# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8234 | 0 | 1.0000 | Contradictory roles for antibody and complement in the interaction of Brucella abortus with its host. The ability of serum complement to kill bacteria has been linked to host resistance to Gram-negative bacteria. A mechanism for killing extracellular organisms during early invasion, following release from infected phagocytic cells, or during bacteremia would contribute to a host's ability to resist disease. In fact, the ability of serum complement to kill bacteria has been linked to disease resistance. Brucella abortus are Gram-negative intracellular pathogens. Resistance to these bacteria involves the coordinated activities of the cellular and humoral immune systems. The existence of serum-resistant forms of B. abortus has been established, and it has been shown that these bacteria can resist the killing action of complement even in the presence of specific antibody. Antibody is usually necessary for complement-mediated killing of smooth (virulent) forms of Gram-negative bacteria. An anomolous situation exists with some isolates of smooth B. abortus. Sera containing high titers of specific antibody do not support killing unless they are diluted. In the bovine, this phenomenon is associated with IgG1 and IgG2 antibodies. This finding may account for the lack of positive correlation between antibody levels and resistance to disease, which has led, perhaps wrongly, to the idea that antibody and complement are not important in resistance to brucellosis. Available evidence suggests that antibody may have contradictory roles in the interactions between a host and bacteria. Avirulent (rough) forms of the organism would be rapidly killed by complement shortly after invasion, but serum-resistant smooth forms of the organism would survive and invade resident phagocytic cells. During the process of invasion and phagocytosis, the bacteria would initiate an immune response. With time, some B. abortus organisms would be released from infected phagocytic cells. In the early stages of this process, the bacteria would encounter IgM antibody and low concentrations of IgG antibody. These would cause complement-mediated killing, and infection would be restricted to resident phagocytic cells. However, the immune response to B. abortus antigens would be intensified, and IgG antibody levels would increase. High concentrations of antibody do no support complement-mediated killing of extracellular B. abortus, but the bacteria would be opsonized by antibody and complement component fragments. This would lead to increased phagocytosis of extracellular B. abortus as they appear, and concomitant extension of disease. Because of high levels of antibody would block complement-mediated killing of B. abortus, resistance to disease at this point would be dependent on cell-mediated immunity. | 1995 | 8845060 |
| 697 | 1 | 0.9996 | Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion. Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria. | 2011 | 21949654 |
| 9337 | 2 | 0.9995 | Predation-resistant Pseudomonas bacteria engage in symbiont-like behavior with the social amoeba Dictyostelium discoideum. The soil amoeba Dictyostelium discoideum acts as both a predator and potential host for diverse bacteria. We tested fifteen Pseudomonas strains that were isolated from transiently infected wild D. discoideum for ability to escape predation and infect D. discoideum fruiting bodies. Three predation-resistant strains frequently caused extracellular infections of fruiting bodies but were not found within spores. Furthermore, infection by one of these species induces secondary infections and suppresses predation of otherwise edible bacteria. Another strain can persist inside of amoebae after being phagocytosed but is rarely taken up. We sequenced isolate genomes and discovered that predation-resistant isolates are not monophyletic. Many Pseudomonas isolates encode secretion systems and toxins known to improve resistance to phagocytosis in other species, as well as diverse secondary metabolite biosynthetic gene clusters that may contribute to predation resistance. However, the distribution of these genes alone cannot explain why some strains are edible and others are not. Each lineage may employ a unique mechanism for resistance. | 2023 | 37884792 |
| 9338 | 3 | 0.9995 | Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Extensive data in a wide range of organisms point to the importance of polyamine homeostasis for growth. The two most common polyamines found in bacteria are putrescine and spermidine. The investigation of polyamine function in bacteria has revealed that they are involved in a number of functions other than growth, which include incorporation into the cell wall and biosynthesis of siderophores. They are also important in acid resistance and can act as a free radical ion scavenger. More recently it has been suggested that polyamines play a potential role in signaling cellular differentiation in Proteus mirabilis. Polyamines have also been shown to be essential in biofilm formation in Yersinia pestis. The pleiotropic nature of polyamines has made their investigation difficult, particularly in discerning any specific effect from more global growth effects. Here we describe key developments in the investigation of the function of polyamines in bacteria that have revealed new roles for polyamines distinct from growth. We describe the bacterial genes necessary for biosynthesis and transport, with a focus on Y. pestis. Finally we review a novel role for polyamines in the regulation of biofilm development in Y. pestis and provide evidence that the investigation of polyamines in Y. pestis may provide a model for understanding the mechanism through which polyamines regulate biofilm formation. | 2007 | 17966408 |
| 9202 | 4 | 0.9995 | Microbial avirulence determinants: guided missiles or antigenic flak? SUMMARY Avirulence (avr) determinants are incompatibility factors which elicit host plant defence responses in a gene-for-gene manner. They are produced by fungi, bacteria and viruses, and their recognition by resistance genes has been extensively studied for decades. But why should a microbe keep a molecule that allows it to be recognized? One argument is that avr genes perform some essential function and must be kept despite giving the pathogen away. Many bacterial avr determinants have been shown to be effectors, which contribute to virulence and aggressiveness. If this were always the case, mutants lacking these essential molecules would be at a serious disadvantage. Some disadvantage has been shown for a small number, but for the majority there is no effect on virulence. This has been explained by functional redundancy for bacterial and fungal avr determinants, with other molecules compensating for the deletion of these essential genes. However, this argument is counter-intuitive because by definition these individual genes are no longer essential; so why keep them? With increasing numbers of avr genes being identified, efforts to elucidate their function are increasing. In this review, we take stock of the accumulating literature, and consider what the real function of avr determinants might be. | 2005 | 20565679 |
| 702 | 5 | 0.9995 | Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. In Drosophila, the response against various microorganisms involves different recognition and signaling pathways, as well as distinct antimicrobial effectors. On the one hand, the immune deficiency pathway regulates the expression of antimicrobial peptides that are active against Gram-negative bacteria. On the other hand, the Toll pathway is involved in the defense against filamentous fungi and controls the expression of antifungal peptide genes. The gene coding for the only known peptide with high activity against Gram-positive bacteria, Defensin, is regulated by both pathways. So far, survival experiments to Gram-positive bacteria have been performed with Micrococcus luteus and have failed to reveal the involvement of one or the other pathway in host defense against such infections. In this study, we report that the Toll pathway, but not that of immune deficiency, is required for resistance to other Gram-positive bacteria and that this response does not involve Defensin. | 2002 | 11823479 |
| 8323 | 6 | 0.9995 | The impact of environmental stress on Listeria monocytogenes virulence. Listeria monocytogenes, a significant food-borne pathogen, must defy a variety of conditions encountered in the food environment and during the infection process. In reaction to adverse conditions, the bacteria significantly change their metabolism, inducing a stress response which is mediated by a range of alternative sigma factors. The extent of the response to stress was shown to vary in the L. monocytogenes population. According to recent evidence a major L. monocytogenes alternative sigma factor, designated sigma B (sigma B), regulates some virulence genes in response to stress, which supports an older hypothesis that stress-resistant strains should be more pathogenic. The induction of sigma B-dependent genes may also be important from the point of view of food hygiene. It seems that stress response activation can paradoxically enhance resistance to agents used in food preservation. Therefore, monitoring the expression of sigma B-dependent genes can serve as a useful marker to assess the innate resistance of L. monocytogenes strains. This knowledge will allow the design of new methods with sequential preservation steps that could inactivate the bacteria without inducing their stress response. | 2009 | 20169937 |
| 8316 | 7 | 0.9995 | Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages. Predation by bacteriophages can significantly influence the population structure of bacterial communities. Vibrio cholerae the causative agent of cholera epidemics interacts with numerous phages in the aquatic ecosystem, and in the intestine of cholera patients. Seasonal epidemics of cholera reportedly collapse due to predation of the pathogen by phages. However, it is not clear how sufficient number of the bacteria survive to seed the environment in the subsequent epidemic season. We found that bacterial cell density-dependent gene expression termed "quorum sensing" which is regulated by signal molecules called autoinducers (AIs) can protect V. cholerae against predatory phages. V. cholerae mutant strains carrying inactivated AI synthase genes were significantly more susceptible to multiple phages compared to the parent bacteria. Likewise when mixed cultures of phage and bacteria were supplemented with exogenous autoinducers CAI-1 or AI-2 produced by recombinant strains carrying cloned AI synthase genes, increased survival of V. cholerae and a decrease in phage titer was observed. Mutational analyses suggested that the observed effects of autoinducers are mediated in part through the quorum sensing-dependent production of haemaglutinin protease, and partly through downregulation of phage receptors. These results have implication in developing strategies for phage mediated control of cholera. | 2016 | 27892495 |
| 8322 | 8 | 0.9995 | Pathogen-induced damage in Drosophila: Uncoupling disease tolerance from resistance. Immune response against infections can be divided into mechanisms of resistance that ensure active pathogen elimination, and mechanisms of disease tolerance, which include processes that return the host to physiological homeostasis without direct control of pathogen load. Studies on host immune response to infection have targeted mechanisms of resistance, and consequently, these are now well-described in both vertebrates and invertebrates. By comparison, the mechanistic basis of disease tolerance is poorly understood. This is in part because both processes interact and can be difficult to disentangle under an infection scenario. Using the insect model Drosophila melanogaster exposed to its natural entomopathogen, Pseudomonas entomophila, we aimed to tease apart mechanisms of disease tolerance from those of resistance. To this end, we reasoned that the response to oral exposure to heat-killed entomopathogenic bacteria, whilst initially triggering both resistance and disease tolerance mechanisms, would be resolved mainly by disease tolerance alone. Using this method, we observe that oral exposure to heat-killed P. entomophila causes mortality and reduced fecundity in D. melanogaster. We confirm that this reduction in fitness-related traits depends on the duration of the exposure, is sexually dimorphic, and is dependent on the virulence of the bacterium. We also found the microbiota to play a role, with its presence exacerbating the deleterious effect on host survival. In addition, we show that the Imd pathway, but not effector genes, is involved in the process of surviving exposure to HK bacteria. This experimental framework, which may be extended to other systems, can be instrumental towards an understanding of the molecular, genetic, and physiological basis of disease tolerance and its interactions with resistance mechanisms. | 2025 | 40971962 |
| 8315 | 9 | 0.9995 | The Induction and Modulation of Plant Defense Responses by Bacterial Lipopolysaccharides. Lipopolysaccharides (LPSs) are ubiquitous, indispensable components of the cell surface of Gram-negative bacteria that apparently have diverse roles in bacterial pathogenesis of plants. As an outer membrane component, LPS may contribute to the exclusion of plant-derived antimicrobial compounds promoting the ability of a bacterial plant pathogen to infect plants. In contrast, LPS can be recognized by plants to directly trigger some plant defense-related responses. LPS can also alter the response of plants to subsequent bacterial inoculation; these delayed effects include alterations in the expression patterns of genes coding for some pathogenesis-related (PR) proteins, promotion of the synthesis of antimicrobial hydroxycinnamoyl-tyramine conjugates, and prevention of the hypersensitive reaction caused by avirulent bacteria. Prevention of the response may allow expression of resistance in the absence of catastrophic tissue damage. Recognition of LPS (and other nonspecific determinants) may initiate responses in plants that restrict the growth of nonpathogenic bacteria, whereas plant pathogens may possess hrp gene-dependent mechanisms to suppress such responses. | 2000 | 11701843 |
| 9196 | 10 | 0.9995 | Lessons from gene knockouts. The authors describe the technique for the application of homologous recombination in embryonic stem cells, which is now widely used to engineer mice which carry specific knockouts of genes. A summary is given of some of the knowledge of the pathogenesis of and resistance to infections with parasites, bacteria, or viruses which has accumulated during recent years, based on the investigation of knockout mice. Special emphasis is placed on knockout animals which lack components of the cytokine network, lack genes which are critical for the correct presentation of antigens or are deficient in different immune cell subsets. In addition, a brief explanation is offered of the possibilities for inducing targeted deletions or mutations in genes of livestock species (e.g., by nuclear transfer or by mutagenesis using the alkylating agent N-ethyl-N-nitrosourea) which could lead to the breeding of animals which are resistant to infectious diseases in the future. | 1998 | 9638823 |
| 8334 | 11 | 0.9995 | Tumour progression: random mutations or an integrated survival response to cellular stress conserved from unicellular organisms? The current paradigm states that cancer progression is caused by random independent mutations, each selected for its survival advantages. The accelerated rates of phenotypic changes, the pleiotropic effect of several genes involved in progression--which need not be necessarily mutated for inducing the observed changes in cancer cell behaviour--lead us to propose an alternative hypothesis. Malignant progression might be a result of the unveiling of a cell-survival program, induced by various aggressions in the same way as the SOS system is induced and regulated in bacteria. This hypothesis depends on the homology between several genes involved in cancer progression (such as bcl2, mdm2, the mismatch repair genes, the heat shock protein genes, the pleiotropic resistance genes, the telomerase gene ...) and several genes involved in the survival of prokaryotes and eukaryotes under stress. The development of multicellular organisms could not take place without the building of a control program, exemplified by the so-called anti-oncogenes. However, this control program had to integrate some weaknesses, in order to allow for embryogenesis, growth, and wound healing. These weaknesses, neutral from an evolutionary point of view--since most cancers are sporadic and kill their hosts long after the birth of the offspring--are exploited by the survival program of individual cells, inherited from the genome of prokaryotes and unicellular eukaryotes, and repressed but not suppressed in animals. If this theory is true, it is probable that (i) no anti-oncogenes will be found in unicellular organisms, (ii) the sensitivity to mutations will be higher in genes involved in proliferation and in anti-oncogenes such as p53 and Rb, than in genes not involved in the cancer process, (iii) a process of transfer of genetic information exists in cancer cells as it exists in bacteria. The identification of the genes governing the survival program could lead to new therapeutic approaches. | 1996 | 8733476 |
| 698 | 12 | 0.9995 | Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BACKGROUND: Phagocytosis plays a major role in the defense of higher organisms against microbial infection and provides also the basis for antigen processing in the immune response. Cells of the model organism Dictyostelium are professional phagocytes that exploit phagocytosis of bacteria as the preferred way to ingest food, besides killing pathogens. We have investigated Dictyostelium differential gene expression during phagocytosis of non-pathogenic bacteria, using DNA microarrays, in order to identify molecular functions and novel genes involved in phagocytosis. RESULTS: The gene expression profiles of cells incubated for a brief time with bacteria were compared with cells either incubated in axenic medium or growing on bacteria. Transcriptional changes during exponential growth in axenic medium or on bacteria were also compared. We recognized 443 and 59 genes that are differentially regulated by phagocytosis or by the different growth conditions (growth on bacteria vs. axenic medium), respectively, and 102 genes regulated by both processes. Roughly one third of the genes are up-regulated compared to macropinocytosis and axenic growth. Functional annotation of differentially regulated genes with different tools revealed that phagocytosis induces profound changes in carbohydrate, amino acid and lipid metabolism, and in cytoskeletal components. Genes regulating translation and mitochondrial biogenesis are mostly up-regulated. Genes involved in sterol biosynthesis are selectively up-regulated, suggesting a shift in membrane lipid composition linked to phagocytosis. Very few changes were detected in genes required for vesicle fission/fusion, indicating that the intracellular traffic machinery is mostly in common between phagocytosis and macropinocytosis. A few putative receptors, including GPCR family 3 proteins, scaffolding and adhesion proteins, components of signal transduction and transcription factors have been identified, which could be part of a signalling complex regulating phagocytosis and adaptational downstream responses. CONCLUSION: The results highlight differences between phagocytosis and macropinocytosis, and provide the basis for targeted functional analysis of new candidate genes and for comparison studies with transcriptomes during infection with pathogenic bacteria. | 2008 | 18559084 |
| 6170 | 13 | 0.9995 | Resistance and susceptibility of mice to bacterial infection. IV. Functional specificity in natural resistance to facultative intracellular bacteria. The effect of opsonic antibody on resistance of susceptibility of three strains of mice, C57Bl/10, BALB/c, and CBA to the intracellular bacteria Listeria monocytogenes, Salmonella typhimurium, and Brucella abortus was tested. Bacteria were opsonized by serum treatment before their injection into mice, or the mice were preimmunized by injection with alcohol killed bacteria which induces antibody without macrophage activation. Antibody did not increase the rate of clearance of Listeria from the bloodstream, nor did it affect the subsequent growth of that organism in the spleen and liver. Blood clearance of S. typhimurium and of B. abortus was increased by preopsonization with specific antibody, indicating that opsonins were a limiting factor in resistance to these two bacteria. However, neither opsonization before infection nor immunization with alcohol killed vaccines had any effect on the strain distribution of resistance/susceptibility, which differs for each of the three intracellular pathogens. Thus, even in the presence of adequate opsonization the three strains of mice showed different patterns of resistance/susceptibility to Listeria, S. typhimurium, and B. abortus. This implies that each has a unique cellular mechanism of early nonspecific resistance. | 1983 | 6413682 |
| 686 | 14 | 0.9995 | SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. One of the strongest and most noticeable responses of Bacillus subtilis cells to a range of stress and starvation stimuli is the dramatic induction of about 150 SigB-dependent general stress genes. The activity of SigB itself is tightly regulated by a complex signal transduction cascade with at least three main signaling pathways that respond to environmental stress, energy depletion, or low temperature. The SigB-dependent response is conserved in related gram-positive bacteria but is missing in strictly anaerobic or in some facultatively anaerobic gram-positive bacteria. It covers functions from nonspecific and multiple stress resistance to the control of virulence in pathogenic bacteria. A comprehensive understanding of this crucial stress response is essential not only for bacterial physiology but also for applied microbiology, including pathogenicity and pathogen control. | 2007 | 18035607 |
| 8990 | 15 | 0.9994 | Enhanced virulence of Salmonella enterica serovar typhimurium after passage through mice. The interaction between Salmonella enterica and the host immune system is complex. The outcome of an infection is the result of a balance between the in vivo environment where the bacteria survive and grow and the regulation of fitness genes at a level sufficient for the bacteria to retain their characteristic rate of growth in a given host. Using bacteriological counts from tissue homogenates and fluorescence microscopy to determine the spread, localization, and distribution of S. enterica in the tissues, we show that, during a systemic infection, S. enterica adapts to the in vivo environment. The adaptation becomes a measurable phenotype when bacteria that have resided in a donor animal are introduced into a recipient naïve animal. This adaptation does not confer increased resistance to early host killing mechanisms but can be detected as an enhancement in the bacterial net growth rate later in the infection. The enhanced growth rate is lost upon a single passage in vitro, and it is therefore transient and not due to selection of mutants. The adapted bacteria on average reach higher intracellular numbers in individual infected cells and therefore have patterns of organ spread different from those of nonadapted bacteria. These experiments help in developing an understanding of the influence of passage in a host on the fitness and virulence of S. enterica. | 2011 | 21098099 |
| 8233 | 16 | 0.9994 | Local early induced resistance of plants as the first line of defence against bacteria. This paper is an overview of a non-specific local early induced resistance (EIR) mechanism, distinct from the incompatible-specific hypersensitive reaction (HR). We have shown that the local induced resistance (LIR) described earlier is not a single and uniform response to pathogen infection, because an early (EIR) and a late form can be distinguished. EIR operates from 3-6 h post-inoculation (hpi) until about 20 hpi, and is inhibited by a short heat-shock or the eukaryotic protein synthesis inhibitor, cycloheximide. In contrast, LIR, which corresponds to the induced resistance forms discovered earlier, requires more time (about 24 h) and intensive illumination to develop, and is effective for a longer period. EIR develops parallel with HR and is sometimes able to prevent it when the induction time of HR is longer than the time required for the development of EIR. It seems that EIR inhibits the metabolism of bacteria and the activity of hrp genes which otherwise are required for the induction of HR. In a compatible host-pathogen relationship the effect of EIR fails to take place. The rapid development of EIR is greatly influenced by temperature and the physiological state of the plant. EIR activates the accumulation of hydrogen peroxide at the bacterial attachment, expressing new peroxidase isoenzymes in the initiated plant tissue. It seems that this is a native general local defence mechanism which can localise foreign organisms even at the penetration site. | 2003 | 12701709 |
| 695 | 17 | 0.9994 | Bacterial discrimination by dictyostelid amoebae reveals the complexity of ancient interspecies interactions. BACKGROUND: Amoebae and bacteria interact within predator-prey and host-pathogen relationships, but the general response of amoeba to bacteria is not well understood. The amoeba Dictyostelium discoideum feeds on, and is colonized by, diverse bacterial species, including Gram-positive [Gram(+)] and Gram-negative [Gram(-)] bacteria, two major groups of bacteria that differ in structure and macromolecular composition. RESULTS: Transcriptional profiling of D. discoideum revealed sets of genes whose expression is enriched in amoebae interacting with different species of bacteria, including sets that appear specific to amoebae interacting with Gram(+) or with Gram(-) bacteria. In a genetic screen utilizing the growth of mutant amoebae on a variety of bacteria as a phenotypic readout, we identified amoebal genes that are only required for growth on Gram(+) bacteria, including one that encodes the cell-surface protein gp130, as well as several genes that are only required for growth on Gram(-) bacteria, including one that encodes a putative lysozyme, AlyL. These genes are required for parts of the transcriptional response of wild-type amoebae, and this allowed their classification into potential response pathways. CONCLUSIONS: We have defined genes that are critical for amoebal survival during feeding on Gram(+), or Gram(-), bacteria that we propose form part of a regulatory network that allows D. discoideum to elicit specific cellular responses to different species of bacteria in order to optimize survival. | 2013 | 23664307 |
| 700 | 18 | 0.9994 | The extracytoplasmic function sigma factor SigV plays a key role in the original model of lysozyme resistance and virulence of Enterococcus faecalis. BACKGROUND: Enterococcus faecalis is one of the leading agents of nosocomial infections. To cause diseases, pathogens or opportunistic bacteria have to adapt and survive to the defense systems encountered in the host. One of the most important compounds of the host innate defense response against invading microorganisms is lysozyme. It is found in a wide variety of body fluids, as well as in cells of the innate immune system. Lysozyme could act either as a muramidase and/or as a cationic antimicrobial peptide. Like Staphylococcus aureus, E. faecalis is one of the few bacteria that are completely lysozyme resistant. RESULTS: This study revealed that oatA (O-acetyl transferase) and dlt (D-Alanylation of lipoteicoic acids) genes contribute only partly to the lysozyme resistance of E. faecalis and that a specific transcriptional regulator, the extracytoplasmic function SigV sigma factor plays a key role in this event. Indeed, the sigV single mutant is as sensitive as the oatA/dltA double mutant, and the sigV/oatA/dltA triple mutant displays the highest level of lysozyme sensitivity suggesting synergistic effects of these genes. In S. aureus, mutation of both oatA and dlt genes abolishes completely the lysozyme resistance, whereas this is not the case in E. faecalis. Interestingly SigV does not control neither oatA nor dlt genes. Moreover, the sigV mutants clearly showed a reduced capacity to colonize host tissues, as they are significantly less recovered than the parental JH2-2 strain from organs of mice subjected to intravenous or urinary tract infections. CONCLUSIONS: This work led to the discovery of an original model of lysozyme resistance mechanism which is obviously more complex than those described for other Gram positive pathogens. Moreover, our data provide evidences for a direct link between lysozyme resistance and virulence of E. faecalis. | 2010 | 20300180 |
| 8229 | 19 | 0.9994 | Molecular genetics, biochemistry and biological role of Yersinia lipopolysaccharide. Lipopolysaccharide (LPS) is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria. The LPS molecule is composed of two biosynthetic entities: the lipid A--core and the O-polysaccharide (O-antigen). Most biological effects of LPS are due to the lipid A part, however, there is an increasing body of evidence also with Yersinia indicating that O-antigen plays an important role in effective colonization of host tissues, resistance to complement-mediated killing and in the resistance to cationic antimicrobial peptides that are key elements of the innate immune system. The biosynthesis of O-antigen requires numerous enzymatic activities and includes the biosynthesis of individual NDP-activated precursor sugars in the cytoplasm, linkage and sugar-specific transferases, O-unit flippase, O-antigen polymerase and O-chain length determinant. Based on this enzymatic mode of O-antigen biosynthesis LPS isolated from bacteria is a heterologous population of molecules; some do not carry any O-antigen while others that do have variation in the O-antigen chain lengths. The genes required for the O-antigen biosynthesis are located in O-antigen gene clusters that in genus Yersinia is located between the hemH and gsk genes. Temperature regulates the O-antigen expression in Y. enterocolitica and Y. pseudotuberculosis; bacteria grown at room temperature (RT, 22-25 degrees C) produce in abundance O-antigen while only trace amounts are present in bacteria grown at 37 degrees C. Even though the amount of O-antigen is known to fluctuate under different growth conditions in many bacteria very little detailed information is available on the control of the O-antigen biosynthetic machinery. | 2003 | 12756756 |