# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8287 | 0 | 1.0000 | Characterizing the Mechanism of Action of an Ancient Antimicrobial, Manuka Honey, against Pseudomonas aeruginosa Using Modern Transcriptomics. Manuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, Pseudomonas aeruginosa We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing. Manuka honey uniquely affects genes involved in the explosive cell lysis process and in maintaining the electron transport chain, causing protons to leak across membranes and collapsing the proton motive force, and it induces membrane depolarization and permeabilization in P. aeruginosa These data indicate that the activity of manuka honey comes from multiple mechanisms of action that do not engender bacterial resistance.IMPORTANCE The threat of antimicrobial resistance to human health has prompted interest in complex, natural products with antimicrobial activity. Honey has been an effective topical wound treatment throughout history, predominantly due to its broad-spectrum antimicrobial activity. Unlike traditional antibiotics, honey-resistant bacteria have not been reported; however, honey remains underutilized in the clinic in part due to a lack of understanding of its mechanism of action. Here, we demonstrate that honey affects multiple processes in bacteria, and this is not explained by its major antibacterial components. Honey also uniquely affects bacterial membranes, and this can be exploited for combination therapy with antibiotics that are otherwise ineffective on their own. We argue that honey should be included as part of the current array of wound treatments due to its effective antibacterial activity that does not promote resistance in bacteria. | 2020 | 32606022 |
| 8341 | 1 | 0.9997 | Mutagenesis and Resistance Development of Bacteria Challenged by Silver Nanoparticles. Because of their extremely broad spectrum and strong biocidal power, nanoparticles of metals, especially silver (AgNPs), have been widely applied as effective antimicrobial agents against bacteria, fungi, and so on. However, the mutagenic effects of AgNPs and resistance mechanisms of target cells remain controversial. In this study, we discover that AgNPs do not speed up resistance mutation generation by accelerating genome-wide mutation rate of the target bacterium Escherichia coli. AgNPs-treated bacteria also show decreased expression in quorum sensing (QS), one of the major mechanisms leading to population-level drug resistance in microbes. Nonetheless, these nanomaterials are not immune to resistance development by bacteria. Gene expression analysis, experimental evolution in response to sublethal or bactericidal AgNPs treatments, and gene editing reveal that bacteria acquire resistance mainly through two-component regulatory systems, especially those involved in metal detoxification, osmoregulation, and energy metabolism. Although these findings imply low mutagenic risks of nanomaterial-based antimicrobial agents, they also highlight the capacity for bacteria to evolve resistance. | 2022 | 36094196 |
| 9541 | 2 | 0.9997 | The Role of the Hfq Protein in Bacterial Resistance to Antibiotics: A Narrative Review. The antibiotic resistance of pathogenic microorganisms is currently one of most major medical problems, causing a few million deaths every year worldwide due to untreatable bacterial infections. Unfortunately, the prognosis is even worse, as over 8 million deaths associated with antibiotic resistance are expected to occur in 2050 if no new effective antibacterial treatments are discovered. The Hfq protein has been discovered as a bacterial RNA chaperone. However, subsequent studies have indicated that this small protein (composed of 102 amino acid residues in Escherichia coli) has more activities, including binding to DNA and influencing its compaction, interaction with biological membranes, formation of amyloid-like structures, and others. Although Hfq is known to participate in many cellular processes, perhaps surprisingly, only reports from recent years have demonstrated its role in bacterial antibiotic resistance. The aim of this narrative review is to discuss how can Hfq affects antibiotic resistance in bacteria and propose how this knowledge may facilitate developing new therapeutic strategies against pathogenic bacteria. We indicate that the mechanisms by which the Hfq protein modulates the response of bacterial cells to antibiotics are quite different, from the regulation of the expression of genes coding for proteins directly involved in antibiotic transportation or action, through direct effects on membranes, to controlling the replication or transposition of mobile genetic elements bearing antibiotic resistance genes. Therefore, we suggest that Hfq could be considered a potential target for novel antimicrobial compounds. We also discuss difficulties in developing such drugs, but since Hfq appears to be a promising target for drugs that may enhance the efficacy of antibiotics, we propose that works on such potential therapeutics are encouraged. | 2025 | 40005731 |
| 9152 | 3 | 0.9997 | Pseudomonas aeruginosa biofilm sensitivity to biocides: use of hydrogen peroxide as model antimicrobial agent for examining resistance mechanisms. The biofilm mode of bacterial growth may be the preferred form of existence in nature. Because of the global impact of problematic biofilms, study of the mechanisms affording resistance to various biocides is of dire importance. Furthermore, understanding the physiological differences between biofilm and planktonic organisms ranks particularly high on the list of important and necessary research. Such contributions will only serve to broaden our knowledge base, especially regarding the development of better antimicrobials while also fine-tuning the use of current highly effective antimicrobials. Using H2O2 as a model oxidizing biocide, we demonstrate the marked resistance of biofilm bacteria relative to planktonic cells. Because many biocides are good oxidizing agents (e.g., H2O2, HOCl), understanding the mechanisms by which genes involved in combating oxidative stress are activated is important in determining the overall efficacy of such biocides. Future studies will focus on determining mechanisms of oxidative stress gene regulation in bacterial biofilms. | 1999 | 10547822 |
| 9542 | 4 | 0.9997 | Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria. | 2013 | 23939429 |
| 8343 | 5 | 0.9997 | Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Bacteria can be adapted to adverse and detrimental conditions that induce general and specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes, such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the regulation of stress response in association with antibiotic resistance provides useful information for the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel therapies targeting bacterial stress responses that have been identified as potential candidates for the effective control of Gram-negative antibiotic-resistant bacteria. | 2022 | 35889104 |
| 9171 | 6 | 0.9997 | Small molecules modulating AHL-based quorum sensing to attenuate bacteria virulence and biofilms as promising antimicrobial drugs. Clinically significant antibiotic resistance is one of the greatest challenges of the twenty-first century. Yet new antibiotics are currently being developed at a much slower pace than our growing need for such drugs. Instead of focusing on conventional therapeutics that target in vitro bacterial viability, an alternative therapy is to target virulence factors and biofilms. Such anti-virulence strategies have attracted more and more attention recently, for it would add both supplement and diversity to our current antimicrobial library. This approach has several potential advantages including imposing less evolutionary pressure on the development of antibiotic resistance, increasing the antibacterial targets and preserving the host endogenous microbiome. Quorum sensing is an intercellular communication process in bacterial communities, which can regulate coordinated expression of virulence factors and biofilms. N-Acyl homoserine lactones (AHLs) are autoinducers generated by a variety of Gram-negative bacteria. These signals combining with their cognate LuxR-type receptors trigger the expression of virulence genes. In this critical review, we summarize various structural types of small molecules targeting AHL-based quorum sensing to attenuate bacteria virulence factors and biofilms. | 2014 | 24164200 |
| 9413 | 7 | 0.9997 | Proteomics of septicemic Escherichia coli. Virulent strains of Escherichia coli have become a major cause of infections, especially in hospitals and institutions, and result in high morbidity and mortality, due to the widespread antibiotic resistance. The infections usually start as complications of urinary tract infections or invasive medical procedures. Septicemic bacteria have to go through the blood stream, where they are exposed to a variety of stress conditions. The most difficult of these is the presence of the immune complement, which is strongly bactericidal. However, recently it has become clear that the nutritional immunity (metabolic stress) of serum is just as important. Thus, as shown by proteomic analyses, septicemic E. coli can cope with this latter stress condition by globally modifying the expression of a variety of metabolic genes. These include genes involved in amino acid metabolism and in metal homeostasis, whose robust regulation of expression appears to be critical for surviving the metabolic immunity of serum. Recognition of the nutritional immunity and the molecular mechanisms that enable septicemic bacteria to overcome it are the focus of this paper. | 2016 | 27604157 |
| 8284 | 8 | 0.9997 | Redox signaling in human pathogens. In recent studies of human bacterial pathogens, oxidation sensing and regulation have been shown to impact very diverse pathways that extend beyond inducing antioxidant genes in the bacteria. In fact, some redox-sensitive regulatory proteins act as major regulators of bacteria's adaptability to oxidative stress, an ability that originates from immune host response as well as antibiotic stress. Such proteins play particularly important roles in pathogenic bacteria S. aureus, P. aeruginosa, and M. tuberculosis in part because reactive oxygen species and reactive nitrogen species present significant challenges for pathogens during infection. Herein, we review recent progress toward the identification and understanding of oxidation sensing and regulation in human pathogens. The newly identified redox switches in pathogens are a focus of this review. We will cover several reactive oxygen species-sensing global regulators in both gram-positive and gram-negative pathogenic bacteria in detail. The following discussion of the mechanisms that these proteins employ to sense redox signals through covalent modification of redox active amino acid residues or associated metalloprotein centers will provide further understanding of bacteria pathogenesis, antibiotic resistance, and host-pathogen interaction. | 2011 | 20578795 |
| 8342 | 9 | 0.9997 | Inflammatory immunity and bacteriological perspectives: A new direction for copper treatment of sepsis. Copper is an essential trace element for all aerobic organisms because of its unique biological functions. In recent years, researchers have discovered that copper can induce cell death through various regulatory mechanisms, thereby inducing inflammation. Efforts have also been made to alter the chemical structure of copper to achieve either anticancer or anti-inflammatory effects. The copper ion can exhibit bactericidal effects by interfering with the integrity of the cell membrane and promoting oxidative stress. Sepsis is a systemic inflammatory response caused by infection. Some studies have revealed that copper is involved in the pathophysiological process of sepsis and is closely related to its prognosis. During the infection of sepsis, the body may enhance the antimicrobial effect by increasing the release of copper. However, to avoid copper poisoning, all organisms have evolved copper resistance genes. Therefore, further analysis of the complex relationship between copper and bacteria may provide new ideas and research directions for the treatment of sepsis. | 2024 | 38692229 |
| 9130 | 10 | 0.9997 | Glycopeptide antibiotic resistance. Glycopeptide antibiotics are integral components of the current antibiotic arsenal that is under strong pressures as a result of the emergence of a variety of resistance mechanisms over the past 15 years. Resistance has manifested itself largely through the expression of genes that encode proteins that reprogram cell wall biosynthesis and thus evade the action of the antibiotic in the enterococci, though recently new mechanisms have appeared that afford resistance and tolerance in the more virulent staphylococci and streptococci. Overcoming glycopeptide resistance will require innovative approaches to generate new antibiotics or otherwise to inhibit the action of resistance elements in various bacteria. The chemical complexity of the glycopeptides, the challenges of discovering and successfully exploiting new targets, and the growing number of distinct resistance types all increase the difficulty of the current problem we face as a result of the emergence of glycopeptide resistance. | 2002 | 11807177 |
| 9151 | 11 | 0.9997 | Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. BACKGROUND: Bacterial biofilms are aggregation or collection of different bacterial cells which are covered by self-produced extracellular matrix and are attached to a substratum. Generally, under stress or in unfavorable conditions, free planktonic bacteria transform themselves into bacterial biofilms and become sessile. MAIN BODY: Various mechanisms involving interaction between antimicrobial and biofilm matrix components, reduced growth rates, and genes conferring antibiotic resistance have been described to contribute to enhanced resistance. Quorum sensing and multi-drug resistance efflux pumps are known to regulate the internal environment within the biofilm as well as biofilm formation; they also protect cells from antibiotic attack or immune attacks. This review summarizes data supporting the importance of exopolysaccharides during biofilm formation and its role in antibiotic resistance. CONCLUSIONS: Involvement of quorum sensing and efflux pumps in antibiotic resistance in association with exopolysaccharides. Also, strategies to overcome or attack biofilms are provided. | 2021 | 34557983 |
| 9415 | 12 | 0.9997 | Antibacterial contact-dependent proteins secreted by Gram-negative cystic fibrosis respiratory pathogens. Cystic fibrosis (CF) is a genetic disease that affects almost 100 000 people worldwide. CF patients suffer from chronic bacterial airway infections that are often polymicrobial and are the leading cause of mortality. Interactions between pathogens modulate expression of genes responsible for virulence and antibiotic resistance. One of the ways bacteria can interact is through contact-dependent systems, which secrete antibacterial proteins (effectors) that confer advantages to cells that harbor them. Here, we highlight recent work that describes effectors used by Gram-negative CF pathogens to eliminate competitor bacteria. Understanding the mechanisms of secreted effectors may lead to novel insights into the ecology of bacteria that colonize respiratory tracts and could also pave the way for the design of new therapeutics. | 2022 | 35487848 |
| 9132 | 13 | 0.9997 | Antibiotic resistance: a survival strategy. Antibiotics are natural, semi-synthetic, or synthetic molecules that target the cell wall of bacteria, DNA replication, RNA transcription, or mRNA translation, the cellular machinery responsible for the synthesis of precursor molecules. Bacteria have evolved and adopted numerous strategies to counteract the action of antibiotics. Antibiotic resistance is intrinsic and an inherent characteristic of the microorganism. Intrinsic resistance is due to cell wall impermeability, efflux, biofilm formation, and the expression of genes mediating inactivating enzymes. Antibiotic resistance can also arise by the acquisition of extracellular DNA and is expressed phenotypically as efflux, modification or acquisition of target sites, and enzymatic inactivation of the antibiotic. Not only have bacteria acquired the mechanisms necessary to withstand the effects of antibiotics, they have also acquired elaborate mechanisms to mobilize and disseminate these successful strategies: plasmids, transposons, insertion sequences, and cassettes. Antibiotic resistance is a major worldwide clinical problem of public health concern because of the reduced efficacy caused by the various mechanisms of resistance. Global strategies are emerging to help address this critical problem. | 2005 | 16134477 |
| 8285 | 14 | 0.9997 | Bacterial stress response: understanding the molecular mechanics to identify possible therapeutic targets. INTRODUCTION: Bacteria are ubiquitous and many of them are pathogenic in nature. Entry of bacteria in host and its recognition by host defense system induce stress in host cells. With time, bacteria have also developed strategies including drug resistance to escape from antibacterial therapy as well as host defense mechanism. AREAS COVERED: Bacterial stress initiates and promotes adaptive immune response through several integrated mechanisms. The mechanisms of bacteria to up and down regulate different pathways involved in these responses have been discussed. The genetic expression of these pathways can be manipulated by the pharmacological interventions. Present review discusses in these contexts and explores the possibilities to overcome stress induced by bacterial pathogens and to suggest new possible therapeutic targets. EXPERT OPINION: In our opinion, there are two important fronts to regulate the bacterial stress. One is to target caspase involved in the process of transformation and translation at gene level and protein expression. Second is the identification of bacterial genes that lead to synthesis of abnormal end products supporting bacterial survival in host environment and also to surpass the host defense mechanism. Identification of such genes and their expression products could be an effective option to encounter bacterial resistance. | 2021 | 32811215 |
| 9125 | 15 | 0.9997 | Coevolution of Resistance Against Antimicrobial Peptides. Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens. | 2020 | 32119634 |
| 9170 | 16 | 0.9996 | It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy. Multiple drug resistance poses a significant threat to public health worldwide, with a substantial increase in morbidity and mortality rates. Consequently, searching for novel strategies to control microbial pathogenicity is necessary. With the aid of auto-inducers (AIs), quorum sensing (QS) regulates bacterial virulence factors through cell-to-cell signaling networks. AIs are small signaling molecules produced during the stationary phase. When bacterial cultures reach a certain level of growth, these molecules regulate the expression of the bound genes by acting as mirrors that reflect the inoculum density.Gram-positive bacteria use the peptide derivatives of these signaling molecules, whereas Gram-negative bacteria use the fatty acid derivatives, and the majority of bacteria can use both types to modulate the expression of the target gene. Numerous natural and synthetic QS inhibitors (QSIs) have been developed to reduce microbial pathogenesis. Applications of QSI are vital to human health, as well as fisheries and aquaculture, agriculture, and water treatment. Video Abstract. | 2023 | 37316831 |
| 9131 | 17 | 0.9996 | How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Acquired antibiotic resistance among dangerous bacterial pathogens is an increasing medical problem. While in Mycobacterium tuberculosis this occurs by mutation in the genes encoding the targets for antibiotic action, other pathogens have generally gained their resistance genes by horizontal gene transfer from non-pathogenic bacteria. The ultimate source of many of these genes is almost certainly the actinomycetes that make the antibiotics and therefore need self-protective mechanisms to avoid suicide. How do they ensure that they are resistant at the time when intracellular antibiotic concentrations reach potentially lethal levels? In this issue of Molecular Microbiology, Tahlan et al. describe a solution to this problem in which an antibiotically inactive precursor of a Streptomyces coelicolor antibiotic induces resistance -- in this example by means of a trans-membrane export pump -- so that the organism is already primed for resistance at the time when it is needed. The authors generalize their interpretation to other cases where antibiotic resistance depends on export, but it will be interesting to find out whether it could in fact apply more widely, to include the other major mechanisms of resistance: target modification and the synthesis of antibiotics via a series of chemically modified intermediates, with removal of the protective group at the time of secretion into the outside medium. | 2007 | 17238916 |
| 9356 | 18 | 0.9996 | The expression of antibiotic resistance genes in antibiotic-producing bacteria. Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance. | 2014 | 24964724 |
| 9128 | 19 | 0.9996 | Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions. | 2024 | 39065030 |