# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8265 | 0 | 1.0000 | Mathematical modelling of CRISPR-Cas system effects on biofilm formation. Clustered regularly interspaced short palindromic repeats (CRISPR), linked with CRISPR associated (Cas) genes, can confer adaptive immunity to bacteria, against bacteriophage infections. Thus from a therapeutic standpoint, CRISPR immunity increases biofilm resistance to phage therapy. Recently, however, CRISPR-Cas genes have been implicated in reducing biofilm formation in lysogenized cells. Thus CRISPR immunity can have complex effects on phage-host-lysogen interactions, particularly in a biofilm. In this contribution, we develop and analyse a series of dynamical systems to elucidate and disentangle these interactions. Two competition models are used to study the effects of lysogens (first model) and CRISPR-immune bacteria (second model) in the biofilm. In the third model, the effect of delivering lysogens to a CRISPR-immune biofilm is investigated. Using standard analyses of equilibria, stability and bifurcations, our models predict that lysogens may be able to displace CRISPR-immune bacteria in a biofilm, and thus suggest strategies to eliminate phage-resistant biofilms. | 2017 | 28426329 |
| 8267 | 1 | 0.9998 | Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction-modification and CRISPR-Cas. Bacteria can readily generate mutations that prevent bacteriophage (phage) adsorption and thus make bacteria resistant to infections with these viruses. Nevertheless, the majority of bacteria carry complex innate and/or adaptive immune systems: restriction-modification (RM) and CRISPR-Cas, respectively. Both RM and CRISPR-Cas are commonly assumed to have evolved and be maintained to protect bacteria from succumbing to infections with lytic phage. Using mathematical models and computer simulations, we explore the conditions under which selection mediated by lytic phage will favour such complex innate and adaptive immune systems, as opposed to simple envelope resistance. The results of our analysis suggest that when populations of bacteria are confronted with lytic phage: (i) In the absence of immunity, resistance to even multiple bacteriophage species with independent receptors can evolve readily. (ii) RM immunity can benefit bacteria by preventing phage from invading established bacterial populations and particularly so when there are multiple bacteriophage species adsorbing to different receptors. (iii) Whether CRISPR-Cas immunity will prevail over envelope resistance depends critically on the number of steps in the coevolutionary arms race between the bacteria-acquiring spacers and the phage-generating CRISPR-escape mutants. We discuss the implications of these results in the context of the evolution and maintenance of RM and CRISPR-Cas and highlight fundamental questions that remain unanswered. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'. | 2019 | 30905282 |
| 9591 | 2 | 0.9997 | Interaction of phages, bacteria, and the human immune system: Evolutionary changes in phage therapy. Phages and bacteria are known to undergo dynamic and co-evolutionary arms race interactions in order to survive. Recent advances from in vitro and in vivo studies have improved our understanding of the complex interactions between phages, bacteria, and the human immune system. This insight is essential for the development of phage therapy to battle the growing problems of antibiotic resistance. It is also pivotal to prevent the development of phage-resistance during the implementation of phage therapy in the clinic. In this review, we discuss recent progress of the interactions between phages, bacteria, and the human immune system and its clinical application for phage therapy. Proper phage therapy design will ideally produce large burst sizes, short latent periods, broad host ranges, and a low tendency to select resistance. | 2019 | 31145517 |
| 9176 | 3 | 0.9997 | Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. With the increasing global threat of antibiotic resistance, there is an urgent need to develop new effective therapies to tackle antibiotic-resistant bacterial infections. Bacteriophage therapy is considered as a possible alternative over antibiotics to treat antibiotic-resistant bacteria. However, bacteria can evolve resistance towards bacteriophages through antiphage defense mechanisms, which is a major limitation of phage therapy. The antiphage mechanisms target the phage life cycle, including adsorption, the injection of DNA, synthesis, the assembly of phage particles, and the release of progeny virions. The non-specific bacterial defense mechanisms include adsorption inhibition, superinfection exclusion, restriction-modification, and abortive infection systems. The antiphage defense mechanism includes a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system. At the same time, phages can execute a counterstrategy against antiphage defense mechanisms. However, the antibiotic susceptibility and antibiotic resistance in bacteriophage-resistant bacteria still remain unclear in terms of evolutionary trade-offs and trade-ups between phages and bacteria. Since phage resistance has been a major barrier in phage therapy, the trade-offs can be a possible approach to design effective bacteriophage-mediated intervention strategies. Specifically, the trade-offs between phage resistance and antibiotic resistance can be used as therapeutic models for promoting antibiotic susceptibility and reducing virulence traits, known as bacteriophage steering or evolutionary medicine. Therefore, this review highlights the synergistic application of bacteriophages and antibiotics in association with the pleiotropic trade-offs of bacteriophage resistance. | 2022 | 35884169 |
| 9200 | 4 | 0.9996 | Application of the CRISPR/Cas System for Generation of Pathogen-Resistant Plants. The use of the CRISPR/Cas9 prokaryotic adaptive immune system has led to a breakthrough in targeted genome editing in eukaryotes. The CRISPR/Cas technology allows to generate organisms with desirable characteristics by introducing deletions/insertions into selected genome loci resulting in the knockout or modification of target genes. This review focuses on the current state of the CRISPR/Cas use for the generation of plants resistant to viruses, bacteria, and parasitic fungi. Resistance to DNA- and RNA-containing viruses is usually provided by expression in transgenic plants of the Cas endonuclease gene and short guide RNAs (sgRNAs) targeting certain sites in the viral or the host plant genomes to ensure either direct cleavage of the viral genome or modification of the plant host genome in order to decrease the efficiency of virus replication. Editing of plant genes involved in the defense response to pathogens increases plants resistance to bacteria and pathogenic fungi. The review explores strategies and prospects of the development of pathogen-resistant plants with a focus on the generation of non-transgenic (non-genetically modified) organisms, in particular, by using plasmid (DNA)-free systems for delivery of the Cas/sgRNA editing complex into plant cells. | 2018 | 30878030 |
| 9232 | 5 | 0.9996 | CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens. | 2012 | 22901538 |
| 8266 | 6 | 0.9996 | Remarkable Mechanisms in Microbes to Resist Phage Infections. Bacteriophages (phages) specifically infect bacteria and are the most abundant biological entities on Earth. The constant exposure to phage infection imposes a strong selective pressure on bacteria to develop viral resistance strategies that promote prokaryotic survival. Thus, this parasite-host relationship results in an evolutionary arms race of adaptation and counteradaptation between the interacting partners. The evolutionary outcome is a spectrum of remarkable strategies used by the bacteria and phages as they attempt to coexist. These approaches include adsorption inhibition, injection blocking, abortive infection, toxin-antitoxin, and CRISPR-Cas systems. In this review, we highlight the diverse and complementary antiphage systems in bacteria, as well as the evasion mechanisms used by phages to escape these resistance strategies. | 2014 | 26958724 |
| 8286 | 7 | 0.9996 | RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications. | 2021 | 34440299 |
| 9175 | 8 | 0.9996 | Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Bacteria that cause life-threatening infections in humans are becoming increasingly difficult to treat. In some instances, this is due to intrinsic and acquired antibiotic resistance, indicating that new therapeutic approaches are needed to combat bacterial pathogens. There is renewed interest in utilizing viruses of bacteria known as bacteriophages (phages) as potential antibacterial therapeutics. However, critics suggest that similar to antibiotics, the development of phage-resistant bacteria will halt clinical phage therapy. Although the emergence of phage-resistant bacteria is likely inevitable, there is a growing body of literature showing that phage selective pressure promotes mutations in bacteria that allow them to subvert phage infection, but with a cost to their fitness. Such fitness trade-offs include reduced virulence, resensitization to antibiotics, and colonization defects. Resistance to phage nucleic acid entry, primarily via cell surface modifications, compromises bacterial fitness during antibiotic and host immune system pressure. In this minireview, we explore the mechanisms behind phage resistance in bacterial pathogens and the physiological consequences of acquiring phage resistance phenotypes. With this knowledge, it may be possible to use phages to alter bacterial populations, making them more tractable to current therapeutic strategies. | 2020 | 32094257 |
| 8253 | 9 | 0.9996 | Strategies used by bacterial pathogens to suppress plant defenses. Plant immune systems effectively prevent infections caused by the majority of microbial pathogens that are encountered by plants. However, successful pathogens have evolved specialized strategies to suppress plant defense responses and induce disease susceptibility in otherwise resistant hosts. Recent advances reveal that phytopathogenic bacteria use type III effector proteins, toxins, and other factors to inhibit host defenses. Host processes that are targeted by bacteria include programmed cell death, cell wall-based defense, hormone signaling, the expression of defense genes, and other basal defenses. The discovery of plant defenses that are vulnerable to pathogen attack has provided new insights into mechanisms that are essential for both bacterial pathogenesis and plant disease resistance. | 2004 | 15231256 |
| 9204 | 10 | 0.9996 | Susceptibility Genes in Bacterial Diseases of Plants. Plant susceptibility (S) genes exploited by pathogenic bacteria play critical roles in disease development, collectively contributing to symptoms, pathogen proliferation, and spread. S genes may support pathogen establishment within the host, suppress host immunity, regulate host physiology or development, or function in other ways. S genes can be passive, e.g., involved in pathogen attraction or required for pathogen effector localization or activity, or active, contributing directly to symptoms or pathogen proliferation. Knowledge of S genes is important for understanding disease and other aspects of plant biology. It is also useful for disease management, as nonfunctional alleles can slow or prevent disease and, because they are often quantitative, can exert less selection on pathogens than dominant resistance genes, allowing greater durability. In this review, we discuss bacterial exploitation of S genes, S-gene functional diversity, approaches for identifying S genes, translation of S-gene knowledge for disease control, and future perspectives on this exciting area of plant pathology. | 2025 | 40446167 |
| 8264 | 11 | 0.9996 | Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity. Some phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here, we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage blocking the host CRISPR-Cas immune system to allow a second Acr-phage to successfully replicate. This cooperation leads to epidemiological tipping points in which the initial density of Acr-phage tips the balance from phage extinction to a phage epidemic. Furthermore, both higher levels of CRISPR-Cas immunity and weaker Acr activities shift the tipping points toward higher initial phage densities. Collectively, these data help elucidate how interactions between phage-encoded immune suppressors and the CRISPR systems they target shape bacteria-phage population dynamics. | 2018 | 30033365 |
| 8285 | 12 | 0.9996 | Bacterial stress response: understanding the molecular mechanics to identify possible therapeutic targets. INTRODUCTION: Bacteria are ubiquitous and many of them are pathogenic in nature. Entry of bacteria in host and its recognition by host defense system induce stress in host cells. With time, bacteria have also developed strategies including drug resistance to escape from antibacterial therapy as well as host defense mechanism. AREAS COVERED: Bacterial stress initiates and promotes adaptive immune response through several integrated mechanisms. The mechanisms of bacteria to up and down regulate different pathways involved in these responses have been discussed. The genetic expression of these pathways can be manipulated by the pharmacological interventions. Present review discusses in these contexts and explores the possibilities to overcome stress induced by bacterial pathogens and to suggest new possible therapeutic targets. EXPERT OPINION: In our opinion, there are two important fronts to regulate the bacterial stress. One is to target caspase involved in the process of transformation and translation at gene level and protein expression. Second is the identification of bacterial genes that lead to synthesis of abnormal end products supporting bacterial survival in host environment and also to surpass the host defense mechanism. Identification of such genes and their expression products could be an effective option to encounter bacterial resistance. | 2021 | 32811215 |
| 9471 | 13 | 0.9996 | Systematic analysis of putative phage-phage interactions on minimum-sized phage cocktails. The application of bacteriophages as antibacterial agents has many benefits in the "post-antibiotic age". To increase the number of successfully targeted bacterial strains, phage cocktails, instead of a single phage, are commonly formulated. Nevertheless, there is currently no consensus pipeline for phage cocktail development. Thus, although large cocktails increase the spectrum of activity, they could produce side effects such as the mobilization of virulence or antibiotic resistance genes. On the other hand, coinfection (simultaneous infection of one host cell by several phages) might reduce the potential for bacteria to evolve phage resistance, but some antagonistic interactions amongst phages might be detrimental for the outcome of phage cocktail application. With this in mind, we introduce here a new method, which considers the host range and each individual phage-host interaction, to design the phage mixtures that best suppress the target bacteria while minimizing the number of phages to restrict manufacturing costs. Additionally, putative phage-phage interactions in cocktails and phage-bacteria networks are compared as the understanding of the complex interactions amongst bacteriophages could be critical in the development of realistic phage therapy models in the future. | 2022 | 35165352 |
| 9622 | 14 | 0.9995 | Stable Neutralization of a Virulence Factor in Bacteria Using Temperate Phage in the Mammalian Gut. Elimination or alteration of select members of the gut microbiota is key to therapeutic efficacy. However, the complexity of these microbial inhabitants makes it challenging to precisely target bacteria. Here, we deliver exogenous genes to specific bacteria by genomic integration of temperate phage for long-lasting modification. As a real-world therapeutic test, we engineered λ phage to transcriptionally repress Shiga toxin by using genetic hybrids between λ and other lambdoid phages to overcome resistance encoded by the virulence-expressing prophage. We show that a single dose of engineered phage propagates throughout the bacterial community and reduces Shiga toxin production in an enteric mouse model of infection without markedly affecting bacterial concentrations. Our work reveals a new framework for transferring functions to bacteria within their native environment.IMPORTANCE With the increasing frequency of antibiotic resistance, it is critical to explore new therapeutic strategies for treating bacterial infections. Here, we use a temperate phage, i.e., one that integrates itself into the bacterial genome, to neutralize the expression of a virulence factor by modifying bacterial function at the genetic level. We show that Shiga toxin production can be significantly reduced in vitro and in the mammalian gut. Alternative to traditional applications of phage therapy that rely on killing bacteria, our genetics-based antivirulence approach introduces a new framework for treating bacterial infections. | 2020 | 31992629 |
| 9168 | 15 | 0.9995 | Novel approaches to bacterial infection therapy by interfering with bacteria-to-bacteria signaling. The growing challenge of antimicrobial resistance and the paucity of novel antibiotics underscore the importance of developing novel therapeutics. Bacterial cell-to-cell signaling constitutes a novel drug target. Quorum sensing (QS) is a cell-to-cell signaling mechanism that refers to the ability of bacteria to respond to chemical hormone-like molecules called autoinducers. QS is responsible for controlling a plethora of virulence genes in several bacterial pathogens. Antagonists to autoinducers will intercept bacterial intercellular communication, hindering their ability to act in a coordinated manner to express virulence traits. Moreover, since QS is not involved directly in essential processes, such as bacterial growth, one can reason that inhibition of QS will not yield a selective pressure for the development of resistance. | 2007 | 17402841 |
| 9233 | 16 | 0.9995 | The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Bacteria and Archaea have developed several defence strategies against foreign nucleic acids such as viral genomes and plasmids. Among them, clustered regularly interspaced short palindromic repeats (CRISPR) loci together with cas (CRISPR-associated) genes form the CRISPR/Cas immune system, which involves partially palindromic repeats separated by short stretches of DNA called spacers, acquired from extrachromosomal elements. It was recently demonstrated that these variable loci can incorporate spacers from infecting bacteriophages and then provide immunity against subsequent bacteriophage infections in a sequence-specific manner. Here we show that the Streptococcus thermophilus CRISPR1/Cas system can also naturally acquire spacers from a self-replicating plasmid containing an antibiotic-resistance gene, leading to plasmid loss. Acquired spacers that match antibiotic-resistance genes provide a novel means to naturally select bacteria that cannot uptake and disseminate such genes. We also provide in vivo evidence that the CRISPR1/Cas system specifically cleaves plasmid and bacteriophage double-stranded DNA within the proto-spacer, at specific sites. Our data show that the CRISPR/Cas immune system is remarkably adapted to cleave invading DNA rapidly and has the potential for exploitation to generate safer microbial strains. | 2010 | 21048762 |
| 9235 | 17 | 0.9995 | Investigating the Genomic Background of CRISPR-Cas Genomes for CRISPR-Based Antimicrobials. CRISPR-Cas systems are an adaptive immunity that protects prokaryotes against foreign genetic elements. Genetic templates acquired during past infection events enable DNA-interacting enzymes to recognize foreign DNA for destruction. Due to the programmability and specificity of these genetic templates, CRISPR-Cas systems are potential alternative antibiotics that can be engineered to self-target antimicrobial resistance genes on the chromosome or plasmid. However, several fundamental questions remain to repurpose these tools against drug-resistant bacteria. For endogenous CRISPR-Cas self-targeting, antimicrobial resistance genes and functional CRISPR-Cas systems have to co-occur in the target cell. Furthermore, these tools have to outplay DNA repair pathways that respond to the nuclease activities of Cas proteins, even for exogenous CRISPR-Cas delivery. Here, we conduct a comprehensive survey of CRISPR-Cas genomes. First, we address the co-occurrence of CRISPR-Cas systems and antimicrobial resistance genes in the CRISPR-Cas genomes. We show that the average number of these genes varies greatly by the CRISPR-Cas type, and some CRISPR-Cas types (IE and IIIA) have over 20 genes per genome. Next, we investigate the DNA repair pathways of these CRISPR-Cas genomes, revealing that the diversity and frequency of these pathways differ by the CRISPR-Cas type. The interplay between CRISPR-Cas systems and DNA repair pathways is essential for the acquisition of new spacers in CRISPR arrays. We conduct simulation studies to demonstrate that the efficiency of these DNA repair pathways may be inferred from the time-series patterns in the RNA structure of CRISPR repeats. This bioinformatic survey of CRISPR-Cas genomes elucidates the necessity to consider multifaceted interactions between different genes and systems, to design effective CRISPR-based antimicrobials that can specifically target drug-resistant bacteria in natural microbial communities. | 2022 | 35692726 |
| 8246 | 18 | 0.9995 | From Functional Characterization to the Application of SWEET Sugar Transporters in Plant Resistance Breeding. The occurrence of plant diseases severely affects the quality and quantity of plant production. Plants adapt to the constant invasion of pathogens and gradually form a series of defense mechanisms, such as pathogen-associated molecular pattern-triggered immunity and microbial effector-triggered immunity. Moreover, many pathogens have evolved to inhibit the immune defense system and acquire plant nutrients as a result of their coevolution with plants. The sugars will eventually be exported transporters (SWEETs) are a novel family of sugar transporters that function as uniporters. They provide a channel for pathogens, including bacteria, fungi, and viruses, to hijack sugar from the host. In this review, we summarize the functions of SWEETs in nectar secretion, grain loading, senescence, and long-distance transport. We also focus on the interaction between the SWEET genes and pathogens. In addition, we provide insight into the potential application of SWEET genes to enhance disease resistance through the use of genome editing tools. The summary and perspective of this review will deepen our understanding of the role of SWEETs during the process of pathogen infection and provide insights into resistance breeding. | 2022 | 35446562 |
| 9616 | 19 | 0.9995 | Precision targeting of food biofilm-forming genes by microbial scissors: CRISPR-Cas as an effective modulator. The abrupt emergence of antimicrobial resistant (AMR) bacterial strains has been recognized as one of the biggest public health threats affecting the human race and food processing industries. One of the causes for the emergence of AMR is the ability of the microorganisms to form biofilm as a defense strategy that restricts the penetration of antimicrobial agents into bacterial cells. About 80% of human diseases are caused by biofilm-associated sessile microbes. Bacterial biofilm formation involves a cascade of genes that are regulated via the mechanism of quorum sensing (QS) and signaling pathways that control the production of the extracellular polymeric matrix (EPS), responsible for the three-dimensional architecture of the biofilm. Another defense strategy utilized commonly by various bacteria includes clustered regularly interspaced short palindromic repeats interference (CRISPRi) system that prevents the bacterial cell from viral invasion. Since multigenic signaling pathways and controlling systems are involved in each and every step of biofilm formation, the CRISPRi system can be adopted as an effective strategy to target the genomic system involved in biofilm formation. Overall, this technology enables site-specific integration of genes into the host enabling the development of paratransgenic control strategies to interfere with pathogenic bacterial strains. CRISPR-RNA-guided Cas9 endonuclease, being a promising genome editing tool, can be effectively programmed to re-sensitize the bacteria by targeting AMR-encoding plasmid genes involved in biofilm formation and virulence to revert bacterial resistance to antibiotics. CRISPRi-facilitated silencing of genes encoding regulatory proteins associated with biofilm production is considered by researchers as a dependable approach for editing gene networks in various biofilm-forming bacteria either by inactivating biofilm-forming genes or by integrating genes corresponding to antibiotic resistance or fluorescent markers into the host genome for better analysis of its functions both in vitro and in vivo or by editing genes to stop the secretion of toxins as harmful metabolites in food industries, thereby upgrading the human health status. | 2022 | 36016778 |