# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 830 | 0 | 1.0000 | Detection and characterisation of 16S rRNA methyltransferase-producing Pseudomonas aeruginosa from the UK and Republic of Ireland from 2003-2015. 16S rRNA methyltransferase (16S RMTase) genes confer high-level aminoglycoside resistance, reducing treatment options for multidrug-resistant Gram-negative bacteria. Pseudomonas aeruginosa isolates (n = 221) exhibiting high-level pan-aminoglycoside resistance (amikacin, gentamicin and tobramycin MICs ≥64, ≥32 and ≥32 mg/L, respectively) were screened for 16S RMTase genes to determine their occurrence among isolates submitted to a national reference laboratory from December 2003 to December 2015. 16S RMTase genes were identified using two multiplex PCRs, and whole-genome sequencing (WGS) was used to identify other antibiotic resistance genes, sequence types (STs) and the genetic environment of 16S RMTase genes. 16S RMTase genes were found in 8.6% (19/221) of isolates, with rmtB4 (47.4%; 9/19) being most common, followed by rmtD3 (21.1%; 4/19), rmtF2 (15.8%; 3/19) and single isolates harbouring rmtB1, rmtC and rmtD1. Carbapenemase genes were found in 89.5% (17/19) of 16S RMTase-positive isolates, with bla(VIM) (52.9%; 9/17) being most common. 16S RMTase genes were found in 'high-risk' clones known to harbour carbapenemase genes (ST233, ST277, ST357, ST654 and ST773). Analysis of the genetic environment of 16S RMTase genes identified that IS6100 was genetically linked to rmtB1; IS91 to rmtB4, rmtC or rmtD3; ISCR14 to rmtD1; and rmtF2 was linked to Tn3, IS91 or Tn1721. Although 16S RMTase genes explained only 8.6% of pan-aminoglycoside resistance in the P. aeruginosa isolates studied, the association of 16S RMTase genes with carbapenemase-producers and 'high-risk' clones highlights that continued surveillance is required to monitor spread as well as the importance of suppressing the emergence of dually-resistant clones in hospital settings. | 2022 | 35176475 |
| 831 | 1 | 0.9995 | RmtC and RmtF 16S rRNA Methyltransferase in NDM-1-Producing Pseudomonas aeruginosa. We investigated 16S rRNA methyltransferases in 38 blaNDM-1-positive Pseudomonas aeruginosa isolates and found RmtC in 3 isolates, 1 of which also harbored RmtF. The isolates were clonally unrelated; rmtC and rmtF genes were located on a chromosome with the blaNDM-1 gene. Strategies are needed to limit the spread of such isolates. | 2015 | 26488937 |
| 1449 | 2 | 0.9995 | A prospective surveillance study to determine the prevalence of 16S rRNA methyltransferase-producing Gram-negative bacteria in the UK. OBJECTIVES: To determine the prevalence of 16S rRNA methyltransferase- (16S RMTase-) producing Gram-negative bacteria in patients in the UK and to identify potential risk factors for their acquisition. METHODS: A 6 month prospective surveillance study was conducted from 1 May to 31 October 2016, wherein 14 hospital laboratories submitted Acinetobacter baumannii, Enterobacterales and Pseudomonas aeruginosa isolates that displayed high-level amikacin resistance according to their testing methods, e.g. no zone of inhibition with amikacin discs. Isolates were linked to patient travel history, medical care abroad, and previous antibiotic exposure using a surveillance questionnaire. In the reference laboratory, isolates confirmed to grow on Mueller-Hinton agar supplemented with 256 mg/L amikacin were screened by PCR for 16S RMTase genes armA, rmtA-rmtH and npmA, and carbapenemase genes (blaKPC, blaNDM, blaOXA-48-like and blaVIM). STs and total antibiotic resistance gene complement were determined via WGS. Prevalence was determined using denominators for each bacterial species provided by participating hospital laboratories. RESULTS: Eighty-four isolates (44.7%), among 188 submitted isolates, exhibited high-level amikacin resistance (MIC >256 mg/L), and 79 (94.0%) of these harboured 16S RMTase genes. armA (54.4%, 43/79) was the most common, followed by rmtB (17.7%, 14/79), rmtF (13.9%, 11/79), rmtC (12.7%, 10/79) and armA + rmtF (1.3%, 1/79). The overall period prevalence of 16S RMTase-producing Gram-negative bacteria was 0.1% (79/71 063). Potential risk factors identified through multivariate statistical analysis included being male and polymyxin use. CONCLUSIONS: The UK prevalence of 16S RMTase-producing Gram-negative bacteria is low, but continued surveillance is needed to monitor their spread and inform intervention strategies. | 2021 | 34142130 |
| 1439 | 3 | 0.9994 | Molecular characteristics of carbapenem-resistant gram-negative bacteria in southern China. A total of 368 nonreplicate gram-negative bacteria with resistance to imipenem or meropenem were collected to search for carbapenemase genes, class 1 integrons, and insertion sequence with common region 1 (ISCR1). The carbapenemase genes blaIMP-4, blaKPC-2, and blaNDM-1 were found in two Enterobacteriaceae and seven Pseudomonas aeruginosa isolates, nine Klebsiella pneumoniae isolates, and seven Enterobacteriaceae and two Acinetobacter spp. isolates. The class D OXA-type carbapenemase genes blaOXA-23-like, blaOXA-24-like, blaOXA-58, and blaOXA-51-like were detected in 59 (34.9%), 2 (1.2%), 16 (9.5%), and 126 (74.6%) Acinetobacter strains. This is the first description of blaNDM-1 in Enterobacter hormaechei and Acinetobacter genomic species 13TU. Of the integrase-positive strains, 135 (90.0%) Acinetobacter spp., 22 (61.1%) P. aeruginosa, and 14 (100%) Enterobacteriaceae isolates were identified by five, ten, and four different gene cassette arrays, respectively. Three novel gene cassette arrays aadB-aadA1, dfrA25, and dfrA16-aadA2 were reported for the first time in some species. Of the ISCR1-positive strains, the nonfermentative strains (102 Acinetobacter spp. and 13 P. aeruginosa. isolates) contained the same arrangement blaPER-1-putative glutathione-S-transferase-novel type ABC transporter, and three Enterobacteriaceae isolates harbored three different arrangements. Four distinct complex class 1 integron structures were observed. The complex class 1 integron detected in New Delhi, metallo-β-lactamase (NDM-1)-producing E. hormaechei, was found to coexist in the NDM-1-carrying plasmid. Our results suggested that we should pay more attention to the strict implementation of infection control measures and active antibiotic resistance surveillance to avoid the rapid spread or outbreak of carbapenemase-producing gram-negative bacteria. | 2015 | 25469995 |
| 1422 | 4 | 0.9993 | Identification of bla(OXA-51-23-58), bla(VIM), bla(NDM), and bla(IMP) carbapenemase genes in Acinetobacter baumannii isolates from hospitalized patients. OBJECTIVE: The increase of multidrug-resistant (MDR) strains of Acinetobacter baumannii (A. baumannii), especially carbapenem-resistant strains, is challenging for treating infections. This study investigated the antibiotic resistance pattern and frequency of carbapenem resistance genes (oxacillinase and metallo-beta-lactamase) in A. baumannii. RESULTS: In this study, 100 bacterial isolates were collected from clinical samples from different hospitals in Isfahan, central of Iran. Of 100 samples of bloodstream, urine, cerebrospinal fluid (CSF), wound, and trachea, 60 bacteria were identified as A. baumannii. The results showed that 100% of the selected isolates were resistant to cefotaxime, ceftazidime, ciprofloxacin, piperacillin-tazobactam, and meropenem. Based on the antibiotic resistance pattern, 25 isolates were chosen for PCR analysis targeting bla(OXA-51), bla(OXA-23), bla(OXA-58), bla(NDM), bla(IMP), and bla(VIM) genes PCR results revealed that among the selected isolates, 15 (60.0%) harbored the bla(OXA-23) gene, 23 (92.0%) contained the bla(OXA-51) gene, and 1 (4.0%) isolate carried the bla(NDM) gene. Based on MLST analysis, two colistin-resistant Acinetobacter baumannii isolates were categorized as ST2. The ST2 clone represents the predominant sequence type within the CC2 or international clone two. The results showed that the best antibiotic against isolates was colistin. bla(OXA-51) and bla(OXA-23) genes (oxacillinase genes) were dominant genes, but bla(IMP) and bla(OXA-58) were not local carbapenem resistant genes in Isfahan. | 2024 | 39736661 |
| 1448 | 5 | 0.9993 | Molecular characteristics of carbapenem-resistant Acinetobacter spp. from clinical infection samples and fecal survey samples in Southern China. BACKGROUND: Carbapenem resistance among Acinetobacter species has become a life-threatening problem. As a last resort in the treatment of gram-negative bacteria infection, resistance to colistin is also a serious problem. The aim of study was to analyze the mechanism of resistance and perform genotyping of carbapenem-resistant Acinetobacter from clinical infection and fecal survey samples in Southern China. METHODS: One hundred seventy and 74 carbapenem-resistant Acinetobacter were isolated from clinical infection samples and fecal survey samples, respectively. We detected the related genes, including carbapenemase genes (bla(KPC), bla(IMP), bla(SPM), bla(VIM), bla(NDM), bla(OXA-23-like), bla(OXA-24/40-like), bla(OXA-51-like), and bla(OXA-58-like)), colistin resistance-related genes (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5), a porin gene (carO), efflux pump genes (adeA, adeB, adeC, adeI, adeJ, and adeK), mobile genetic element genes (intI1, intI2, intI3, tnpU, tnp513, IS26, ISAba1, and ISAba125), and the integron variable region. Genotyping was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and dendrogram cluster analysis. RESULTS: Among the 244 carbapenem-resistant Acinetobacter, the common carbapenemase-positive genes included the following: bla(OXA-51-like), 183 (75.00%); bla(OXA-23-like), 174 (71.30%); bla(NDM-1), 57 (23.40%); and bla(OXA-58-like), 30 (12.30%). The coexistence of mcr-1 and bla(NDM-1) in five strains of A. junii was found for the first time. Eleven distinct carO gene variants were detected in 164 (67.20%) strains, and ten novel variants, which shared 92-99% identity with sequences in the Genbank database, were first reported. Efflux system genes were present in approximately 70% of the isolates; adeABC and adeIJK were observed in 76.23 and 72.13%, respectively. Class 1 integrons were detected in 180 (73.80%) strains and revealed that four gene cassette arrays contained 11 distinct genes. The genotyping by ERIC-PCR demonstrated a high genetic diversity of non-baumannii Acinetobacter, and greater than 90% similarity to A. baumannii. CONCLUSIONS: The bla(NDM-1) gene was identified in up to 77% of the carbapenem-resistant Acinetobacter isolated from fecal survey samples, indicating that the gut might be a reservoir of resistant opportunistic bacteria. Intestinal bacteria can be transmitted through the fecal-hand, which is a clinical threat, thus, the monitoring of carbapenem-resistant bacteria from inpatients' feces should be improved, especially for patients who have been using antibiotics for a long time. | 2019 | 31660862 |
| 1072 | 6 | 0.9993 | Characterization of carbapenem-resistant gram-negative bacterial isolates from Nigeria by whole genome sequencing. This study characterized the mechanisms of carbapenem resistance in gram-negative bacteria isolated from patients in Yola, Nigeria. Whole genome sequencing (WGS) was performed on 66 isolates previously identified phenotypically as carbapenem-non-susceptible. The patterns of beta-lactamase resistance genes identified were primarily species-specific. However, bla(NDM-7) and bla(CMY-4) were detected in all Escherichia coli and most Providencia rettgeri isolates; bla(NDM-7) was also detected in 1 Enterobacter cloacae. The E. coli and E. cloacae isolates also shared bla(OXA-1,) while bla(OXA-10) was found in all P. rettgeri, one Pseudomonas aeruginosa and 1 E. coli. Except for Stenotrophomonas maltophilia isolates, which only contained bla(L1), most species carried multiple beta-lactamase genes, including those encoding extended-spectrum beta-lactamases, AmpC and OXA in addition to a carbapenemase gene. Carbapenemase genes were either class B or class D beta-lactamases. No carbapenemase gene was detected by WGS in 13.6% of isolates. | 2021 | 34111650 |
| 843 | 7 | 0.9992 | Whole Genome Sequencing Reveals Presence of High-Risk Global Clones of Klebsiella pneumoniae Harboring Multiple Antibiotic Resistance Genes in Multiple Plasmids in Mwanza, Tanzania. BACKGROUND: Klebsiella pneumoniae is an important multidrug-resistant (MDR) pathogen, causing both community- and healthcare-associated infections. The resistance is due to the continuous accumulation of multiple antibiotic-resistance-genes (ARGs) through spontaneous genomic mutations and the acquisition of conjugative plasmids. This study presents antibiotics resistance genes, plasmids replicons, and virulence genes of K. pneumoniae isolates from clinical specimens in a tertiary hospital, Mwanza, Tanzania. METHODS: Whole genome sequencing (WGS) of 34 K. pneumoniae was performed, using an Illumina NextSeq 500, followed by in silco analysis. RESULTS: A total of 34 extended-spectrum beta-lactamase-producing K. pneumoniae, isolated from blood samples from neonatal units were whole-genome sequenced. Of these, 28 (82.4%) had an identified sequence type (ST), with ST14 (39.3%, n = 11) being frequently identified. Moreover, 18 (52.9%) of the bacteria harbored at least one plasmid, from which a total of 25 plasmid replicons were identified with a predominance of IncFIB(K) 48.0% (n = 12). Out of 34 sequenced K. pneumoniae, 32 (94.1%) were harboring acquired antibiotic/biocides-resistance-genes (ARGs) with a predominance of bla(CTX-M-15) (90.6%), followed by oqxB (87.5%), oqxA (84.4%), bla(TEM-1B) (84.4%) and sul2 (84.4%). Interestingly, we observed the ColRNAI plasmid-replicon (n = 1) and qacE gene (n = 4) for the first time in this setting. CONCLUSION: Global high-risk clones of K. pneumoniae isolates carry multiple ARGs in multiple plasmid-replicons. Findings from this study warrant genomic-based surveillance to monitor high-risk global clones, epidemic plasmids and ARGs in low- and middle-income countries. | 2022 | 36557648 |
| 922 | 8 | 0.9992 | Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems-A Pilot Study. Carbapenem-resistant Acinetobacter baumannii is one of the major problems among hospitalized patients. The presence of multiple virulence factors results in bacteria persistence in the hospital environment. It facilitates bacterial transmission between patients, causing various types of infections, mostly ventilator-associated pneumonia and wound and bloodstream infections. A. baumannii has a variable number of resistance mechanisms, but the most commonly produced are carbapenem-hydrolyzing class D β-lactamases (CHDLs). In our study, the presence of bla(OXA-23), bla(OXA-40) and bla(OXA-51) genes was investigated among 88 clinical isolates of A. baumannii, including 53 (60.2%) strains resistant to both carbapenems (meropenem and imipenem) and 35 (39.8%) strains susceptible to at least meropenem. Among these bacteria, all the isolates carried the bla(OXA-51) gene. The bla(OXA-23) and bla(OXA-40) genes were detected in two (5.7%) and three (8.6%) strains, respectively. Among the OXA-23 carbapenemase-producing A. baumannii strains (n = 55), insertion sequences (ISAba1) were detected upstream of the bla(OXA-23) gene in fifty-two (94.5%) carbapenem-resistant and two (3.6%) meropenem-susceptible isolates. A. baumannii clinical strains from Poland have a similar antimicrobial resistance profile as those worldwide, with the presence of ISAba1 among bla(OXA-23)-positive isolates also being quite common. Carbapenem resistance among A. baumannii strains is associated with the presence of CHDLs, especially when insertion sequences are present. | 2024 | 39458366 |
| 1071 | 9 | 0.9992 | Characterization of Beta-Lactamase and Fluoroquinolone Resistance Determinants in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa Isolates from a Tertiary Hospital in Yola, Nigeria. Infections due to antimicrobial resistant gram-negative bacteria cause significant morbidity and mortality in sub-Saharan Africa. To elucidate the molecular epidemiology of antimicrobial resistance in gram-negative bacteria, we characterized beta-lactam and fluoroquinolone resistance determinants in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates collected from November 2017 to February 2018 (Period 1) and October 2021 to January 2022 (Period 2) in a tertiary medical center in north-eastern Nigeria. Whole genome sequencing (WGS) was used to identify sequence types and resistance determinants in 52 non-duplicate, phenotypically resistant isolates. Antimicrobial susceptibility was determined using broth microdilution and modified Kirby-Bauer disk diffusion methods. Twenty sequence types (STs) were identified among isolates from both periods using WGS, with increased strain diversity observed in Period 2. Common ESBL genes identified included bla(CTX-M), bla(SHV,) and bla(TEM) in both E. coli and K. pneumoniae. Notably, 50% of the E. coli in Period 2 harbored either bla(CTX-M-15) or bla(CTX-M-1 4) and phenotypically produced ESBLs. The bla(NDM-7) and bla(VIM-5) metallo-beta-lactamase genes were dominant in E. coli and P. aeruginosa in Period 1, but in Period 2, only K. pneumoniae contained bla(NDM-7), while bla(NDM-1) was predominant in P. aeruginosa. The overall rate of fluoroquinolone resistance was 77% in Period 1 but decreased to 47.8% in Period 2. Various plasmid-mediated quinolone resistance (PMQR) genes were identified in both periods, including aac(6')-Ib-cr, oqxA/oqxB, qnrA1, qnrB1, qnrB6, qnrB18, qnrVC1, as well as mutations in the chromosomal gyrA, parC and parE genes. One E. coli isolate in Period 2, which was phenotypically multidrug resistant, had ESBL bla(CTX-M-15,) the serine carbapenemase, bla(OXA-181) and mutations in the gyrA gene. The co-existence of beta-lactam and fluoroquinolone resistance markers observed in this study is consistent with widespread use of these antimicrobial agents in Nigeria. The presence of multidrug resistant isolates is concerning and highlights the importance of continued surveillance to support antimicrobial stewardship programs and curb the spread of antimicrobial resistance. | 2023 | 37999619 |
| 1450 | 10 | 0.9992 | The Spread of Insertion Sequences Element and Transposons in Carbapenem Resistant Acinetobacter baumannii in a Hospital Setting in Southwestern Iran. BACKGROUND: Acinetobacter baumannii is one of the most important hospital pathogenic bacteria that cause infectious diseases. The present study aimed to determine the frequency of carbapenem resistance genes in association with transposable elements and molecular typing of carbapenem-resistant A. baumannii bacteria collected from patients in Shiraz, Iran. MATERIALS AND METHODS: A total of 170 carbapenem-resistant A. baumannii isolates were obtained from different clinical specimens in two hospitals. The minimum inhibitory concentrations (MIC) of imipenem were determined and the prevalence of OXA Carbapenemases, Metallo-β-lactamases genes, insertion sequences (IS) elements, and transposons were evaluated by the polymerase chain reaction (PCR) method. Finally, molecular typing of the isolates was performed by the Enterobacterial Repetitive Intergenic Consensus-PCR method. RESULTS: The MICs ranged from 16 to 1,024 µg/mL for imipenem-resistant A. baumannii isolates. Out of the 170 carbapenem resistant A. baumannii isolates, bla(OXA-24-like) (94, 55.3%) followed by bla(OXA-23-like) (71, 41.7%) were predominant. In addition, A. baumannii isolates carried bla(VIM) (71, 41.7%), bla(GES) (32, 18.8%), bla(SPM) (4, 2.3%), and bla(KPC) (1, 0.6%). Moreover, ISAba1 (94.2%) and Tn2009 (39.2%) were the most frequent transposable elements. Furthermore, (71, 44.0%) and (161, 94.7%) of the ISAba1 of the isolates were associated with bla(OXA-23) and bla(OXA-51) genes, respectively. Besides (3, 1.7%), (1, 0.6%) and (5, 2.9%) of bla(OXA-23) were associated with IS18, ISAba4, and ISAba2, respectively. Considering an 80.0% cut off, clusters and four singletons were detected. CONCLUSION: According to the results, transposable elements played an important role in the development of resistance genes and resistance to carbapenems. The results also indicated carbapenem-resistant A. baumannii bacteria as a public health concern. | 2022 | 35706082 |
| 1070 | 11 | 0.9992 | Survey for beta-lactamase among bacterial isolates from Guangzhou, China hospitals between 2005-2006. The beta-lactamase genes, which confer multi-drug resistance, are spreading among clinical bacterial isolates. As part of a routine surveillance program, we collected 302 bacilli isolates between June 2005 and October 2006 from four hospitals in Guangzhou, China. The isolates were screened for multidrug resistance and for the presence of beta-lactamases. In all, 80 isolates were identified as multidrug-resistant with the K-B method. These isolates were phenotypically screened for beta-lactamase activity by disk diffusion prescreening, diffusion confirmation, the cefoxitin three-dimensional test and the metallo-beta-lactamase (MBL) synergy test. Bacteria were genotypically screened for beta-lactamase genes by PCR and DNA sequencing. Among the 80 strains, drug resistance was lowest to amikacin (18.75%) and highest to ampicillin (97.50%), 26.49% had a beta-lactamase phenotype, 16.56% had the extended-spectrum beta-lactamase (ESBL) phenotype, 24.83% had a beta-lactamase genotype, 51 carried integrons, 30 carried class I integrons and 18.75% had the ISEcp1B insertion sequence. Sequencing also detected a new CTX-M ESBL gene subtype, which had an ISEcp1B element upstream of bla(CTX-M-Like), and an IS903 element downstream, forming a composite transposon. Multidrug resistance and beta-lactamases continue to be prevalent in Guangzhou. Our results suggest that resistance genes are evolving and being horizontally transmitted between species. | 2010 | 20339396 |
| 2111 | 12 | 0.9992 | Antimicrobial Resistance and Resistance Determinant Insights into Multi-Drug Resistant Gram-Negative Bacteria Isolates from Paediatric Patients in China. INTRODUCTION: The emergence of multi-drug-resistant Gram-negative bacteria (GNB) is a concern in China and globally. This study investigated antimicrobial resistance traits and resistance determinant detection in GNB isolates from paediatric patients in China. METHODS: In the present study, a total of 170 isolates of GNB including the most prevalent Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii were collected from Shenzhen Children's Hospital, China. ESBLs production was confirmed by using the combination disc diffusion method, and carbapenemase production was confirmed by using a carbapenem inactivation method followed by antimicrobial susceptibility. In addition, β-lactamase-encoding genes and co-existence of plasmid-borne colistin resistance mcr-1 gene were determined by PCR and sequencing. RESULTS: Overall, 170 etiological agents (GNB) were recovered from 158 paediatric patients. The most prevalent species was E. coli 40% (n=68), followed by K. pneumoniae 17.64% (n=30), and Enterobacter cloacae 14.11% (n=24). Of 170 GNB, 71.76% (n=122) were multi-drug-resistant, 12.35% (n=21) extreme-drug resistant, and 7.64% (n=13) single-drug-resistant, while 8.23% (n=14) were sensitive to all of the studied antibiotics. The prevalence of ESBLs and carbapenemase producers were 60% and 17%, respectively. bla (CTX-M) was the most prevalent resistance gene (59.42%), followed by bla (TEM) (41.17%), bla (SHV) (34.270%), bla (KPC) (34.11%), bla (OXA-48) (18.82%) and bla (NDM-1) (17.64%). CONCLUSION: The present study provides insights into the linkage between the resistance patterns of GNB to commonly used antibiotics and their uses in China. The findings are useful for understanding the genetics of resistance traits and difficulty in tackling of GNB in paediatric patients. | 2019 | 31819545 |
| 1437 | 13 | 0.9992 | Novel multiplex PCRs for detection of the most prevalent carbapenemase genes in Gram-negative bacteria within Germany. Introduction. Gram-negative bacteria are a common source of infection both in hospitals and in the community, and antimicrobial resistance is frequent among them, making antibiotic therapy difficult, especially when these isolates carry carbapenem resistance determinants.Hypothesis/Gap Statement. A simple method to detect all the commonly found carbapenemases in Germany was not available.Aim. The aim of this study was to develop a multiplex PCR for the rapid and reliable identification of the most prevalent carbapenemase-encoding genes in Gram-negative bacteria in Germany.Methodology. Data from the German Gram-negative reference laboratory revealed the most prevalent carbapenemase groups in Germany were (in order of prevalence): bla (VIM), bla (OXA-48), bla (OXA-23), bla (KPC), bla (NDM), bla (OXA-40), bla (OXA-58), bla (IMP), bla (GIM), bla (GES), ISAba1-bla (OXA-51), bla (IMI), bla (FIM) and bla (DIM). We developed and tested two multiplex PCRs against 83 carbapenem-resistant Gram-negative clinical isolates. Primers were designed for each carbapenemase group within conserved regions of the encoding genes obtained from publicly available databases. Multiplex-1 included the carbapenemase groups bla (VIM), bla (OXA-48), bla (OXA-23), bla (KPC), bla (NDM) and bla (OXA-40), while multiplex-2 included bla (OXA-58), bla (IMP), bla (GIM), bla (GES), ISAba1-bla (OXA-51) and bla (IMI).Results. In the initial evaluation, all but one of the carbapenemases encoded by 75 carbapenemase-positive isolates were detected using the two multiplex PCRs, while no false-positive results were obtained from the remaining eight isolates. After evaluation, we tested 546 carbapenem-resistant isolates using the multiplex PCRs, and all carbapenemases were detected.Conclusion. A rapid and reliable method was developed for detection and differentiation of 12 of the most prevalent carbapenemase groups found in Germany. This method allows for the rapid testing of clinical isolates prior to species identification and does not require prior phenotypical characterization, constituting a rapid and valuable tool in the management of infections in hospitals. | 2021 | 33448924 |
| 2126 | 14 | 0.9992 | Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. The burden of antimicrobial resistance (AMR) is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB) isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35%) were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59%) and 28 (12%) isolates, respectively. Carbapenemase genes were most detected in K. pneumoniae 24 (11%), followed by P. aeruginosa 23 (10%), and E. coli with 19 isolates (8%). We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections. | 2014 | 24707481 |
| 837 | 15 | 0.9992 | Diversity of Carbapenem Resistance Mechanisms in Clinical Gram-Negative Bacteria in Pakistan. Antibiotic resistance is a health challenge worldwide. Carbapenem resistance in Gram-negative bacteria is a major problem since treatment options are very limited. Tigecycline and colistin are drugs of choice in this case, but resistance to these drugs is also high. The aim of this study was to describe the diversity of resistance mechanisms in carbapenem-resistant clinical Gram-negative bacteria from Pakistan. Carbapenem-hydrolyzing enzyme-encoding genes were detected using PCR and DNA sequencing and clonal types determined by multilocus sequence typing (MLST). Forty-four carbapenem-resistant isolates were collected from the microbiology laboratory of Fauji Foundation Hospital and Al-Syed Hospital, Rawalpindi, Pakistan, including Klebsiella spp., Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae, and Achromobacter xylosoxidans. bla(NDM-1), bla(NDM-4,) bla(NDM-5,) bla(NDM-7), bla(OXA-48), and bla(OXA-181) were detected in Enterobacteriaceae; bla(OXA-23,) bla(OXA-72), and bla(NDM-1) in A. baumannii, and bla(VIM-6) and bla(VIM-11) in P. aeruginosa. MLST analysis revealed several predominant clonal types: ST167 in E. coli, ST147 in Klebsiella pneumoniae, ST2 in Acinetobacter, and ST664 in P. aeruginosa. In Acinetobacter, a new clonal type was observed for the first time. To the best of our knowledge, this is the first study describing the clonality and resistance mechanisms of carbapenem-resistant Gram-negative bacteria in Pakistan. | 2021 | 33211640 |
| 1250 | 16 | 0.9992 | Distribution of 16S rRNA methylases among different species of Gram-negative bacilli with high-level resistance to aminoglycosides. 16S rRNA methylases confer high-level resistance to most aminoglycosides in Gram-negative bacteria. Seven 16S rRNA methylase genes, armA, rmtA, rmtB, rmtC, rmtD, rmtE and npmA, have been identified since 2003. We studied the distribution of methylase genes in more than 200 aminoglycoside-resistant Gram-negative clinical isolates collected in 2007 at our hospital in Shanghai, China. 16S rRNA methylase genes were amplified by polymerase chain reaction (PCR) among 217 consecutive clinical isolates of Gram-negative bacilli resistant to gentamicin and amikacin by a disk diffusion method. 16S rRNA methylase genes were present in 97.5% (193/198) of clinical isolates highly resistant to amikacin (≥512 μg/ml), with armA and rmtB detected in 67.2 and 30.3% of strains, respectively, while no 16S rRNA methylase genes were detected in 19 strains with amikacin minimum inhibitory concentration (MIC) ≤256 μg/ml. armA or rmtB genes were detected in 100% of 104 strains of Enterobacteriaceae, and these two genes were equally represented (49 vs. 55 strains). Genes for armA or rmtB were detected in 94.7% (89/94) of Acinetobacter baumannii and Pseudomonas aeruginosa strains, and armA was predominant (84 vs. 5 strains with rmtB). No rmtA, rmtC, rmtD or npmA genes were found. Enterobacterial repetitive intergenic consensus sequence (ERIC-PCR) indicated that armA and rmtB genes were spread by both horizontal transfer and clonal dissemination. | 2010 | 20614151 |
| 2179 | 17 | 0.9992 | Increasing frequency of Aminoglycoside-Resistant Klebsiella pneumoniae during the era of pandemic COVID-19. The emergence of multidrug resistance to aminoglycosides in K. pneumoniae isolates is a growing concern, especially during pandemic Coronavirus disease 2019 (COVID-19). The study identifies antibiotic resistance in K. pneumoniae isolated from tertiary hospitals during pandemic COVID-19. Among 220 clinical isolates, the total rate of K. pneumoniae was found to be 89 (40.5%). Phenotyping results confirmed the resistance of aminoglycoside antibiotics in 51 (23.2%) of K. pneumoniae isolates. PCR results confirmed the existence of one or more aminoglycoside genes in 82.3% of the 51 isolates. The rmtD gene was the highest-detected gene (66.7%), followed by aac(6')-Ib (45.1%), aph(3')-Ia (45.1%), rmtB (29.4%), armA (21.6%), aac(3)-II (7.8%), and rmtA (3) (11.8%). Significantly, higher resistance strains showed a higher prevalence (61.5%) of aminoglycoside genes (p < 0.05). During COVID-19, there is a higher risk of acquiring MDR bacterial infections, so the monitoring of multidrug resistant bacteria must be continuously undertaken to implement effective measures in infection control and prevention. | 2021 | 34075332 |
| 899 | 18 | 0.9992 | Whole-Genome Sequencing Snapshot of Clinically Relevant Carbapenem-Resistant Gram-Negative Bacteria from Wastewater in Serbia. Wastewater (WW) is considered a source of antibiotic-resistant bacteria with clinical relevance and may, thus, be important for their dissemination into the environment, especially in countries with poor WW treatment. To obtain an overview of the occurrence and characteristics of carbapenem-resistant Gram-negative bacteria (CR-GNB) in WW of Belgrade, we investigated samples from the four main sewer outlets prior to effluent into international rivers, the Sava and the Danube. Thirty-four CR-GNB isolates were selected for antimicrobial susceptibility testing (AST) and whole-genome sequencing (WGS). AST revealed that all isolates were multidrug-resistant. WGS showed that they belonged to eight different species and 25 different sequence types (STs), seven of which were new. ST101 K. pneumoniae (bla(CTX-M-15)/bla(OXA-48)) with novel plasmid p101_srb was the most frequent isolate, detected at nearly all the sampling sites. The most frequent resistance genes to aminoglycosides, quinolones, trimethroprim-sulfamethoxazole, tetracycline and fosfomycin were aac(6')-Ib-cr (55.9%), oqxA (32.3%), dfrA14 (47.1%), sul1 (52.9%), tet(A) (23.5%) and fosA (50%), respectively. Acquired resistance to colistin via chromosomal-mediated mechanisms was detected in K. pneumoniae (mutations in mgrB and basRS) and P. aeruginosa (mutation in basRS), while a plasmid-mediated mechanism was confirmed in the E. cloacae complex (mcr-9.1 gene). The highest number of virulence genes (>300) was recorded in P. aeruginosa isolates. Further research is needed to systematically track the occurrence and distribution of these bacteria so as to mitigate their threat. | 2023 | 36830261 |
| 1122 | 19 | 0.9992 | Antibiotic resistance profiles of gram-negative bacteria in southern Tunisia: Focus on ESBL, carbapenem and colistin resistance. The main objective of this cross-sectional study was to investigate the prevalence of beta-lactam (cephalosporins or carbapenems) or colistin resistant bacteria. Those were isolated from urine samples in two private polyclinics located in the Sfax region, in southern Tunisia. From September 2021 to August 2022, 116 strains resistant to β-lactams or colistin were isolated, identified by MALDI-TOF, and their antibiotic susceptibility was assessed by disk diffusion method. Resistance genes were detected by real-time PCR, standard PCR, and sequencing. The results revealed that the 116 strains consisted predominantly of Enterobacteriaceae (92.2 %) and non-fermenting bacteria (7.8 %). Among these strains, 21 (18.1 %) were resistant to carbapenems, three (2.7 %) to colistin, including two strains of Klebsiella pneumoniae (1.7 %) exhibiting resistance to both carbapenems and colistin. In Enterobacteriaceae, bla(CTX-A), bla(SHV), and bla(TEM) were found in 79.5 %, 46.7 %, and 40.2 % of strains, respectively. For these strains, the minimum inhibitory concentrations (MICs) of imipenem and ertapenem ranged from >32 to 6 μg/mL and > 32 to 2 μg/mL, respectively, with bla(OXA-48) and bla(NDM) detected in 21.7 % and 19.6 % of isolates, respectively. Seven A. baumannii isolates resistant to imipenem and meropenem (MICs >32 μg/mL and 8 μg/mL, respectively) carried bla(OXA-23) (n = 5) and bla(OXA-24) (n = 2). In addition, mutations in the mgrB gene conferring colistin resistance were identified in two isolates. Two K. pneumoniae were colistin-resistant and carried the bla(OXA-48) gene. These results highlight the urgency of developing new strategies for the identification and surveillance of pathogenic strains in humans to effectively combat this growing public health threat in Tunisia. | 2025 | 40553790 |