Autologous DNA mobilization and multiplication expedite natural products discovery from bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
815701.0000Autologous DNA mobilization and multiplication expedite natural products discovery from bacteria. The transmission of antibiotic-resistance genes, comprising mobilization and relocation events, orchestrates the dissemination of antimicrobial resistance. Inspired by this evolutionarily successful paradigm, we developed ACTIMOT, a CRISPR-Cas9-based approach to unlock the vast chemical diversity concealed within bacterial genomes. ACTIMOT enables the efficient mobilization and relocation of large DNA fragments from the chromosome to replicative plasmids within the same bacterial cell. ACTIMOT circumvents the limitations of traditional molecular cloning methods involving handling and replicating large pieces of genomic DNA. Using ACTIMOT, we mobilized and activated four cryptic biosynthetic gene clusters from Streptomyces, leading to the discovery of 39 compounds across four distinct classes. This work highlights the potential of ACTIMOT for accelerating the exploration of biosynthetic pathways and the discovery of natural products.202439666857
839810.9989ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Multi-drug resistant pathogens have become a major threat to human health and new antibiotics are urgently needed. Most antibiotics are derived from secondary metabolites produced by bacteria. In order to avoid suicide, these bacteria usually encode resistance genes, in some cases within the biosynthetic gene cluster (BGC) of the respective antibiotic compound. Modern genome mining tools enable researchers to computationally detect and predict BGCs that encode the biosynthesis of secondary metabolites. The major challenge now is the prioritization of the most promising BGCs encoding antibiotics with novel modes of action. A recently developed target-directed genome mining approach allows researchers to predict the mode of action of the encoded compound of an uncharacterized BGC based on the presence of resistant target genes. In 2017, we introduced the 'Antibiotic Resistant Target Seeker' (ARTS). ARTS allows for specific and efficient genome mining for antibiotics with interesting and novel targets by rapidly linking housekeeping and known resistance genes to BGC proximity, duplication and horizontal gene transfer (HGT) events. Here, we present ARTS 2.0 available at http://arts.ziemertlab.com. ARTS 2.0 now includes options for automated target directed genome mining in all bacterial taxa as well as metagenomic data. Furthermore, it enables comparison of similar BGCs from different genomes and their putative resistance genes.202032427317
921220.9988Review of knockout technology approaches in bacterial drug resistance research. Gene knockout is a widely used method in biology for investigating gene function. Several technologies are available for gene knockout, including zinc-finger nuclease technology (ZFN), suicide plasmid vector systems, transcription activator-like effector protein nuclease technology (TALEN), Red homologous recombination technology, CRISPR/Cas, and others. Of these, Red homologous recombination technology, CRISPR/Cas9 technology, and suicide plasmid vector systems have been the most extensively used for knocking out bacterial drug resistance genes. These three technologies have been shown to yield significant results in researching bacterial gene functions in numerous studies. This study provides an overview of current gene knockout methods that are effective for genetic drug resistance testing in bacteria. The study aims to serve as a reference for selecting appropriate techniques.202337605748
939830.9988Effectiveness of CRISPR-Cas in Sensitizing Bacterial Populations with Plasmid-Encoded Antimicrobial Resistance. The spread of bacteria resistant to antibiotics poses a serious threat to human health. Genes that encode antibiotic resistance are often harbored on plasmids, extra-chromosomal DNA molecules found in bacteria. The emergence of multiresistance plasmids is particularly problematic and demands the development of new antibiotics and alternative strategies. CRISPR-Cas derived tools with their sequence specificity offer a promising new approach to combating antibiotic resistance. By introducing CRISPR-Cas encoding plasmids that %specifically target antibiotic resistance genes on plasmids, the susceptibility of bacteria to conventional antibiotics can be restored. However, genetic variation within bacterial populations can hinder the effectiveness of such CRISPR-Cas tools by allowing some mutant plasmids to evade CRISPR-mediated cleaving or gene silencing. In this study, we develop a model to test the effectiveness of CRISPR-Cas in sensitizing bacterial populations carrying resistance on non-transmissible plasmids and assess the success probability of a subsequent treatment with conventional antibiotics. We evaluate this probability according to the target interference mechanism, the copy number of the resistance-encoding plasmid, and its compatibility with the CRISPR-Cas encoding plasmid. Our results identify promising approaches to revert antibiotic resistance with CRISPR-Cas encoding plasmids: A DNA-cleaving CRISPR-Cas system on a plasmid incompatible with the targeted plasmid is most effective for low copy numbers, while for resistance plasmids with higher copy numbers gene silencing by CRISPR-Cas systems encoded on compatible plasmids is the superior solution.202540985758
839940.9988SYN-View: A Phylogeny-Based Synteny Exploration Tool for the Identification of Gene Clusters Linked to Antibiotic Resistance. The development of new antibacterial drugs has become one of the most important tasks of the century in order to overcome the posing threat of drug resistance in pathogenic bacteria. Many antibiotics originate from natural products produced by various microorganisms. Over the last decades, bioinformatical approaches have facilitated the discovery and characterization of these small compounds using genome mining methodologies. A key part of this process is the identification of the most promising biosynthetic gene clusters (BGCs), which encode novel natural products. In 2017, the Antibiotic Resistant Target Seeker (ARTS) was developed in order to enable an automated target-directed genome mining approach. ARTS identifies possible resistant target genes within antibiotic gene clusters, in order to detect promising BGCs encoding antibiotics with novel modes of action. Although ARTS can predict promising targets based on multiple criteria, it provides little information about the cluster structures of possible resistant genes. Here, we present SYN-view. Based on a phylogenetic approach, SYN-view allows for easy comparison of gene clusters of interest and distinguishing genes with regular housekeeping functions from genes functioning as antibiotic resistant targets. Our aim is to implement our proposed method into the ARTS web-server, further improving the target-directed genome mining strategy of the ARTS pipeline.202033396183
923550.9988Investigating the Genomic Background of CRISPR-Cas Genomes for CRISPR-Based Antimicrobials. CRISPR-Cas systems are an adaptive immunity that protects prokaryotes against foreign genetic elements. Genetic templates acquired during past infection events enable DNA-interacting enzymes to recognize foreign DNA for destruction. Due to the programmability and specificity of these genetic templates, CRISPR-Cas systems are potential alternative antibiotics that can be engineered to self-target antimicrobial resistance genes on the chromosome or plasmid. However, several fundamental questions remain to repurpose these tools against drug-resistant bacteria. For endogenous CRISPR-Cas self-targeting, antimicrobial resistance genes and functional CRISPR-Cas systems have to co-occur in the target cell. Furthermore, these tools have to outplay DNA repair pathways that respond to the nuclease activities of Cas proteins, even for exogenous CRISPR-Cas delivery. Here, we conduct a comprehensive survey of CRISPR-Cas genomes. First, we address the co-occurrence of CRISPR-Cas systems and antimicrobial resistance genes in the CRISPR-Cas genomes. We show that the average number of these genes varies greatly by the CRISPR-Cas type, and some CRISPR-Cas types (IE and IIIA) have over 20 genes per genome. Next, we investigate the DNA repair pathways of these CRISPR-Cas genomes, revealing that the diversity and frequency of these pathways differ by the CRISPR-Cas type. The interplay between CRISPR-Cas systems and DNA repair pathways is essential for the acquisition of new spacers in CRISPR arrays. We conduct simulation studies to demonstrate that the efficiency of these DNA repair pathways may be inferred from the time-series patterns in the RNA structure of CRISPR repeats. This bioinformatic survey of CRISPR-Cas genomes elucidates the necessity to consider multifaceted interactions between different genes and systems, to design effective CRISPR-based antimicrobials that can specifically target drug-resistant bacteria in natural microbial communities.202235692726
959360.9988Antimicrobial resistance in mollicutes: known and newly emerging mechanisms. This review is devoted to the mechanisms of antibiotic resistance in mollicutes (class Bacilli, subclass Mollicutes), the smallest self-replicating bacteria, that can cause diseases in plants, animals and humans, and also contaminate cell cultures and vaccine preparations. Research in this area has been mainly based on the ubiquitous mollicute and the main contaminant of cell cultures, Acholeplasma laidlawii. The omics technologies applied to this and other bacteria have yielded a complex picture of responses to antimicrobials, including their removal from the cell, the acquisition of antibiotic resistance genes and mutations that potentially allow global reprogramming of many cellular processes. This review provides a brief summary of well-known resistance mechanisms that have been demonstrated in several mollicutes species and, in more detail, novel mechanisms revealed in A. laidlawii, including the least explored vesicle-mediated transfer of short RNAs with a regulatory potency. We hope that this review highlights new avenues for further studies on antimicrobial resistance in these bacteria for both a basic science and an application perspective of infection control and management in clinical and research/production settings.201830052940
921870.9987CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance. Antimicrobial resistance (AMR) can potentially harm global public health. Horizontal gene transfer (HGT), which speeds up the emergence of AMR and increases the burden of drug resistance in mobile genetic elements (MGEs), is the primary method by which AMR genes are transferred across bacterial pathogens. New approaches are urgently needed to halt the spread of bacterial diseases and antibiotic resistance. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), an RNA-guided adaptive immune system, protects prokaryotes from foreign DNA like plasmids and phages. This approach may be essential in limiting horizontal gene transfer and halting the spread of antibiotic resistance. The CRISPR-Cas system has been crucial in identifying and understanding resistance mechanisms and developing novel therapeutic approaches. This review article investigates the CRISPR-Cas system's potential as a tool to combat bacterial AMR. Antibiotic-resistant bacteria can be targeted and eliminated by the CRISPR-Cas system. It has been proven to be an efficient method for removing carbapenem-resistant plasmids and regaining antibiotic susceptibility. The CRISPR-Cas system has enormous potential as a weapon against bacterial AMR. It precisely targets and eliminates antibiotic-resistant bacteria, facilitates resistance mechanism identification, and offers new possibilities in diagnostics and therapeutics.202438605260
920080.9987Application of the CRISPR/Cas System for Generation of Pathogen-Resistant Plants. The use of the CRISPR/Cas9 prokaryotic adaptive immune system has led to a breakthrough in targeted genome editing in eukaryotes. The CRISPR/Cas technology allows to generate organisms with desirable characteristics by introducing deletions/insertions into selected genome loci resulting in the knockout or modification of target genes. This review focuses on the current state of the CRISPR/Cas use for the generation of plants resistant to viruses, bacteria, and parasitic fungi. Resistance to DNA- and RNA-containing viruses is usually provided by expression in transgenic plants of the Cas endonuclease gene and short guide RNAs (sgRNAs) targeting certain sites in the viral or the host plant genomes to ensure either direct cleavage of the viral genome or modification of the plant host genome in order to decrease the efficiency of virus replication. Editing of plant genes involved in the defense response to pathogens increases plants resistance to bacteria and pathogenic fungi. The review explores strategies and prospects of the development of pathogen-resistant plants with a focus on the generation of non-transgenic (non-genetically modified) organisms, in particular, by using plasmid (DNA)-free systems for delivery of the Cas/sgRNA editing complex into plant cells.201830878030
826290.9987Advances in CRISPR-Cas systems for human bacterial disease. Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.202439266183
8170100.9987Exploring molecular mechanisms of drug resistance in bacteria and progressions in CRISPR/Cas9-based genome expurgation solutions. Antibiotic resistance in bacteria is a critical global health challenge, driven by molecular mechanisms such as genetic mutations, efflux pumps, enzymatic degradation of antibiotics, target site modifications, and biofilm formation. Horizontal gene transfer (HGT) further accelerates the spread of resistance genes across bacterial populations. These mechanisms contribute to the emergence of multidrug-resistant (MDR) strains, rendering conventional antibiotics ineffective. Recent advancements in CRISPR/Cas9-based genome editing offer innovative solutions to combat drug resistance. CRISPR/Cas9 enables precise targeting of resistance genes, facilitating their deletion or inactivation, and provides a potential method to eliminate resistance-carrying plasmids. Furthermore, phage-delivered CRISPR systems show promise in selectively killing resistant bacteria while leaving susceptible strains unaffected. Despite challenges such as efficient delivery, off-target effects, and potential bacterial resistance to CRISPR itself, ongoing research and technological innovations hold promise for using CRISPR-based antimicrobials to reverse bacterial drug resistance and develop more effective therapies. These abstract highlights the molecular mechanisms underlying bacterial drug resistance and explores how CRISPR/Cas9 technology could revolutionize treatment strategies against resistant pathogens.202540051841
8156110.9987Innovative Delivery System Combining CRISPR-Cas12f for Combatting Antimicrobial Resistance in Gram-Negative Bacteria. Antimicrobial resistance poses a significant global challenge, demanding innovative approaches, such as the CRISPR-Cas-mediated resistance plasmid or gene-curing system, to effectively combat this urgent crisis. To enable successful curing of antimicrobial genes or plasmids through CRISPR-Cas technology, the development of an efficient broad-host-range delivery system is paramount. In this study, we have successfully designed and constructed a novel functional gene delivery plasmid, pQ-mini, utilizing the backbone of a broad-host-range Inc.Q plasmid. Moreover, we have integrated the CRISPR-Cas12f system into the pQ-mini plasmid to enable gene-curing in broad-host of bacteria. Our findings demonstrate that pQ-mini facilitates the highly efficient transfer of genetic elements to diverse bacteria, particularly in various species in the order of Enterobacterales, exhibiting a broader host range and superior conjugation efficiency compared to the commonly used pMB1-like plasmid. Notably, pQ-mini effectively delivers the CRISPR-Cas12f system to antimicrobial-resistant strains, resulting in remarkable curing efficiencies for plasmid-borne mcr-1 or bla(KPC) genes that are comparable to those achieved by the previously reported pCasCure system. In conclusion, our study successfully establishes and optimizes pQ-mini as a broad-host-range functional gene delivery vector. Furthermore, in combination with the CRISPR-Cas system, pQ-mini demonstrates its potential for broad-host delivery, highlighting its promising role as a novel antimicrobial tool against the growing threat of antimicrobial resistance.202438863339
9217120.9987Role of CRISPR-Cas systems and anti-CRISPR proteins in bacterial antibiotic resistance. The emergence and development of antibiotic resistance in bacteria is a serious threat to global public health. Antibiotic resistance genes (ARGs) are often located on mobile genetic elements (MGEs). They can be transferred among bacteria by horizontal gene transfer (HGT), leading to the spread of drug-resistant strains and antibiotic treatment failure. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated genes) is one of the many strategies bacteria have developed under long-term selection pressure to restrict the HGT. CRISPR-Cas systems exist in about half of bacterial genomes and play a significant role in limiting the spread of antibiotic resistance. On the other hand, bacteriophages and other MGEs encode a wide range of anti-CRISPR proteins (Acrs) to counteract the immunity of the CRISPR-Cas system. The Acrs could decrease the CRISPR-Cas system's activity against phages and facilitate the acquisition of ARGs and virulence traits for bacteria. This review aimed to assess the relationship between the CRISPR-Cas systems and Acrs with bacterial antibiotic resistance. We also highlighted the CRISPR technology and Acrs to control and prevent antibacterial resistance. The CRISPR-Cas system can target nucleic acid sequences with high accuracy and reliability; therefore, it has become a novel gene editing and gene therapy tool to prevent the spread of antibiotic resistance. CRISPR-based approaches may pave the way for developing smart antibiotics, which could eliminate multidrug-resistant (MDR) bacteria and distinguish between pathogenic and beneficial microorganisms. Additionally, the engineered anti-CRISPR gene-containing phages in combination with antibiotics could be used as a cutting-edge treatment approach to reduce antibiotic resistance.202439149034
9567130.9987How to discover new antibiotic resistance genes? Antibiotic resistance (AR) is a worldwide concern and the description of AR have been discovered mainly because of their implications in human medicine. Since the recent burden of whole-genome sequencing of microorganisms, the number of new AR genes (ARGs) have dramatically increased over the last decade. Areas covered: In this review, we will describe the different methods that could be used to characterize new ARGs using classic or innovative methods. First, we will focus on the biochemical methods, then we will develop on molecular methods, next-generation sequencing and bioinformatics approaches. The use of various methods, including cloning, mutagenesis, transposon mutagenesis, functional genomics, whole genome sequencing, metagenomic and functional metagenomics will be reviewed here, outlining the advantages and drawbacks of each method. Bioinformatics softwares used for resistome analysis and protein modeling will be also described. Expert opinion: Biological experiments and bioinformatics analysis are complementary. Nowadays, the ARGs described only account for the tip of the iceberg of all existing resistance mechanisms. The multiplication of the ecosystems studied allows us to find a large reservoir of AR mechanisms. Furthermore, the adaptation ability of bacteria facing new antibiotics promises a constant discovery of new AR mechanisms.201930895843
9295140.9987Biological activities specified by antibiotic resistance plasmids. Bacteria can display resistance to a wide spectrum of noxious agents and environmental conditions, and these properties are often mediated by genes located on extrachromosomal DNA elements called plasmids. Replication, vertical and horizontal transmission and evolution of these elements are discussed, and examples of the genes responsible for the resistance phenotypes are given. Selective forces that drive the evolution of new combinations of bacterial properties of particular importance in clinical situations are analysed.19863542928
9188150.9986CRISPR-Cas system, antibiotic resistance and virulence in bacteria: Through a common lens. CRISPR-Cas system, antibiotic resistance and virulence are different modes of survival for the bacteria. CRISPR-Cas is an adaptive immune system that can degrade foreign DNA, antibiotic resistance helps bacteria to evade drugs that can threaten their existence and virulence determinants are offensive tools that can facilitate the establishment of infection by pathogens. This chapter focuses on these three aspects, providing insights about the CRISPR system and resistance mechanisms in brief, followed by understanding the synergistic or antagonistic relationship of resistance and virulence determinants in connection to the CRISPR system. We have addressed the discussion of this evolving topic through specific examples and studies. Different approaches for successful detection of this unique defense system in bacteria and various applications of the CRISPR-Cas systems to show how it can be harnessed to tackle the increasing problem of antibiotic resistance have been put forth. World Health Organization has declared antibiotic resistance as a serious global problem of the 21st century. As antibiotic-resistant bacteria increase their footprint across the globe, newer tools such as the CRISPR-Cas system hold immense promise to tackle this problem.202133685595
9679160.9986Integrons as the potential targets for combating multidrug resistance in Enterobacteriaceae using CRISPR- Cas9 technique. The emergence of multi-drug resistance (MDR) to pan-drug resistance (PDR) in Enterobacteriaceae has made treatment extremely challenging. Genetic mutations and horizontal gene transfer (HGT) through mobile genetic elements (MGEs) were frequently associated mechanisms of drug resistance in pathogens. However, transposons, plasmids, and integrons transfer MDR genes in bacterium via HGT much faster. Integrons are dsDNA segment that plays a crucial role in the adaptation and evolution of bacteria. They contain multiple gene cassettes that code for antibiotic resistance determinants that are expressed by a single promoter (Pc). Integrons are the cause of drug resistance in Enterobacteriaceae. Although alternatives to antibiotics such as bacteriophages, phage proteins, antimicrobial peptides, and natural compounds have been widely used to treat MDR infections, there have been limited efforts to reverse the antibiotic resistance ability of bacteria. Thus, silencing the genes harboured on MGEs achieved by Gene Editing Techniques (GETs) might prevent the spread of MDR. One such GETs, which has a simple design, good repeatability, low cost, and high efficiency, is CRISPR- Cas9 system. Thus, this review is a first of the kind that focuses on utilizing the structure of an integron to make it an ideal target for GETs like CRISPR- Cas9 systems.202337410611
9671170.9986Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Bacteria are diverse and abundant, playing key roles in human health and disease, the environment, and biotechnology. Despite progress in genome sequencing and bioengineering, much remains unknown about the functional organization of prokaryotes. For instance, roughly a third of the protein-coding genes of the best-studied model bacterium, Escherichia coli, currently lack experimental annotations. Systems-level experimental approaches for investigating the functional associations of bacterial genes and genetic structures are essential for defining the fundamental molecular biology of microbes, preventing the spread of antibacterial resistance in the clinic, and driving the development of future biotechnological applications. This review highlights recently introduced large-scale genetic manipulation and screening procedures for the systematic exploration of bacterial gene functions, molecular relationships, and the global organization of bacteria at the gene, pathway, and genome levels.201222517266
9179180.9986A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.202235835393
9184190.9986Unlocking the potential of phages: Innovative approaches to harnessing bacteriophages as diagnostic tools for human diseases. Phages, viruses that infect bacteria, have been explored as promising tools for the detection of human disease. By leveraging the specificity of phages for their bacterial hosts, phage-based diagnostic tools can rapidly and accurately detect bacterial infections in clinical samples. In recent years, advances in genetic engineering and biotechnology have enabled the development of more sophisticated phage-based diagnostic tools, including those that express reporter genes or enzymes, or target specific virulence factors or antibiotic resistance genes. However, despite these advancements, there are still challenges and limitations to the use of phage-based diagnostic tools, including concerns over phage safety and efficacy. This review aims to provide a comprehensive overview of the current state of phage-based diagnostic tools, including their advantages, limitations, and potential for future development. By addressing these issues, we hope to contribute to the ongoing efforts to develop safe and effective phage-based diagnostic tools for the detection of human disease.202337770168