil, while virulence factors, metabolism, and bacterial defense mechanisms were upregulated during active infection of mice. On the other hand, capsular polysaccharide and quorum-sensing pathways were inhibited during infection. In addition to virulence factors, reactive oxygen species, heat shock proteins, siderophores, and secondary metabolites were also induced to assist bacterial adaptation and survival in the host. Overall, this study provides crucial insights into the transcriptome-level adaptations which facilitate infection by soil-dwelling B. pseudomallei. Targeting novel therapeutics toward B. pseudomallei proteins required for adaptation provides an alternative treatment strategy given its intrinsic antimicrobial resistance and the absence of a vaccine. IMPORTANCE Burkholderia pseudomallei, a soil-dwelling bacterium, is the causative agent of melioidosis, a fatal infectious disease of humans and animals. The bacterium has a large genome consisting of two chromosomes carrying genes that encode proteins with important roles for survival in diverse environments as well as in the infected host. While a general mechanism of pathogenesis has been proposed, it is not clear which proteins have major roles when the bacteria are in the soil and whether the same proteins are key to successful infection and spread. To address this question, we grew the bacteria in soil medium and then in infected mice. At 5 days postinfection, bacteria were recovered from infected mouse organs and their gene expression was compared against that of bacteria grown in soil medium. The analysis revealed a list of genes expressed under soil growth conditions and a different set of genes encoding proteins which may be important for survival, replication, and dissemination in an infected host. These proteins are a potential resource for understanding the full adaptation mechanism of this pathogen. In the absence of a vaccine for melioidosis and with treatment being reliant on combinatorial antibiotic therapy, these proteins may be ideal targets for designing antimicrobials to treat melioidosis. | 2023 | 36856434 |
| 9137 | 5 | 0.9997 | Virulence- and antibiotic resistance-associated two-component signal transduction systems of Gram-positive pathogenic bacteria as targets for antimicrobial therapy. Two-component signal transduction systems are central elements of the virulence and antibiotic resistance responses of opportunistic bacterial pathogens. These systems allow the bacterium to sense and respond to signals emanating from the host environment and to modulate the repertoire of genes expressed to allow invasion and growth in the host. The integral role of two-component systems in virulence and antibiotic sensitivity, and the existence of essential two-component systems in several pathogenic bacteria, suggests that these systems may be novel targets for antimicrobial intervention. This review discusses the potential use of two-component systems as targets for antimicrobial therapy against Gram-positive pathogens and the current status in the development of inhibitors specific for these systems. | 2002 | 12191621 |
| 9206 | 6 | 0.9997 | Susceptibility reversed: modified plant susceptibility genes for resistance to bacteria. Plants have evolved complex defence mechanisms to avoid invasion of potential pathogens. Despite this, adapted pathogens deploy effector proteins to manipulate host susceptibility (S) genes, rendering plant defences ineffective. The identification and mutation of plant S genes exploited by bacterial pathogens are important for the generation of crops with durable and broad-spectrum resistance. Application of mutant S genes in the breeding of resistant crops is limited because of potential pleiotropy. New genome editing techniques open up new possibilities for the modification of S genes. In this review, we focus on S genes manipulated by bacteria and propose ways for their identification and precise modification. Finally, we propose that genes coding for transporter proteins represent a new group of S genes. | 2022 | 34400073 |
| 9203 | 7 | 0.9997 | Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense. Plants inherently show resistance to pathogen attack but are susceptible to multiple bacteria, viruses, fungi, and phytoplasmas. Diseases as a result of such infection leads to the deterioration of crop yield. Several pathogen-sensitive gene activities, promoters of such genes, associated transcription factors, and promoter elements responsible for crosstalk between the defense signaling pathways are involved in plant resistance towards a pathogen. Still, only a handful of genes and their promoters related to plant resistance have been identified to date. Such pathogen-sensitive promoters are accountable for elevating the transcriptional activity of certain genes in response to infection. Also, a suitable promoter is a key to devising successful crop improvement strategies as it ensures the optimum expression of the required transgene. The study of the promoters also helps in mining more details about the transcription factors controlling their activities and helps to unveil the involvement of new genes in the pathogen response. Therefore, the only way out to formulate new solutions is by analyzing the molecular aspects of these promoters in detail. In this review, we provided an overview of the promoter motifs and cis-regulatory elements having specific roles in pathogen attack response. To elaborate on the importance and get a vivid picture of the pathogen-sensitive promoter sequences, the key motifs and promoter elements were analyzed with the help of PlantCare and interpreted with available literature. This review intends to provide useful information for reconstructing the gene networks underlying the resistance of plants against pathogens. | 2020 | 33214765 |
| 9419 | 8 | 0.9997 | Genes required for mycobacterial growth defined by high density mutagenesis. Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories. | 2003 | 12657046 |
| 8322 | 9 | 0.9997 | Pathogen-induced damage in Drosophila: Uncoupling disease tolerance from resistance. Immune response against infections can be divided into mechanisms of resistance that ensure active pathogen elimination, and mechanisms of disease tolerance, which include processes that return the host to physiological homeostasis without direct control of pathogen load. Studies on host immune response to infection have targeted mechanisms of resistance, and consequently, these are now well-described in both vertebrates and invertebrates. By comparison, the mechanistic basis of disease tolerance is poorly understood. This is in part because both processes interact and can be difficult to disentangle under an infection scenario. Using the insect model Drosophila melanogaster exposed to its natural entomopathogen, Pseudomonas entomophila, we aimed to tease apart mechanisms of disease tolerance from those of resistance. To this end, we reasoned that the response to oral exposure to heat-killed entomopathogenic bacteria, whilst initially triggering both resistance and disease tolerance mechanisms, would be resolved mainly by disease tolerance alone. Using this method, we observe that oral exposure to heat-killed P. entomophila causes mortality and reduced fecundity in D. melanogaster. We confirm that this reduction in fitness-related traits depends on the duration of the exposure, is sexually dimorphic, and is dependent on the virulence of the bacterium. We also found the microbiota to play a role, with its presence exacerbating the deleterious effect on host survival. In addition, we show that the Imd pathway, but not effector genes, is involved in the process of surviving exposure to HK bacteria. This experimental framework, which may be extended to other systems, can be instrumental towards an understanding of the molecular, genetic, and physiological basis of disease tolerance and its interactions with resistance mechanisms. | 2025 | 40971962 |
| 9423 | 10 | 0.9997 | Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system. | 2019 | 31586049 |
| 8915 | 11 | 0.9997 | Genetic regulation of host responses to Salmonella infection in mice. Salmonella spp are Gram-negative bacteria capable of infecting a wide range of host species, including humans, domesticated and wild mammals, reptiles, birds and insects. The outcome of an encounter between Salmonella and its host is dependent upon multiple factors including the host genetic background. To facilitate the study of the genetic factors involved in resistance to this pathogen, mouse models of Salmonella infection have been developed and studied for years, allowing identification of several genes and pathways that may influence the disease outcome. In this review, we will cover some of the genes involved in mouse resistance to Salmonella that were identified through the study of congenic mouse strains, cloning of spontaneous mouse mutations, use of site-directed mutagenesis or quantitative trait loci analysis. In parallel, the relevant information pertaining to genes involved in resistance to Salmonella in humans will be discussed. | 2002 | 12424619 |
| 9422 | 12 | 0.9997 | Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria. Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis. | 2014 | 25419466 |
| 9207 | 13 | 0.9997 | Genetically engineered resistance to bacterial and fungal pathogens. In the past 10 years, different strategies have been used to produce transgenic plants that are less susceptible to diseases caused by phytopathogenic fungi and bacteria. Genes from different organisms, including bacteria, fungi and plants, have been successfully used to develop these strategies. Some strategies have been shown to be effective against different pathogens, whereas others are specific to a single pathogen or even to a single pathovar or race of a given pathogen. In this review, we present the strategies that have been employed to produce transgenic plants less susceptible to bacterial and fungal diseases and which constitute an important area of plant biotechnology. | 1995 | 24414746 |
| 8324 | 14 | 0.9997 | Bile Sensing: The Activation of Vibrio parahaemolyticus Virulence. Bacteria must develop resistance to various inhospitable conditions in order to survive in the human gastrointestinal tract. Bile, which is secreted by the liver, and plays an important role in food digestion also has antimicrobial properties and is able to disrupt cellular homeostasis. Paradoxically, although bile is one of the guts defenses, many studies have reported that bacteria such as Vibrio parahaemolyticus can sense bile and use its presence as an environmental cue to upregulate virulence genes during infection. This article aims to discuss how bile is detected by V. parahaemolyticus and its role in regulating type III secretion system 2 leading to human infection. This bile-bacteria interaction pathway gives us a clearer understanding of the biochemical and structural analysis of the bacterial receptors involved in mediating a response to bile salts which appear to be a significant environmental cue during initiation of an infection. | 2017 | 28484445 |
| 9005 | 15 | 0.9997 | Insights into the Vibrio Genus: A One Health Perspective from Host Adaptability and Antibiotic Resistance to In Silico Identification of Drug Targets. The genus Vibrio comprises an important group of ubiquitous bacteria of marine systems with a high infectious capacity for humans and fish, which can lead to death or cause economic losses in aquaculture. However, little is known about the evolutionary process that led to the adaptation and colonization of humans and also about the consequences of the uncontrollable use of antibiotics in aquaculture. Here, comparative genomics analysis and functional gene annotation showed that the species more related to humans presented a significantly higher amount of proteins associated with colonization processes, such as transcriptional factors, signal transduction mechanisms, and iron uptake. In comparison, those aquaculture-associated species possess a much higher amount of resistance-associated genes, as with those of the tetracycline class. Finally, through subtractive genomics, we propose seven new drug targets such as: UMP Kinase, required to catalyze the phosphorylation of UMP into UDP, essential for the survival of bacteria of this genus; and, new natural molecules, which have demonstrated high affinity for the active sites of these targets. These data also suggest that the species most adaptable to fish and humans have a distinct natural evolution and probably undergo changes due to anthropogenic action in aquaculture or indiscriminate/irregular use of antibiotics. | 2022 | 36290057 |
| 9599 | 16 | 0.9997 | Antibiotic export: transporters involved in the final step of natural product production. In the fight against antimicrobial resistance (AMR), antibiotic biosynthetic gene clusters are constantly being discovered. These clusters often include genes for membrane transporters that are involved in the export of the produced natural product during biosynthesis and/or subsequent resistance through active efflux. Despite transporter genes being integral parts of these clusters, study of the function of antibiotic export in natural producers such as Streptomyces spp. remains underexplored, in many cases lagging far behind our understanding of the biosynthetic enzymes. More efficient release of antibiotics by producing cells has potential benefits to industrial biotechnology and understanding the relationships between exporters in natural producers and resistance-associated efflux pumps in pathogens can inform our efforts to understand how AMR spreads. Herein we compile and critically assess the literature on the identification and characterization of antibiotic exporters and their contribution to production in natural antibiotic producers. We evaluate examples of how this knowledge could be used in biotechnology to increase yields of the final product or modulate its chemical nature. Finally, we consider the evidence that natural exporters form a reservoir of protein functions that could be hijacked by pathogens as efflux pumps and emphasize the need for much greater understanding of these exporters to fully exploit their potential for applications around human health. | 2019 | 30964430 |
| 9425 | 17 | 0.9997 | A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Fruits are among the main natural sources of phenolic compounds (PC). These compounds exert important antioxidant properties primarily associated with the presence of hydroxyl groups in their molecular structure. Additionally, the antibacterial effects of fruit phenolic-rich extracts or individual PC commonly found in fruits have been an emerging research focus in recent years. This review discusses by first time the available literature regarding the inhibitory effects of fruit PC on pathogenic bacteria, including not only their direct effects on bacterial growth and survival, but also their effects on virulence factors and antibiotic resistance, as well as the possible mechanism underlying these inhibitory properties. The results of the retrieved studies show overall that the antibacterial effects of fruit PC vary with the target bacteria, type of PC and length of exposure to these compounds. The type of solvent and procedures used for extraction and fruit cultivar also seem to influence the antibacterial effects of phenolic-rich fruit extracts. Fruit PC have shown wide-spectrum antibacterial properties besides being effective antibiotic resistance modifying agents in pathogenic bacteria and these effects have shown to be associated with interruption of efflux pump expression/function. Furthermore, fruit PC can cause down regulation of a variety of genes associated with virulence features in pathogenic bacteria. Results of available studies indicate the depolarization and alteration of membrane fluidity as mechanisms underlying the inhibition of pathogenic bacteria by fruit PC. These data reveal fruit PC have potential antimicrobial properties, which should be rationally exploited in solutions to control pathogenic bacteria. | 2019 | 30917922 |
| 9125 | 18 | 0.9997 | Coevolution of Resistance Against Antimicrobial Peptides. Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens. | 2020 | 32119634 |
| 8320 | 19 | 0.9997 | Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Microevolutionary mechanisms of resistance to a bacterial pathogen were explored in a population of the Greater wax moth, Galleria mellonella, selected for an 8.8-fold increased resistance against the entomopathogenic bacterium Bacillus thuringiensis (Bt) compared with a non-selected (suspectible) line. Defense strategies of the resistant and susceptible insect lines were compared to uncover mechanisms underpinning resistance, and the possible cost of those survival strategies. In the uninfected state, resistant insects exhibited enhanced basal expression of genes related to regeneration and amelioration of Bt toxin activity in the midgut. In addition, these insects also exhibited elevated activity of genes linked to inflammation/stress management and immune defense in the fat body. Following oral infection with Bt, the expression of these genes was further elevated in the fat body and midgut of both lines and to a greater extent some of them in resistant line than the susceptible line. This gene expression analysis reveals a pattern of resistance mechanisms targeted to sites damaged by Bt with the insect placing greater emphasis on tissue repair as revealed by elevated expression of these genes in both the fat body and midgut epithelium. Unlike the susceptible insects, Bt infection significantly reduced the diversity and richness (abundance) of the gut microbiota in the resistant insects. These observations suggest that the resistant line not only has a more intact midgut but is secreting antimicrobial factors into the gut lumen which not only mitigate Bt activity but also affects the viability of other gut bacteria. Remarkably the resistant line employs multifactorial adaptations for resistance to Bt without any detected negative trade off since the insects exhibited higher fecundity. | 2016 | 27029421 |