Molecular genetics of Rhizobium Meliloti symbiotic nitrogen fixation. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
826901.0000Molecular genetics of Rhizobium Meliloti symbiotic nitrogen fixation. The application of recombinant DNA techniques to the study of symbiotic nitrogen fixation has yielded a growing list of Rhizobium meliloti genes involved in the processes of nodulation, infection thread formation and nitrogenase activity in nodules on the roots of the host plant, Medicago sativa (alfalfa). Interaction with the plant is initiated by genes encoding sensing and motility systems by which the bacteria recognizes and approaches the root. Signal molecules, such as flavonoids, mediate a complex interplay of bacterial and plant nodulation genes leading to entry of the bacteria through a root hair. As the nodule develops, the bacteria proceed inward towards the cortex within infection threads, the formation of which depends on bacterial genes involved in polysaccharide synthesis. Within the cortex, the bacteria enter host cells and differentiate into forms known as bacteroids. Genes which encode and regulate nitrogenase enzyme are expressed in the mature nodule, together with other genes required for import and metabolism of carbon and energy sources offered by the plant.198914542173
827110.9995Genome-Wide Sensitivity Analysis of the Microsymbiont Sinorhizobium meliloti to Symbiotically Important, Defensin-Like Host Peptides. The model legume species Medicago truncatula expresses more than 700 nodule-specific cysteine-rich (NCR) signaling peptides that mediate the differentiation of Sinorhizobium meliloti bacteria into nitrogen-fixing bacteroids. NCR peptides are essential for a successful symbiosis in legume plants of the inverted-repeat-lacking clade (IRLC) and show similarity to mammalian defensins. In addition to signaling functions, many NCR peptides exhibit antimicrobial activity in vitro and in vivo Bacterial resistance to these antimicrobial activities is likely to be important for symbiosis. However, the mechanisms used by S. meliloti to resist antimicrobial activity of plant peptides are poorly understood. To address this, we applied a global genetic approach using transposon mutagenesis followed by high-throughput sequencing (Tn-seq) to identify S. meliloti genes and pathways that increase or decrease bacterial competitiveness during exposure to the well-studied cationic NCR247 peptide and also to the unrelated model antimicrobial peptide polymyxin B. We identified 78 genes and several diverse pathways whose interruption alters S. meliloti resistance to NCR247. These genes encode the following: (i) cell envelope polysaccharide biosynthesis and modification proteins, (ii) inner and outer membrane proteins, (iii) peptidoglycan (PG) effector proteins, and (iv) non-membrane-associated factors such as transcriptional regulators and ribosome-associated factors. We describe a previously uncharacterized yet highly conserved peptidase, which protects S. meliloti from NCR247 and increases competitiveness during symbiosis. Additionally, we highlight a considerable number of uncharacterized genes that provide the basis for future studies to investigate the molecular basis of symbiotic development as well as chronic pathogenic interactions.IMPORTANCE Soil rhizobial bacteria enter into an ecologically and economically important symbiotic interaction with legumes, in which they differentiate into physiologically distinct bacteroids that provide essential ammonia to the plant in return for carbon sources. Plant signal peptides are essential and specific to achieve these physiological changes. These peptides show similarity to mammalian defensin peptides which are part of the first line of defense to control invading bacterial populations. A number of these legume peptides are indeed known to possess antimicrobial activity, and so far, only the bacterial BacA protein is known to protect rhizobial bacteria against their antimicrobial action. This study identified numerous additional bacterial factors that mediate protection and belong to diverse biological pathways. Our results significantly contribute to our understanding of the molecular roles of bacterial factors during legume symbioses and, second, provide insights into the mechanisms that pathogenic bacteria may use to resist the antimicrobial effects of defensins during infections.201728765224
814420.9994Fungal Priming: Prepare or Perish. Priming (also referred to as acclimation, acquired stress resistance, adaptive response, or cross-protection) is defined as an exposure of an organism to mild stress that leads to the development of a subsequent stronger and more protective response. This memory of a previously encountered stress likely provides a strong survival advantage in a rapidly shifting environment. Priming has been identified in animals, plants, fungi, and bacteria. Examples include innate immune priming and transgenerational epigenetic inheritance in animals and biotic and abiotic stress priming in plants, fungi, and bacteria. Priming mechanisms are diverse and include alterations in the levels of specific mRNAs, proteins, metabolites, and epigenetic changes such as DNA methylation and histone acetylation of target genes.202235628704
815130.9994Azospirillum: benefits that go far beyond biological nitrogen fixation. The genus Azospirillum comprises plant-growth-promoting bacteria (PGPB), which have been broadly studied. The benefits to plants by inoculation with Azospirillum have been primarily attributed to its capacity to fix atmospheric nitrogen, but also to its capacity to synthesize phytohormones, in particular indole-3-acetic acid. Recently, an increasing number of studies has attributed an important role of Azospirillum in conferring to plants tolerance of abiotic and biotic stresses, which may be mediated by phytohormones acting as signaling molecules. Tolerance of biotic stresses is controlled by mechanisms of induced systemic resistance, mediated by increased levels of phytohormones in the jasmonic acid/ethylene pathway, independent of salicylic acid (SA), whereas in the systemic acquired resistance-a mechanism previously studied with phytopathogens-it is controlled by intermediate levels of SA. Both mechanisms are related to the NPR1 protein, acting as a co-activator in the induction of defense genes. Azospirillum can also promote plant growth by mechanisms of tolerance of abiotic stresses, named as induced systemic tolerance, mediated by antioxidants, osmotic adjustment, production of phytohormones, and defense strategies such as the expression of pathogenesis-related genes. The study of the mechanisms triggered by Azospirillum in plants can help in the search for more-sustainable agricultural practices and possibly reveal the use of PGPB as a major strategy to mitigate the effects of biotic and abiotic stresses on agricultural productivity.201829728787
824140.9994Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. N-acyl homoserine lactones (AHLs) belong to the class of bacterial quorum sensing signal molecules involved in distance signal transduction between Gram-negative bacteria colonizers of the rhizosphere, as well as bacteria and plants. AHLs synchronize the activity of genes from individual cells, allowing the bacterial population to act as a multicellular organism, and establish a symbiotic or antagonistic relationship with the host plant. Although the effect of AHLs on plants has been studied for more than ten years, the mechanisms of plant perception of AHL signals are not fully understood. The specificity of the reactions caused by AHL indicates the existence of appropriate mechanisms for their perception by plants. In the current review, we summarize available data on the molecular mechanisms of AHL-signal perception in plants, its effect on plant growth, development, and stress resistance. We describe the latest research demonstrating direct (on plants) and indirect (on rhizosphere microflora) effects of AHLs, as well as the prospects of using these compounds in biotechnology to increase plant resistance to biotic and abiotic stresses.202234937124
825350.9994Strategies used by bacterial pathogens to suppress plant defenses. Plant immune systems effectively prevent infections caused by the majority of microbial pathogens that are encountered by plants. However, successful pathogens have evolved specialized strategies to suppress plant defense responses and induce disease susceptibility in otherwise resistant hosts. Recent advances reveal that phytopathogenic bacteria use type III effector proteins, toxins, and other factors to inhibit host defenses. Host processes that are targeted by bacteria include programmed cell death, cell wall-based defense, hormone signaling, the expression of defense genes, and other basal defenses. The discovery of plant defenses that are vulnerable to pathogen attack has provided new insights into mechanisms that are essential for both bacterial pathogenesis and plant disease resistance.200415231256
831560.9994The Induction and Modulation of Plant Defense Responses by Bacterial Lipopolysaccharides. Lipopolysaccharides (LPSs) are ubiquitous, indispensable components of the cell surface of Gram-negative bacteria that apparently have diverse roles in bacterial pathogenesis of plants. As an outer membrane component, LPS may contribute to the exclusion of plant-derived antimicrobial compounds promoting the ability of a bacterial plant pathogen to infect plants. In contrast, LPS can be recognized by plants to directly trigger some plant defense-related responses. LPS can also alter the response of plants to subsequent bacterial inoculation; these delayed effects include alterations in the expression patterns of genes coding for some pathogenesis-related (PR) proteins, promotion of the synthesis of antimicrobial hydroxycinnamoyl-tyramine conjugates, and prevention of the hypersensitive reaction caused by avirulent bacteria. Prevention of the response may allow expression of resistance in the absence of catastrophic tissue damage. Recognition of LPS (and other nonspecific determinants) may initiate responses in plants that restrict the growth of nonpathogenic bacteria, whereas plant pathogens may possess hrp gene-dependent mechanisms to suppress such responses.200011701843
933870.9994Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Extensive data in a wide range of organisms point to the importance of polyamine homeostasis for growth. The two most common polyamines found in bacteria are putrescine and spermidine. The investigation of polyamine function in bacteria has revealed that they are involved in a number of functions other than growth, which include incorporation into the cell wall and biosynthesis of siderophores. They are also important in acid resistance and can act as a free radical ion scavenger. More recently it has been suggested that polyamines play a potential role in signaling cellular differentiation in Proteus mirabilis. Polyamines have also been shown to be essential in biofilm formation in Yersinia pestis. The pleiotropic nature of polyamines has made their investigation difficult, particularly in discerning any specific effect from more global growth effects. Here we describe key developments in the investigation of the function of polyamines in bacteria that have revealed new roles for polyamines distinct from growth. We describe the bacterial genes necessary for biosynthesis and transport, with a focus on Y. pestis. Finally we review a novel role for polyamines in the regulation of biofilm development in Y. pestis and provide evidence that the investigation of polyamines in Y. pestis may provide a model for understanding the mechanism through which polyamines regulate biofilm formation.200717966408
827380.9993Targeting quorum sensing and competence stimulation for antimicrobial chemotherapy. Bacterial resistance to antibiotics is now a serious problem, with traditional classes of antibiotics having gradually become ineffective. New drugs are therefore needed to target and inhibit novel pathways that affect the growth of bacteria. An important feature in the survival of bacteria is that they coordinate their efforts together as a colony via secreted auto-inducing molecules. Competence stimulating peptides (CSPs) are among the quorum sensing pheromones involved in this coordination. These peptides activate a two-component system in gram-negative bacteria, binding to and activating a histidine kinase receptor called ComD, which phosphorylates a response regulator called ComE, leading to gene expression and induction of competence. Competent bacteria are able to take up exogenous DNA and incorporate it into their own genome. By this mechanism bacteria are able to acquire and share genes encoding antibiotic resistance. Despite having been studied for over 30 years, this pathway has only recently begun to be explored as a novel approach to modulating bacterial growth. Antagonists of ComD might block the signaling cascade that leads to competence, while overstimulation of ComD might also reduce bacterial growth. One possible approach to inhibiting ComD is to examine peptide sequences of CSPs that activate ComD and attempt to constrain them to bioactive conformations, likely to have higher affinity due to pre-organization for recognition by the receptor. Thus, small molecules that mimic an alpha helical epitope of CSPs, the putative ComD binding domain, have been shown here to inhibit growth of bacteria such as S. pneumoniae. Such alpha helix mimetics may be valuable clues to antibacterial chemotherapeutic agents that utilize a new mechanism to control bacterial growth.201222664089
824490.9993Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. Natural antimicrobial peptides have been shown as one of the important tools to combat certain pathogens and play important role as a part of innate immune system in plants and, also adaptive immunity in animals. Defensin is one of the antimicrobial peptides with a diverse nature of mechanism against different pathogens like viruses, bacteria and fungi. They have a broad function in humans, vertebrates, invertebrates, insects, and plants. Plant defensins primarily interact with membrane lipids for their biological activity. Several antimicrobial peptides (AMPs) have been overexpressed in plants for enhanced disease protection. The plants defensin peptides have been efficiently employed as an effective strategy for control of diseases in plants. They can be successfully integrated in plants genome along with some other peptide genes in order to produce transgenic crops for enhanced disease resistance. This review summarizes plant defensins, their expression in plants and enhanced disease resistance potential against phytopathogens.201931065492
8302100.9993Auxin-mediated regulation of susceptibility to toxic metabolites, c-di-GMP levels, and phage infection in the rhizobacterium Serratia plymuthica. The communication between plants and their microbiota is highly dynamic and involves a complex network of signal molecules. Among them, the auxin indole-3-acetic acid (IAA) is a critical phytohormone that not only regulates plant growth and development, but is emerging as an important inter- and intra-kingdom signal that modulates many bacterial processes that are important during interaction with their plant hosts. However, the corresponding signaling cascades remain largely unknown. Here, we advance our understanding of the largely unknown mechanisms by which IAA carries out its regulatory functions in plant-associated bacteria. We showed that IAA caused important changes in the global transcriptome of the rhizobacterium Serratia plymuthica and multidisciplinary approaches revealed that IAA sensing interferes with the signaling mediated by other pivotal plant-derived signals such as amino acids and 4-hydroxybenzoic acid. Exposure to IAA caused large alterations in the transcript levels of genes involved in amino acid metabolism, resulting in significant metabolic alterations. IAA treatment also increased resistance to toxic aromatic compounds through the induction of the AaeXAB pump, which also confers resistance to IAA. Furthermore, IAA promoted motility and severely inhibited biofilm formation; phenotypes that were associated with decreased c-di-GMP levels and capsule production. IAA increased capsule gene expression and enhanced bacterial sensitivity to a capsule-dependent phage. Additionally, IAA induced the expression of several genes involved in antibiotic resistance and led to changes in the susceptibility and responses to antibiotics with different mechanisms of action. Collectively, our study illustrates the complexity of IAA-mediated signaling in plant-associated bacteria. IMPORTANCE: Signal sensing plays an important role in bacterial adaptation to ecological niches and hosts. This communication appears to be particularly important in plant-associated bacteria since they possess a large number of signal transduction systems that respond to a wide diversity of chemical, physical, and biological stimuli. IAA is emerging as a key inter- and intra-kingdom signal molecule that regulates a variety of bacterial processes. However, despite the extensive knowledge of the IAA-mediated regulatory mechanisms in plants, IAA signaling in bacteria remains largely unknown. Here, we provide insight into the diversity of mechanisms by which IAA regulates primary and secondary metabolism, biofilm formation, motility, antibiotic susceptibility, and phage sensitivity in a biocontrol rhizobacterium. This work has important implications for our understanding of bacterial ecology in plant environments and for the biotechnological and clinical applications of IAA, as well as related molecules.202438837409
9198110.9993Recognition of bacterial avirulence proteins occurs inside the plant cell: a general phenomenon in resistance to bacterial diseases? One of the recent exciting developments in the research area of plant-microbe interactions is a breakthrough in understanding part of the initial signalling between avirulent Gram-negative bacteria and resistant plants. For resistance to occur, both interacting organisms need to express matching genes, the plant resistance gene and the bacterial avirulence gene. The biochemical function of bacterial avirulence genes and the nature of the signal molecules recognized by the plant have been a mystery for a long time. Recently, several laboratories have shown that bacterial avirulence proteins function as elicitors that are perceived within the plant cell.19979263447
8252120.9993Hrp mutant bacteria as biocontrol agents: toward a sustainable approach in the fight against plant pathogenic bacteria. Sustainable agriculture necessitates development of environmentally safe methods to protect plants against pathogens. Among these methods, application of biocontrol agents has been efficiently used to minimize disease development. Here we review current understanding of mechanisms involved in biocontrol of the main Gram-phytopathogenic bacteria-induced diseases by plant inoculation with strains mutated in hrp (hypersensitive response and pathogenicity) genes. These mutants are able to penetrate plant tissues and to stimulate basal resistance of plants. Novel protection mechanisms involving the phytohormone abscisic acid appear to play key roles in the biocontrol of wilt disease induced by Ralstonia solanacearum in Arabidopsis thaliana. Fully understanding these mechanisms and extending the studies to other pathosystems are still required to evaluate their importance in disease protection.201323887499
8285130.9993Bacterial stress response: understanding the molecular mechanics to identify possible therapeutic targets. INTRODUCTION: Bacteria are ubiquitous and many of them are pathogenic in nature. Entry of bacteria in host and its recognition by host defense system induce stress in host cells. With time, bacteria have also developed strategies including drug resistance to escape from antibacterial therapy as well as host defense mechanism. AREAS COVERED: Bacterial stress initiates and promotes adaptive immune response through several integrated mechanisms. The mechanisms of bacteria to up and down regulate different pathways involved in these responses have been discussed. The genetic expression of these pathways can be manipulated by the pharmacological interventions. Present review discusses in these contexts and explores the possibilities to overcome stress induced by bacterial pathogens and to suggest new possible therapeutic targets. EXPERT OPINION: In our opinion, there are two important fronts to regulate the bacterial stress. One is to target caspase involved in the process of transformation and translation at gene level and protein expression. Second is the identification of bacterial genes that lead to synthesis of abnormal end products supporting bacterial survival in host environment and also to surpass the host defense mechanism. Identification of such genes and their expression products could be an effective option to encounter bacterial resistance.202132811215
8145140.9993Emerging role for RNA-based regulation in plant immunity. Infection by phytopathogenic bacteria triggers massive changes in plant gene expression, which are thought to be mostly a result of transcriptional reprogramming. However, evidence is accumulating that plants additionally use post-transcriptional regulation of immune-responsive mRNAs as a strategic weapon to shape the defense-related transcriptome. Cellular RNA-binding proteins regulate RNA stability, splicing or mRNA export of immune-response transcripts. In particular, mutants defective in alternative splicing of resistance genes exhibit compromised disease resistance. Furthermore, detection of bacterial pathogens induces the differential expression of small non-coding RNAs including microRNAs that impact the host defense transcriptome. Phytopathogenic bacteria in turn have evolved effector proteins to inhibit biogenesis and/or activity of cellular microRNAs. Whereas RNA silencing has long been known as an antiviral defense response, recent findings also reveal a major role of this process in antibacterial defense. Here we review the function of RNA-binding proteins and small RNA-directed post-transcriptional regulation in antibacterial defense. We mainly focus on studies that used the model system Arabidopsis thaliana and also discuss selected examples from other plants.201323163405
8284150.9993Redox signaling in human pathogens. In recent studies of human bacterial pathogens, oxidation sensing and regulation have been shown to impact very diverse pathways that extend beyond inducing antioxidant genes in the bacteria. In fact, some redox-sensitive regulatory proteins act as major regulators of bacteria's adaptability to oxidative stress, an ability that originates from immune host response as well as antibiotic stress. Such proteins play particularly important roles in pathogenic bacteria S. aureus, P. aeruginosa, and M. tuberculosis in part because reactive oxygen species and reactive nitrogen species present significant challenges for pathogens during infection. Herein, we review recent progress toward the identification and understanding of oxidation sensing and regulation in human pathogens. The newly identified redox switches in pathogens are a focus of this review. We will cover several reactive oxygen species-sensing global regulators in both gram-positive and gram-negative pathogenic bacteria in detail. The following discussion of the mechanisms that these proteins employ to sense redox signals through covalent modification of redox active amino acid residues or associated metalloprotein centers will provide further understanding of bacteria pathogenesis, antibiotic resistance, and host-pathogen interaction.201120578795
8283160.9993Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations.201222424589
8317170.9993The Quorum Sensing Auto-Inducer 2 (AI-2) Stimulates Nitrogen Fixation and Favors Ethanol Production over Biomass Accumulation in Zymomonas mobilis. Autoinducer 2 (or AI-2) is one of the molecules used by bacteria to trigger the Quorum Sensing (QS) response, which activates expression of genes involved in a series of alternative mechanisms, when cells reach high population densities (including bioluminescence, motility, biofilm formation, stress resistance, and production of public goods, or pathogenicity factors, among others). Contrary to most autoinducers, AI-2 can induce QS responses in both Gram-negative and Gram-positive bacteria, and has been suggested to constitute a trans-specific system of bacterial communication, capable of affecting even bacteria that cannot produce this autoinducer. In this work, we demonstrate that the ethanologenic Gram-negative bacterium Zymomonas mobilis (a non-AI-2 producer) responds to exogenous AI-2 by modulating expression of genes involved in mechanisms typically associated with QS in other bacteria, such as motility, DNA repair, and nitrogen fixation. Interestingly, the metabolism of AI-2-induced Z. mobilis cells seems to favor ethanol production over biomass accumulation, probably as an adaptation to the high-energy demand of N(2) fixation. This opens the possibility of employing AI-2 during the industrial production of second-generation ethanol, as a way to boost N(2) fixation by these bacteria, which could reduce costs associated with the use of nitrogen-based fertilizers, without compromising ethanol production in industrial plants.202134073173
8245180.9993Plant Elite Squad: First Defense Line and Resistance Genes - Identification, Diversity and Functional Roles. Plants exhibit sensitive mechanisms to respond to environmental stresses, presenting some specific and non-specific reactions when attacked by pathogens, including organisms from different classes and complexity, as viroids, viruses, bacteria, fungi and nematodes. A crucial step to define the fate of the plant facing an invading pathogen is the activation of a compatible Resistance (R) gene, the focus of the present review. Different aspects regarding R-genes and their products are discussed, including pathogen recognition mechanisms, signaling and effects on induced and constitutive defense processes, splicing and post transcriptional mechanisms involved. There are still countless challenges to the complete understanding of the mechanisms involving R-genes in plants, in particular those related to the interactions with other genes of the pathogen and of the host itself, their regulation, acting mechanisms at transcriptional and post-transcriptional levels, as well as the influence of other types of stress over their regulation. A magnification of knowledge is expected when considering the novel information from the omics and systems biology.201727455974
8246190.9993From Functional Characterization to the Application of SWEET Sugar Transporters in Plant Resistance Breeding. The occurrence of plant diseases severely affects the quality and quantity of plant production. Plants adapt to the constant invasion of pathogens and gradually form a series of defense mechanisms, such as pathogen-associated molecular pattern-triggered immunity and microbial effector-triggered immunity. Moreover, many pathogens have evolved to inhibit the immune defense system and acquire plant nutrients as a result of their coevolution with plants. The sugars will eventually be exported transporters (SWEETs) are a novel family of sugar transporters that function as uniporters. They provide a channel for pathogens, including bacteria, fungi, and viruses, to hijack sugar from the host. In this review, we summarize the functions of SWEETs in nectar secretion, grain loading, senescence, and long-distance transport. We also focus on the interaction between the SWEET genes and pathogens. In addition, we provide insight into the potential application of SWEET genes to enhance disease resistance through the use of genome editing tools. The summary and perspective of this review will deepen our understanding of the role of SWEETs during the process of pathogen infection and provide insights into resistance breeding.202235446562