# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8223 | 0 | 1.0000 | Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Bacteria release low-molecular-weight by-products called secondary metabolites, which contribute to bacterial ecology and biology. Whereas volatile compounds constitute a large class of potential infochemicals, their role in bacteria-bacteria interactions remains vastly unexplored. Here we report that exposure to gaseous ammonia released from stationary-phase bacterial cultures modifies the antibiotic resistance spectrum of all tested Gram-negative and Gram-positive bacteria. Using Escherichia coli K12 as a model organism, and increased resistance to tetracycline as the phenotypic read-out, we demonstrate that exposure to ammonia generated by the catabolism of l-aspartate increases the level of intracellular polyamines, in turn leading to modifications in membrane permeability to different antibiotics as well as increased resistance to oxidative stress. We show that the inability to import ammonia via the Amt gas channel or to synthesize polyamines prevent modification in the resistance profile of aerially exposed bacteria. We therefore provide here the first detailed molecular characterization of widespread, long-range chemical interference between physically separated bacteria. | 2011 | 21651627 |
| 8969 | 1 | 0.9998 | Breaching the Barrier: Genome-Wide Investigation into the Role of a Primary Amine in Promoting E. coli Outer-Membrane Passage and Growth Inhibition by Ampicillin. Gram-negative bacteria are problematic for antibiotic development due to the low permeability of their cell envelopes. To rationally design new antibiotics capable of breaching this barrier, more information is required about the specific components of the cell envelope that prevent the passage of compounds with different physiochemical properties. Ampicillin and benzylpenicillin are β-lactam antibiotics with identical chemical structures except for a clever synthetic addition of a primary amine group in ampicillin, which promotes its accumulation in Gram-negatives. Previous work showed that ampicillin is better able to pass through the outer membrane porin OmpF in Escherichia coli compared to benzylpenicillin. It is not known, however, how the primary amine may affect interaction with other cell envelope components. This study applied TraDIS to identify genes that affect E. coli fitness in the presence of equivalent subinhibitory concentrations of ampicillin and benzylpenicillin, with a focus on the cell envelope. Insertions that compromised the outer membrane, particularly the lipopolysaccharide layer, were found to decrease fitness under benzylpenicillin exposure, but had less effect on fitness under ampicillin treatment. These results align with expectations if benzylpenicillin is poorly able to pass through porins. Disruption of genes encoding the AcrAB-TolC efflux system were detrimental to survival under both antibiotics, but particularly ampicillin. Indeed, insertions in these genes and regulators of acrAB-tolC expression were differentially selected under ampicillin treatment to a greater extent than insertions in ompF. These results suggest that maintaining ampicillin efflux may be more significant to E. coli survival than full inhibition of OmpF-mediated uptake. IMPORTANCE Due to the growing antibiotic resistance crisis, there is a critical need to develop new antibiotics, particularly compounds capable of targeting high-priority antibiotic-resistant Gram-negative pathogens. In order to develop new compounds capable of overcoming resistance a greater understanding of how Gram-negative bacteria are able to prevent the uptake and accumulation of many antibiotics is required. This study used a novel genome wide approach to investigate the significance of a primary amine group as a chemical feature that promotes the uptake and accumulation of compounds in the Gram-negative model organism Escherichia coli. The results support previous biochemical observations that the primary amine promotes passage through the outer membrane porin OmpF, but also highlight active efflux as a major resistance factor. | 2022 | 36409154 |
| 9426 | 2 | 0.9998 | Determination of Effects and Mechanisms of Action of Bacterial Amyloids on Antibiotic Resistance. Bacterial functional amyloids, apart from their many other functions, can influence the resistance of bacteria to antibiotics and other antibacterial agents. Mechanisms of modulation of susceptibility of bacterial cells to antimicrobials can be either indirect or direct. The former mechanisms are exemplified by the contribution of functional amyloids to biofilm formation, which may effectively prevent the penetration of various compounds into bacterial cells. The direct mechanisms include the effects of bacterial proteins revealing amyloid-like structures, like the C-terminal region of the Escherichia coli Hfq protein, on the expression of genes involved in antibiotic resistance. Therefore, in this paper, we describe methods by which effects and mechanisms of action of bacterial amyloids on antibiotic resistance can be studied. Assessment of formation of biofilms, determination of the efficiency of antibiotic resistance in solid and liquid media, and determination of the effects on gene expression at levels of mRNA abundance and stability and protein abundance are described. | 2022 | 35951301 |
| 9427 | 3 | 0.9998 | Polysaccharides' Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Bacteria and fungi have developed resistance to the existing therapies such as antibiotics and antifungal drugs, and multiple mechanisms are mediating this resistance. Among these, the formation of an extracellular matrix embedding different bacterial cells, called biofilm, is an effective strategy through which bacterial and fungal cells are establishing a relationship in a unique environment. The biofilm provides them the possibility to transfer genes conferring resistance, to prevent them from desiccation and to impede the penetration of antibiotics or antifungal drugs. Biofilms are formed of several constituents including extracellular DNA, proteins and polysaccharides. Depending on the bacteria, different polysaccharides form the biofilm matrix in different microorganisms, some of them involved in the first stage of cells' attachment to surfaces and to each other, and some responsible for giving the biofilm structure resistance and stability. In this review, we describe the structure and the role of different polysaccharides in bacterial and fungal biofilms, we revise the analytical methods to characterize them quantitatively and qualitatively and finally we provide an overview of potential new antimicrobial therapies able to inhibit biofilm formation by targeting exopolysaccharides. | 2023 | 36835442 |
| 9434 | 4 | 0.9998 | Facilitation of horizontal transfer of antimicrobial resistance by transformation of antibiotic-induced cell-wall-deficient bacteria. It is universally accepted that the use of antibiotics will lead to antimicrobial resistance. Traditionally, the explanation to this phenomenon was random mutation and horizontal gene transfer and amplification by selective pressure. Subsequently, a second mechanism of antibiotic-induced antimicrobial resistance acquisition was proposed, when Davies et al. discovered that genes encoding antimicrobial resistance are present in bacteria that produce antibiotics, and during the process of antibiotic purification from these antibiotic-producing organisms, remnants of the organisms' DNA that contain antibiotic resistance genes are also co-extracted, and can be recovered in antibiotic preparations. In addition to selective pressure and antimicrobial resistance genes in antibiotic preparations, we hypothesize the third mechanism by which administration of antibiotics leads to antimicrobial resistance. beta-Lactams and glycopeptides damage bacteria by inhibiting cell wall murein synthesis. During the process, cell-wall-deficient forms are generated before the bacteria die. These cell-wall-deficient forms have an increased ability to uptake DNA by transformation. It has been demonstrated that plasmids encoding antimicrobial resistance of Staphylococcus aureus can be transformed to Bacillus subtilis after the B. subtilis was treated with penicillin or lysostaphin, a chemical that damage the cell walls of some Gram-positive bacteria; and that short treatment of Escherichia coli with antibiotics disturbing bacterial cell wall synthesis rendered the cells capable of absorbing foreign DNA. Since bacteria occupying the same ecological niche, such as the lower gastrointestinal tract, is common, bacteria are often incubated with foreign DNA encoding resistance coming from the administration of antibiotics or other bacteria that undergone lysis unrelated to antibiotic-induced killing. As few as a single antibiotic resistant gene is taken up by the cell-wall-deficient form, it will develop into a resistant clone, despite most of the other bacteria are killed by the antibiotic. If the hypothesis is correct, one should reduce the use of antibiotics that perturb bacterial cell wall synthesis, such as beta-lactams, which is the largest group being manufactured, in both humans and animals, in order to reduce the acquisition of antibiotic resistance through this mechanism. In contrast to the old theory that antibiotics only provide selective pressures for the development of antimicrobial resistance, antibiotics by themselves are able to generate the whole chain of events towards the development of antimicrobial resistance. Antibiotics provide a source of antimicrobial resistance genes, facilitate the horizontal transfer of antimicrobial resistance genes through facilitating transformation, and provide selective pressures for amplification of the antimicrobial resistance genes. That is perhaps an important reason why antimicrobial resistance is so difficult to control. Further experiments should be performed to delineate which particular type of beta-lactam antibiotics are associated with increase in transformation efficiencies more than the others, so that we can select those less resistance generating beta-lactam for routine usage. | 2003 | 13679020 |
| 9288 | 5 | 0.9997 | Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach. | 1995 | 7766205 |
| 9002 | 6 | 0.9997 | Bacterial strategies to inhabit acidic environments. Bacteria can inhabit a wide range of environmental conditions, including extremes in pH ranging from 1 to 11. The primary strategy employed by bacteria in acidic environments is to maintain a constant cytoplasmic pH value. However, many data demonstrate that bacteria can grow under conditions in which pH values are out of the range in which cytoplasmic pH is kept constant. Based on these observations, a novel notion was proposed that bacteria have strategies to survive even if the cytoplasm is acidified by low external pH. Under these conditions, bacteria are obliged to use acid-resistant systems, implying that multiple systems having the same physiological role are operating at different cytoplasmic pH values. If this is true, it is quite likely that bacteria have genes that are induced by environmental stimuli under different pH conditions. In fact, acid-inducible genes often respond to another factor(s) besides pH. Furthermore, distinct genes might be required for growth or survival at acid pH under different environmental conditions because functions of many systems are dependent on external conditions. Systems operating at acid pH have been described to date, but numerous genes remain to be identified that function to protect bacteria from an acid challenge. Identification and analysis of these genes is critical, not only to elucidate bacterial physiology, but also to increase the understanding of bacterial pathogenesis. | 2000 | 12483574 |
| 9328 | 7 | 0.9997 | Man-made cell-like compartments for molecular evolution. Cellular compartmentalization is vital for the evolution of all living organisms. Cells keep together the genes, the RNAs and proteins that they encode, and the products of their activities, thus linking genotype to phenotype. We have reproduced this linkage in the test tube by transcribing and translating single genes in the aqueous compartments of water-in-oil emulsions. These compartments, with volumes close to those of bacteria, can be recruited to select genes encoding catalysts. A protein or RNA with a desired catalytic activity converts a substrate attached to the gene that encodes it to product. In other compartments, substrates attached to genes that do not encode catalysts remain unmodified. Subsequently, genes encoding catalysts are selectively enriched by virtue of their linkage to the product. We demonstrate the linkage of genotype to phenotype in man-made compartments using a model system. A selection for target-specific DNA methylation was based on the resistance of the product (methylated DNA) to restriction digestion. Genes encoding HaeIII methyltransferase were selected from a 10(7)-fold excess of genes encoding another enzyme. | 1998 | 9661199 |
| 6333 | 8 | 0.9997 | Outer Membrane Proteins form Specific Patterns in Antibiotic-Resistant Edwardsiella tarda. Outer membrane proteins of Gram-negative bacteria play key roles in antibiotic resistance. However, it is unknown whether outer membrane proteins that respond to antibiotics behave in a specific manner. The present study specifically investigated the differentially expressed outer membrane proteins of an antibiotic-resistant bacterium, Edwardsiella tarda, a Gram-negative pathogen that can lead to unnecessary mass medication of antimicrobials and consequently resistance development in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. The comparison of a clinically isolated strain to the laboratory derived kanamycin-, tetracycline-, or chloramphenicol-resistant strains identified their respective outer membrane proteins expression patterns, which are distinct to each other. Similarly, the same approach was utilized to profile the patterns in double antibiotic-resistant bacteria. Surprisingly, one pattern is always dominant over the other as to these three antibiotics; the pattern of chloramphenicol is over tetracycline, which is over kanamycin. This type of pattern was also confirmed in clinically relevant multidrug-resistant bacteria. In addition, the presence of plasmid encoding antibiotic-resistant genes also alters the outer membrane protein profile in a similar manner. Our results demonstrate that bacteria adapt the antibiotic stress through the regulation of outer membrane proteins expression. And more importantly, different outer membrane protein profiles were required to cope with different antibiotics. This type of specific pattern provides the rationale for the development of novel strategy to design outer membrane protein arrays to identify diverse multidrug resistance profiles as biomarkers for clinical medication. | 2017 | 28210241 |
| 9433 | 9 | 0.9997 | The relative contributions of physical structure and cell density to the antibiotic susceptibility of bacteria in biofilms. For many bacterial infections, noninherited mechanisms of resistance are responsible for extending the term of treatment and in some cases precluding its success. Among the most important of these noninherited mechanisms of resistance is the ability of bacteria to form biofilms. There is compelling evidence that bacteria within biofilms are more refractory to antibiotics than are planktonic cells. Not so clear, however, is the extent to which this resistance can be attributed to the structure of biofilms rather than the physiology and density of bacteria within them. To explore the contribution of the structure of biofilms to resistance in a quantitative way, we developed an assay that compares the antibiotic sensitivity of bacteria in biofilms to cells mechanically released from these structures. Our method, which we apply to Escherichia coli and Staphylococcus aureus each with antibiotics of five classes, controls for the density and physiological state of the treated bacteria. For most of the antibiotics tested, the bacteria in biofilms were no more resistant than the corresponding populations of planktonic cells of similar density. Our results, however, suggest that killing by gentamicin, streptomycin, and colistin is profoundly inhibited by the structure of biofilms; these drugs are substantially more effective in killing bacteria released from biofilms than cells within these structures. | 2012 | 22450987 |
| 9355 | 10 | 0.9997 | Conjugative type IV secretion systems enable bacterial antagonism that operates independently of plasmid transfer. Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies. | 2024 | 38664513 |
| 9356 | 11 | 0.9997 | The expression of antibiotic resistance genes in antibiotic-producing bacteria. Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance. | 2014 | 24964724 |
| 8990 | 12 | 0.9997 | Enhanced virulence of Salmonella enterica serovar typhimurium after passage through mice. The interaction between Salmonella enterica and the host immune system is complex. The outcome of an infection is the result of a balance between the in vivo environment where the bacteria survive and grow and the regulation of fitness genes at a level sufficient for the bacteria to retain their characteristic rate of growth in a given host. Using bacteriological counts from tissue homogenates and fluorescence microscopy to determine the spread, localization, and distribution of S. enterica in the tissues, we show that, during a systemic infection, S. enterica adapts to the in vivo environment. The adaptation becomes a measurable phenotype when bacteria that have resided in a donor animal are introduced into a recipient naïve animal. This adaptation does not confer increased resistance to early host killing mechanisms but can be detected as an enhancement in the bacterial net growth rate later in the infection. The enhanced growth rate is lost upon a single passage in vitro, and it is therefore transient and not due to selection of mutants. The adapted bacteria on average reach higher intracellular numbers in individual infected cells and therefore have patterns of organ spread different from those of nonadapted bacteria. These experiments help in developing an understanding of the influence of passage in a host on the fitness and virulence of S. enterica. | 2011 | 21098099 |
| 8920 | 13 | 0.9997 | A systems biology approach to drug targets in Pseudomonas aeruginosa biofilm. Antibiotic resistance is an increasing problem in the health care system and we are in a constant race with evolving bacteria. Biofilm-associated growth is thought to play a key role in bacterial adaptability and antibiotic resistance. We employed a systems biology approach to identify candidate drug targets for biofilm-associated bacteria by imitating specific microenvironments found in microbial communities associated with biofilm formation. A previously reconstructed metabolic model of Pseudomonas aeruginosa (PA) was used to study the effect of gene deletion on bacterial growth in planktonic and biofilm-like environmental conditions. A set of 26 genes essential in both conditions was identified. Moreover, these genes have no homology with any human gene. While none of these genes were essential in only one of the conditions, we found condition-dependent genes, which could be used to slow growth specifically in biofilm-associated PA. Furthermore, we performed a double gene deletion study and obtained 17 combinations consisting of 21 different genes, which were conditionally essential. While most of the difference in double essential gene sets could be explained by different medium composition found in biofilm-like and planktonic conditions, we observed a clear effect of changes in oxygen availability on the growth performance. Eight gene pairs were found to be synthetic lethal in oxygen-limited conditions. These gene sets may serve as novel metabolic drug targets to combat particularly biofilm-associated PA. Taken together, this study demonstrates that metabolic modeling of human pathogens can be used to identify oxygen-sensitive drug targets and thus, that this systems biology approach represents a powerful tool to identify novel candidate antibiotic targets. | 2012 | 22523548 |
| 8923 | 14 | 0.9997 | The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli. Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms. IMPORTANCE: With the rise of antibiotic drug resistance, there is an urgent need for new antibacterial drugs. Here, we studied a group of genes that are essential for the growth of Escherichia coli under nutrient limitation, culture conditions that arguably better represent nutrient availability during an infection than rich microbiological media. Indeed, many such nutrient stress genes are essential for infection in a variety of pathogens. Thus, the respective proteins represent a pool of potential new targets for antibacterial drugs that have been largely unexplored. We have created all possible double deletion mutants through a genetic cross of nutrient stress genes and the E. coli deletion collection. An analysis of the growth of the resulting clones on rich media revealed a robust, dense, and complex network for nutrient acquisition and biosynthesis. Importantly, our data reveal new genetic connections to guide innovative approaches for the development of new antibacterial compounds targeting bacteria under nutrient stress. | 2016 | 27879333 |
| 8953 | 15 | 0.9997 | Evolution of antibiotic resistance impacts optimal temperature and growth rate in Escherichia coli and Staphylococcus epidermidis. AIMS: Bacterial response to temperature changes can influence their pathogenicity to plants and humans. Changes in temperature can affect cellular and physiological responses in bacteria that can in turn affect the evolution and prevalence of antibiotic-resistance genes. Yet, how antibiotic-resistance genes influence microbial temperature response is poorly understood. METHODS AND RESULTS: We examined growth rates and physiological responses to temperature in two species-E. coli and Staph. epidermidis-after evolved resistance to 13 antibiotics. We found that evolved resistance results in species-, strain- and antibiotic-specific shifts in optimal temperature. When E. coli evolves resistance to nucleic acid and cell wall inhibitors, their optimal growth temperature decreases, and when Staph. epidermidis and E. coli evolve resistance to protein synthesis and their optimal temperature increases. Intriguingly, when Staph. epidermidis evolves resistance to Teicoplanin, fitness also increases in drug-free environments, independent of temperature response. CONCLUSION: Our results highlight how the complexity of antibiotic resistance is amplified when considering physiological responses to temperature. SIGNIFICANCE: Bacteria continuously respond to changing temperatures-whether through increased body temperature during fever, climate change or other factors. It is crucial to understand the interactions between antibiotic resistance and temperature. | 2022 | 36070219 |
| 8965 | 16 | 0.9997 | Resistance characterization and transcriptomic analysis of imipenem-induced drug resistance in Escherichia coli. BACKGROUND: Bacteria can develop resistance to various antibiotics under selective pressure, leading to multifaceted changes in resistance mechanisms. Transcriptomic sequencing allows for the observation of transcriptional level alterations in cells under antibiotic stress. Understanding the bacterial response to such stress is essential for deciphering their strategy against drug-resistant antibiotics and identifying potential targets for antibiotic development. METHODS: This study using wild-type (WT) Escherichia coli (E. coli) discovered that continuous in vitro induction screening for imipenem-resistant strains resulted in bacteria with enhanced biofilm-forming ability and mutations in antibiotic target sites. Transcriptomic sequencing of the resistant bacteria revealed significant changes in carbon and amino acid metabolism, nutrient assimilation, substance transport, nucleotide metabolism, protein biosynthesis, and cell wall biosynthesis. The up-regulated drug efflux genes were disrupted using gene knockout technology. Drug sensitivity tests indicated that drug efflux has a minimal effect on imipenem resistance. RESULTS: This suggests a strategy for E. coli drug resistance involving the reduction of unnecessary substance synthesis and metabolism, coupled with an increase in activities that aid in resisting foreign threats. | 2024 | 39624129 |
| 8222 | 17 | 0.9997 | Outer-membrane pore-forming proteins in gram-negative anaerobic bacteria. The outer-membrane proteins (OMPs) of bacteria function as the dynamic interface between the bacterium and its surroundings and are involved in maintenance of cell structure, binding a variety of substances, adhesion to other cells, and regulation of transport of both nutrients and bactericidal agents. There is a vast amount of information about aerobic OMPs and their roles in immunogenicity, virulence, and antimicrobial resistance. Knowledge about OMPs in anaerobic bacteria is much sparser. Genetic data present in data banks regarding aerobic porins are not readily helpful in identifying or analyzing anaerobic porins because of the large phylogenetic distance between the aerobic and anaerobic organisms. We recently identified and sequenced the genes for both a porin protein complex and an OmpA protein in Bacteroides fragilis, and the data are summarized here. Also, recent information is presented about similar OMPs found in other gram-negative anaerobic bacteria, including Bacteroides thetaiotaomicron, Bacteroides distasonis, Porphyromonas, and Fusobacterium. | 2002 | 12173111 |
| 9354 | 18 | 0.9997 | Chemical anatomy of antibiotic resistance: chloramphenicol acetyltransferase. The evolution of mechanisms of resistance to natural antimicrobial substances (antibiotics) was almost certainly concurrent with the development in microorganisms of the ability to synthesise such agents. Of the several general strategies adopted by bacteria for defence against antibiotics, one of the most pervasive is that of enzymic inactivation. The vast majority of eubacteria that are resistant to chloramphenicol, an inhibitor of prokaryotic protein synthesis, owe their resistance phenotype to genes for chloramphenicol acetyltransferase (CAT), which catalyses O-acetylation of the antibiotic, using acetyl-CoA as the acyl donor. The structure of CAT is known, as are many of the properties of the enzyme which explain its remarkable specificity and catalytic efficiency. Less clear is the evolutionary pathway which has produced the different members of the CAT 'family' of enzymes. Hints come from other acetyltransferases which share structure and mechanistic features with CAT, while not being strictly 'homologous' at the level of amino acid sequence. The 'super-family' of trimeric acetyltransferases appears to have in common a chemical mechanism based on a shared architecture. | 1992 | 1364583 |
| 6335 | 19 | 0.9997 | Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli. The activation of unrecognized antibiotic resistance genes in the bacterial cell can give rise to antibiotic resistance without the need for major mutations or horizontal gene transfer. We hypothesize that bacteria harbor an extensive array of diverse cryptic genes that can be activated in response to antibiotics via adaptive resistance. To test this hypothesis, we developed a plasmid assay to randomly manipulate gene copy numbers in Escherichia coli cells and identify genes that conferred resistance when amplified. We then tested for cryptic resistance to 18 antibiotics and identified genes conferring resistance. E. coli could become resistant to 50% of the antibiotics tested, including chloramphenicol, d-cycloserine, polymyxin B, and 6 beta-lactam antibiotics, following this manipulation. Known antibiotic resistance genes comprised 13% of the total identified genes, where 87% were unclassified (cryptic) antibiotic resistance genes. These unclassified genes encoded cell membrane proteins, stress response/DNA repair proteins, transporters, and miscellaneous or hypothetical proteins. Stress response/DNA repair genes have a broad antibiotic resistance potential, as this gene class, in aggregate, conferred cryptic resistance to nearly all resistance-positive antibiotics. We found that antibiotics that are hydrophilic, those that are amphipathic, and those that inhibit the cytoplasmic membrane or cell wall biosynthesis were more likely to induce cryptic resistance in E. coli. This study reveals a diversity of cryptic genes that confer an antibiotic resistance phenotype when present in high copy number. Thus, our assay can identify potential novel resistance genes while also describing which antibiotics are prone to induce cryptic antibiotic resistance in E. coli. IMPORTANCE Predicting where new antibiotic resistance genes will rise is a challenge and is especially important when new antibiotics are developed. Adaptive resistance allows sensitive bacterial cells to become transiently resistant to antibiotics. This provides an opportune time for cells to develop more efficient resistance mechanisms, such as tolerance and permanent resistance to higher antibiotic concentrations. The biochemical diversity harbored within bacterial genomes may lead to the presence of genes that could confer resistance when timely activated. Therefore, it is crucial to understand adaptive resistance to identify potential resistance genes and prolong antibiotics. Here, we investigate cryptic resistance, an adaptive resistance mechanism, and identify unknown (cryptic) antibiotic resistance genes that confer resistance when amplified in a laboratory strain of E. coli. We also pinpoint antibiotic characteristics that are likely to induce cryptic resistance. This study may help detect novel antibiotic resistance genes and provide the foundation to help develop more effective antibiotics. | 2021 | 34756069 |