# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8228 | 0 | 1.0000 | Brucella abortus genes identified following constitutive growth and macrophage infection. The chronicity of Brucella abortus infection in humans and animals depends on the organism's ability to escape host defenses by gaining entry and surviving inside the macrophage. Although no human vaccine exists for Brucella, vaccine development in other bacteria has been based on deletions of selective nutritional as well as regulatory systems. Our goal is to develop a vaccine for Brucella. To further this aim, we have used a green fluorescent protein (GFP) reporter system to identify constitutively and intracellularly induced B. abortus genes. Constitutively producing gfp clones exhibited sequence homology with genes associated with protein synthesis and metabolism (initiation factor-1 and tRNA ribotransferase) and detoxification (organic hydroperoxidase resistance). Of greater interest, clones negative for constitutively produced gfp in agar were examined by fluorescence microscopy to detect promoter activity induced within macrophages 4 and 24 h following infection. Bacterial genes activated in macrophages 4 h postinfection appear to be involved in adapting to intracellular environmental conditions. Included in this group were genes for detoxification (lactoglyglutathione lyase gene), repair (formamidopyrimidine-DNA glycosylase gene), osmotic protection (K(+) transport gene), and site-specific recombination (xerD gene). A gene involved in metabolism and biosynthesis (deoxyxylulose 5' phosphate synthase gene) was also identified. Genes activated 24 h following infection were biosynthesis- and metabolism-associated genes (iron binding protein and rhizopine catabolism). Identification of B. abortus genes that are activated following macrophage invasion provides insight into Brucella pathogenesis and thus is valuable in vaccine design utilizing selective targeted deletions of newly identified Brucella genes. | 2001 | 11705955 |
| 686 | 1 | 0.9996 | SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. One of the strongest and most noticeable responses of Bacillus subtilis cells to a range of stress and starvation stimuli is the dramatic induction of about 150 SigB-dependent general stress genes. The activity of SigB itself is tightly regulated by a complex signal transduction cascade with at least three main signaling pathways that respond to environmental stress, energy depletion, or low temperature. The SigB-dependent response is conserved in related gram-positive bacteria but is missing in strictly anaerobic or in some facultatively anaerobic gram-positive bacteria. It covers functions from nonspecific and multiple stress resistance to the control of virulence in pathogenic bacteria. A comprehensive understanding of this crucial stress response is essential not only for bacterial physiology but also for applied microbiology, including pathogenicity and pathogen control. | 2007 | 18035607 |
| 8229 | 2 | 0.9996 | Molecular genetics, biochemistry and biological role of Yersinia lipopolysaccharide. Lipopolysaccharide (LPS) is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria. The LPS molecule is composed of two biosynthetic entities: the lipid A--core and the O-polysaccharide (O-antigen). Most biological effects of LPS are due to the lipid A part, however, there is an increasing body of evidence also with Yersinia indicating that O-antigen plays an important role in effective colonization of host tissues, resistance to complement-mediated killing and in the resistance to cationic antimicrobial peptides that are key elements of the innate immune system. The biosynthesis of O-antigen requires numerous enzymatic activities and includes the biosynthesis of individual NDP-activated precursor sugars in the cytoplasm, linkage and sugar-specific transferases, O-unit flippase, O-antigen polymerase and O-chain length determinant. Based on this enzymatic mode of O-antigen biosynthesis LPS isolated from bacteria is a heterologous population of molecules; some do not carry any O-antigen while others that do have variation in the O-antigen chain lengths. The genes required for the O-antigen biosynthesis are located in O-antigen gene clusters that in genus Yersinia is located between the hemH and gsk genes. Temperature regulates the O-antigen expression in Y. enterocolitica and Y. pseudotuberculosis; bacteria grown at room temperature (RT, 22-25 degrees C) produce in abundance O-antigen while only trace amounts are present in bacteria grown at 37 degrees C. Even though the amount of O-antigen is known to fluctuate under different growth conditions in many bacteria very little detailed information is available on the control of the O-antigen biosynthetic machinery. | 2003 | 12756756 |
| 685 | 3 | 0.9996 | Implication of a Key Region of Six Bacillus cereus Genes Involved in Siroheme Synthesis, Nitrite Reductase Production and Iron Cluster Repair in the Bacterial Response to Nitric Oxide Stress. Bacterial response to nitric oxide (NO) is of major importance for bacterial survival. NO stress is a main actor of the eukaryotic immune response and several pathogenic bacteria have developed means for detoxification and repair of the damages caused by NO. However, bacterial mechanisms of NO resistance by Gram-positive bacteria are poorly described. In the opportunistic foodborne pathogen Bacillus cereus, genome sequence analyses did not identify homologs to known NO reductases and transcriptional regulators, such as NsrR, which orchestrate the response to NO of other pathogenic or non-pathogenic bacteria. Using a transcriptomic approach, we investigated the adaptation of B. cereus to NO stress. A cluster of 6 genes was identified to be strongly up-regulated in the early phase of the response. This cluster contains an iron-sulfur cluster repair enzyme, a nitrite reductase and three enzymes involved in siroheme biosynthesis. The expression pattern and close genetic localization suggest a functional link between these genes, which may play a pivotal role in the resistance of B. cereus to NO stress during infection. | 2021 | 34064887 |
| 689 | 4 | 0.9996 | Regulatory and DNA repair genes contribute to the desiccation resistance of Sinorhizobium meliloti Rm1021. Sinorhizobium meliloti can form a nitrogen-fixing symbiotic relationship with alfalfa after bacteria in the soil infect emerging root hairs of the growing plant. To be successful at this, the bacteria must be able to survive in the soil between periods of active plant growth, including when conditions are dry. The ability of S. meliloti to withstand desiccation has been known for years, but genes that contribute to this phenotype have not been identified. Transposon mutagenesis was used in combination with novel screening techniques to identify four desiccation-sensitive mutants of S. meliloti Rm1021. DNA sequencing of the transposon insertion sites identified three genes with regulatory functions (relA, rpoE2, and hpr) and a DNA repair gene (uvrC). Various phenotypes of the mutants were determined, including their behavior on several indicator media and in symbiosis. All of the mutants formed an effective symbiosis with alfalfa. To test the hypothesis that UvrC-related excision repair was important in desiccation resistance, uvrA, uvrB, and uvrC deletion mutants were also constructed. These strains were sensitive to DNA damage induced by UV light and 4-NQO and were also desiccation sensitive. These data indicate that uvr gene-mediated DNA repair and the regulation of stress-induced pathways are important for desiccation resistance. | 2009 | 19028909 |
| 8323 | 5 | 0.9996 | The impact of environmental stress on Listeria monocytogenes virulence. Listeria monocytogenes, a significant food-borne pathogen, must defy a variety of conditions encountered in the food environment and during the infection process. In reaction to adverse conditions, the bacteria significantly change their metabolism, inducing a stress response which is mediated by a range of alternative sigma factors. The extent of the response to stress was shown to vary in the L. monocytogenes population. According to recent evidence a major L. monocytogenes alternative sigma factor, designated sigma B (sigma B), regulates some virulence genes in response to stress, which supports an older hypothesis that stress-resistant strains should be more pathogenic. The induction of sigma B-dependent genes may also be important from the point of view of food hygiene. It seems that stress response activation can paradoxically enhance resistance to agents used in food preservation. Therefore, monitoring the expression of sigma B-dependent genes can serve as a useful marker to assess the innate resistance of L. monocytogenes strains. This knowledge will allow the design of new methods with sequential preservation steps that could inactivate the bacteria without inducing their stress response. | 2009 | 20169937 |
| 8317 | 6 | 0.9995 | The Quorum Sensing Auto-Inducer 2 (AI-2) Stimulates Nitrogen Fixation and Favors Ethanol Production over Biomass Accumulation in Zymomonas mobilis. Autoinducer 2 (or AI-2) is one of the molecules used by bacteria to trigger the Quorum Sensing (QS) response, which activates expression of genes involved in a series of alternative mechanisms, when cells reach high population densities (including bioluminescence, motility, biofilm formation, stress resistance, and production of public goods, or pathogenicity factors, among others). Contrary to most autoinducers, AI-2 can induce QS responses in both Gram-negative and Gram-positive bacteria, and has been suggested to constitute a trans-specific system of bacterial communication, capable of affecting even bacteria that cannot produce this autoinducer. In this work, we demonstrate that the ethanologenic Gram-negative bacterium Zymomonas mobilis (a non-AI-2 producer) responds to exogenous AI-2 by modulating expression of genes involved in mechanisms typically associated with QS in other bacteria, such as motility, DNA repair, and nitrogen fixation. Interestingly, the metabolism of AI-2-induced Z. mobilis cells seems to favor ethanol production over biomass accumulation, probably as an adaptation to the high-energy demand of N(2) fixation. This opens the possibility of employing AI-2 during the industrial production of second-generation ethanol, as a way to boost N(2) fixation by these bacteria, which could reduce costs associated with the use of nitrogen-based fertilizers, without compromising ethanol production in industrial plants. | 2021 | 34073173 |
| 682 | 7 | 0.9995 | Comparative transcriptome analysis of Brucella melitensis in an acidic environment: Identification of the two-component response regulator involved in the acid resistance and virulence of Brucella. Brucella melitensis, encounters a very stressful environment in phagosomes, especially low pH levels. So identifying the genes that contribute to the replication and survival within an acidic environment is critical in understanding the pathogenesis of the Brucella bacteria. In our research, comparative transcriptome with RNA-seq were used to analyze the changes of genes in normal-medium culture and in pH4.4-medium culture. The results reveal that 113 genes expressed with significant differences (|log2Ratio| ≥ 3); about 44% genes expressed as up-regulated. With GO term analysis, structural constituent of the ribosome, rRNA binding, structural molecule activity, and cation-transporting ATPase activity were significantly enriched (p-value ≤ 0.05). These genes distributed in 51 pathways, in which ribosome and photosynthesis pathways were significantly enriched. Six pathways (oxidative phosphorylation, iron-transporting, bacterial secretion system, transcriptional regulation, two-component system, and ABC transporters pathways) tightly related to the intracellular survival and virulence of Brucella were analyzed. A two-component response regulator gene in the transcriptional regulation pathway, identified through gene deletion and complementary technologies, played an important role in the resistance to the acid-resistance and virulence of Brucella. | 2016 | 26691825 |
| 293 | 8 | 0.9995 | Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. The Tet repressor protein (TetR) regulates transcription of a family of tetracycline (tc) resistance determinants in Gram-negative bacteria. The resistance protein TetA, a membrane-spanning H+-[tc.M]+ antiporter, must be sensitively regulated because its expression is harmful in the absence of tc, yet it has to be expressed before the drugs' concentration reaches cytoplasmic levels inhibitory for protein synthesis. Consequently, TetR shows highly specific tetO binding to reduce basal expression and high affinity to tc to ensure sensitive induction. Tc can cross biological membranes by diffusion enabling this inducer to penetrate the majority of cells. These regulatory and pharmacological properties are the basis for application of TetR to selectively control the expression of single genes in lower and higher eukaryotes. TetR can be used for that purpose in some organisms without further modifications. In mammals and in a large variety of other organisms, however, eukaryotic transcriptional activator or repressor domains are fused to TetR to turn it into an efficient regulator. Mechanistic understanding and the ability to engineer and screen for mutants with specific properties allow tailoring of the DNA recognition specificity, the response to inducer tc and the dimerization specificity of TetR-based eukaryotic regulators. This review provides an overview of the TetR properties as they evolved in bacteria, the functional modifications necessary to transform it into a convenient, specific and efficient regulator for use in eukaryotes and how the interplay between structure--function studies in bacteria and specific requirements of particular applications in eukaryotes have made it a versatile and highly adaptable regulatory system. | 2003 | 12869186 |
| 9337 | 9 | 0.9995 | Predation-resistant Pseudomonas bacteria engage in symbiont-like behavior with the social amoeba Dictyostelium discoideum. The soil amoeba Dictyostelium discoideum acts as both a predator and potential host for diverse bacteria. We tested fifteen Pseudomonas strains that were isolated from transiently infected wild D. discoideum for ability to escape predation and infect D. discoideum fruiting bodies. Three predation-resistant strains frequently caused extracellular infections of fruiting bodies but were not found within spores. Furthermore, infection by one of these species induces secondary infections and suppresses predation of otherwise edible bacteria. Another strain can persist inside of amoebae after being phagocytosed but is rarely taken up. We sequenced isolate genomes and discovered that predation-resistant isolates are not monophyletic. Many Pseudomonas isolates encode secretion systems and toxins known to improve resistance to phagocytosis in other species, as well as diverse secondary metabolite biosynthetic gene clusters that may contribute to predation resistance. However, the distribution of these genes alone cannot explain why some strains are edible and others are not. Each lineage may employ a unique mechanism for resistance. | 2023 | 37884792 |
| 6342 | 10 | 0.9995 | Determinants of Extreme β-Lactam Tolerance in the Burkholderia pseudomallei Complex. Slow-growing bacteria are insensitive to killing by antibiotics, a trait known as antibiotic tolerance. In this study, we characterized the genetic basis of an unusually robust β-lactam (meropenem) tolerance seen in Burkholderia species. We identified tolerance genes under three different slow-growth conditions by extensive transposon mutant sequencing (Tn-seq), followed by single mutant validation. There were three principal findings. First, mutations in a small number of genes reduced tolerance under multiple conditions. Most of the functions appeared to be specific to peptidoglycan synthesis and the response to its disruption by meropenem action rather than being associated with more general physiological processes. The top tolerance genes are involved in immunity toward a type VI toxin targeting peptidoglycan (BTH_I0069), peptidoglycan recycling (ldcA), periplasmic regulation by proteolysis (prc), and an envelope stress response (rpoE and degS). Second, most of the tolerance functions did not contribute to growth in the presence of meropenem (intrinsic resistance), indicating that the two traits are largely distinct. Third, orthologues of many of the top Burkholderia thailandensis tolerance genes were also important in Burkholderia pseudomallei Overall, these studies show that the determinants of meropenem tolerance differ considerably depending on cultivation conditions, but that there are a few shared functions with strong mutant phenotypes that are important in multiple Burkholderia species. | 2018 | 29439964 |
| 6338 | 11 | 0.9995 | Transcriptome Analysis of the Intracellular Facultative Pathogen Piscirickettsia salmonis: Expression of Putative Groups of Genes Associated with Virulence and Iron Metabolism. The intracellular facultative bacteria Piscirickettsia salmonis is one of the most important pathogens of the Chilean aquaculture. However, there is a lack of information regarding the whole genomic transcriptional response according to different extracellular environments. We used next generation sequencing (NGS) of RNA (RNA-seq) to study the whole transcriptome of an isolate of P. salmonis (FAVET-INBIOGEN) using a cell line culture and a modified cell-free liquid medium, with or without iron supplementation. This was done in order to obtain information about the factors there are involved in virulence and iron acquisition. First, the isolate was grown in the Sf21 cell line; then, the bacteria were cultured into a cell-free liquid medium supplemented or not with iron. We identified in the transcriptome, genes associated with type IV secretion systems, genes related to flagellar structure assembly, several proteases and sigma factors, and genes related to the development of drug resistance. Additionally, we identified for the first time several iron-metabolism associated genes including at least two iron uptake pathways (ferrous iron and ferric iron uptake) that are actually expressed in the different conditions analyzed. We further describe putative genes that are related with the use and storage of iron in the bacteria, which have not been previously described. Several sets of genes related to virulence were expressed in both the cell line and cell-free culture media (for example those related to flagellar structure; such as basal body, MS-ring, C-ring, proximal and distal rod, and filament), which may play roles in other basic processes rather than been restricted to virulence. | 2016 | 28033422 |
| 8309 | 12 | 0.9995 | The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium. Virulence gene expression can represent a substantial fitness cost to pathogenic bacteria. In the model entero-pathogen Salmonella Typhimurium (S.Tm), such cost favors emergence of attenuated variants during infections that harbor mutations in transcriptional activators of virulence genes (e.g., hilD and hilC). Therefore, understanding the cost of virulence and how it relates to virulence regulation could allow the identification and modulation of ecological factors to drive the evolution of S.Tm toward attenuation. In this study, investigations of membrane status and stress resistance demonstrate that the wild-type (WT) expression level of virulence factors embedded in the envelope increases membrane permeability and sensitizes S.Tm to membrane stress. This is independent from a previously described growth defect associated with virulence gene expression in S.Tm. Pretreating the bacteria with sublethal stress inhibited virulence expression and increased stress resistance. This trade-off between virulence and stress resistance could explain the repression of virulence expression in response to harsh environments in S.Tm. Moreover, we show that virulence-associated stress sensitivity is a burden during infection in mice, contributing to the inherent instability of S.Tm virulence. As most bacterial pathogens critically rely on deploying virulence factors in their membrane, our findings could have a broad impact toward the development of antivirulence strategies. | 2022 | 35389980 |
| 8388 | 13 | 0.9995 | Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines. All bacteria share a set of evolutionarily conserved essential genes that encode products that are required for viability. The great diversity of environments that bacteria inhabit, including environments at extreme temperatures, place adaptive pressure on essential genes. We sought to use this evolutionary diversity of essential genes to engineer bacterial pathogens to be stably temperature-sensitive, and thus useful as live vaccines. We isolated essential genes from bacteria found in the Arctic and substituted them for their counterparts into pathogens of mammals. We found that substitution of nine different essential genes from psychrophilic (cold-loving) bacteria into mammalian pathogenic bacteria resulted in strains that died below their normal-temperature growth limits. Substitution of three different psychrophilic gene orthologs of ligA, which encode NAD-dependent DNA ligase, resulted in bacterial strains that died at 33, 35, and 37 degrees C. One ligA gene was shown to render Francisella tularensis, Salmonella enterica, and Mycobacterium smegmatis temperature-sensitive, demonstrating that this gene functions in both Gram-negative and Gram-positive lineage bacteria. Three temperature-sensitive F. tularensis strains were shown to induce protective immunity after vaccination at a cool body site. About half of the genes that could be tested were unable to mutate to temperature-resistant forms at detectable levels. These results show that psychrophilic essential genes can be used to create a unique class of bacterial temperature-sensitive vaccines for important human pathogens, such as S. enterica and Mycobacterium tuberculosis. | 2010 | 20624965 |
| 702 | 14 | 0.9995 | Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. In Drosophila, the response against various microorganisms involves different recognition and signaling pathways, as well as distinct antimicrobial effectors. On the one hand, the immune deficiency pathway regulates the expression of antimicrobial peptides that are active against Gram-negative bacteria. On the other hand, the Toll pathway is involved in the defense against filamentous fungi and controls the expression of antifungal peptide genes. The gene coding for the only known peptide with high activity against Gram-positive bacteria, Defensin, is regulated by both pathways. So far, survival experiments to Gram-positive bacteria have been performed with Micrococcus luteus and have failed to reveal the involvement of one or the other pathway in host defense against such infections. In this study, we report that the Toll pathway, but not that of immune deficiency, is required for resistance to other Gram-positive bacteria and that this response does not involve Defensin. | 2002 | 11823479 |
| 693 | 15 | 0.9995 | Effect of acid adaptation on the fate of Listeria monocytogenes in THP-1 human macrophages activated by gamma interferon. In Listeria monocytogenes the acid tolerance response (ATR) takes place through a programmed molecular response which ensures cell survival under unfavorable conditions. Much evidence links ATR with virulence, but the molecular determinants involved in the reactivity to low pHs and the behavior of acid-exposed bacteria within host cells are still poorly understood. We have investigated the effect of acid adaptation on the fate of L. monocytogenes in human macrophages. Expression of genes encoding determinants for cell invasion and intracellular survival was tested for acid-exposed bacteria, and invasive behavior in the human myelomonocytic cell line THP-1 activated with gamma interferon was assessed. Functional approaches demonstrated that preexposure to an acidic pH enhances the survival of L. monocytogenes in activated human macrophages and that this effect is associated with an altered pattern of expression of genes involved in acid resistance and cell invasion. Significantly decreased transcription of the plcA gene, encoding a phospholipase C involved in vacuolar escape and cell-to-cell spread, was observed in acid-adapted bacteria. This effect was due to a reduction in the quantity of the bicistronic plcA-prfA transcript, concomitant with an increase in the level(s) of the monocistronic prfA mRNA(s). The transcriptional shift from distal to proximal prfA promoters resulted in equal levels of the prfA transcript (and, as a consequence, of the inlA, hly, and actA transcripts) under neutral and acidic conditions. In contrast, the sodC and gad genes, encoding a cytoplasmic superoxide dismutase and the glutamate-based acid resistance system, respectively, were positively regulated at a low pH. Morphological approaches confirmed the increased intracellular survival and growth of acid-adapted L. monocytogenes cells both in vacuoles and in the cytoplasm of interferon gamma-activated THP-1 macrophages. Our data indicate that preexposure to a low pH has a positive impact on subsequent challenge of L. monocytogenes with macrophagic cells. | 2002 | 12117947 |
| 8872 | 16 | 0.9995 | Dictyostelium discoideum as a model system for identification of Burkholderia pseudomallei virulence factors. Burkholderia pseudomallei is an emerging bacterial pathogen and category B biothreat. Human infections with B. pseudomallei (called melioidosis) present as a range of manifestations, including acute septicemia and pneumonia. Although melioidosis can be fatal, little is known about the molecular basis of B. pseudomallei pathogenicity, in part because of the lack of simple, genetically tractable eukaryotic models to facilitate en masse identification of virulence determinants or explore host-pathogen interactions. Two assays, one high-throughput and one quantitative, were developed to monitor levels of resistance of B. pseudomallei and the closely related nearly avirulent species Burkholderia thailandensis to predation by the phagocytic amoeba Dictyostelium discoideum. The quantitative assay showed that levels of resistance to, and survival within, amoeba by these bacteria and their known virulence mutants correlate well with their published levels of virulence in animals. Using the high-throughput assay, we screened a 1,500-member B. thailandensis transposon mutant library and identified 13 genes involved in resistance to predation by D. discoideum. Orthologs of these genes were disrupted in B. pseudomallei, and nearly all mutants had similarly decreased resistance to predation by D. discoideum. For some mutants, decreased resistance also correlated with reduced survival in and cytotoxicity toward macrophages, as well as attenuated virulence in mice. These observations suggest that some factors required by B. pseudomallei for resistance to environmental phagocytes also aid in resistance to phagocytic immune cells and contribute to disease in animals. Thus, D. discoideum provides a novel, high-throughput model system for facilitating inquiry into B. pseudomallei virulence. | 2011 | 21402765 |
| 9328 | 17 | 0.9995 | Man-made cell-like compartments for molecular evolution. Cellular compartmentalization is vital for the evolution of all living organisms. Cells keep together the genes, the RNAs and proteins that they encode, and the products of their activities, thus linking genotype to phenotype. We have reproduced this linkage in the test tube by transcribing and translating single genes in the aqueous compartments of water-in-oil emulsions. These compartments, with volumes close to those of bacteria, can be recruited to select genes encoding catalysts. A protein or RNA with a desired catalytic activity converts a substrate attached to the gene that encodes it to product. In other compartments, substrates attached to genes that do not encode catalysts remain unmodified. Subsequently, genes encoding catalysts are selectively enriched by virtue of their linkage to the product. We demonstrate the linkage of genotype to phenotype in man-made compartments using a model system. A selection for target-specific DNA methylation was based on the resistance of the product (methylated DNA) to restriction digestion. Genes encoding HaeIII methyltransferase were selected from a 10(7)-fold excess of genes encoding another enzyme. | 1998 | 9661199 |
| 6340 | 18 | 0.9995 | Identification and functional analysis of novel protein-encoding sequences related to stress-resistance. Currently, industrial bioproducts are less competitive than chemically produced goods due to the shortcomings of conventional microbial hosts. Thus, is essential developing robust bacteria for improved cell tolerance to process-specific parameters. In this context, metagenomic approaches from extreme environments can provide useful biological parts to improve bacterial robustness. Here, in order to build genetic constructs that increase bacterial resistance to diverse stress conditions, we recovered novel protein-encoding sequences related to stress-resistance from metagenomic databases using an in silico approach based on Hidden-Markov-Model profiles. For this purpose, we used metagenomic shotgun sequencing data from microbial communities of extreme environments to identify genes encoding chaperones and other proteins that confer resistance to stress conditions. We identified and characterized 10 novel protein-encoding sequences related to the DNA-binding protein HU, the ATP-dependent protease ClpP, and the chaperone protein DnaJ. By expressing these genes in Escherichia coli under several stress conditions (including high temperature, acidity, oxidative and osmotic stress, and UV radiation), we identified five genes conferring resistance to at least two stress conditions when expressed in E. coli. Moreover, one of the identified HU coding-genes which was retrieved from an acidic soil metagenome increased E. coli tolerance to four different stress conditions, implying its suitability for the construction of a synthetic circuit directed to expand broad bacterial resistance. | 2023 | 37840709 |
| 696 | 19 | 0.9995 | Identification of a two-component regulatory system involved in antimicrobial peptide resistance in Streptococcus pneumoniae. Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path. | 2022 | 35395062 |