Dominant, Heritable Resistance to Stewart's Wilt in Maize Is Associated with an Enhanced Vascular Defense Response to Infection with Pantoea stewartii. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
815301.0000Dominant, Heritable Resistance to Stewart's Wilt in Maize Is Associated with an Enhanced Vascular Defense Response to Infection with Pantoea stewartii. Vascular wilt bacteria such as Pantoea stewartii, the causal agent of Stewart's bacterial wilt of maize (SW), are destructive pathogens that are difficult to control. These bacteria colonize the xylem, where they form biofilms that block sap flow leading to characteristic wilting symptoms. Heritable forms of SW resistance exist and are used in maize breeding programs but the underlying genes and mechanisms are mostly unknown. Here, we show that seedlings of maize inbred lines with pan1 mutations are highly resistant to SW. However, current evidence suggests that other genes introgressed along with pan1 are responsible for resistance. Genomic analyses of pan1 lines were used to identify candidate resistance genes. In-depth comparison of P. stewartii interaction with susceptible and resistant maize lines revealed an enhanced vascular defense response in pan1 lines characterized by accumulation of electron-dense materials in xylem conduits visible by electron microscopy. We propose that this vascular defense response restricts P. stewartii spread through the vasculature, reducing both systemic bacterial colonization of the xylem network and consequent wilting. Though apparently unrelated to the resistance phenotype of pan1 lines, we also demonstrate that the effector WtsE is essential for P. stewartii xylem dissemination, show evidence for a nutritional immunity response to P. stewartii that alters xylem sap composition, and present the first analysis of maize transcriptional responses to P. stewartii infection.201931657672
876110.9994Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops. Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.201525917599
825320.9989Strategies used by bacterial pathogens to suppress plant defenses. Plant immune systems effectively prevent infections caused by the majority of microbial pathogens that are encountered by plants. However, successful pathogens have evolved specialized strategies to suppress plant defense responses and induce disease susceptibility in otherwise resistant hosts. Recent advances reveal that phytopathogenic bacteria use type III effector proteins, toxins, and other factors to inhibit host defenses. Host processes that are targeted by bacteria include programmed cell death, cell wall-based defense, hormone signaling, the expression of defense genes, and other basal defenses. The discovery of plant defenses that are vulnerable to pathogen attack has provided new insights into mechanisms that are essential for both bacterial pathogenesis and plant disease resistance.200415231256
825230.9989Hrp mutant bacteria as biocontrol agents: toward a sustainable approach in the fight against plant pathogenic bacteria. Sustainable agriculture necessitates development of environmentally safe methods to protect plants against pathogens. Among these methods, application of biocontrol agents has been efficiently used to minimize disease development. Here we review current understanding of mechanisms involved in biocontrol of the main Gram-phytopathogenic bacteria-induced diseases by plant inoculation with strains mutated in hrp (hypersensitive response and pathogenicity) genes. These mutants are able to penetrate plant tissues and to stimulate basal resistance of plants. Novel protection mechanisms involving the phytohormone abscisic acid appear to play key roles in the biocontrol of wilt disease induced by Ralstonia solanacearum in Arabidopsis thaliana. Fully understanding these mechanisms and extending the studies to other pathosystems are still required to evaluate their importance in disease protection.201323887499
820140.9988Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Bacterial pathogenicity to plants and animals has evolved through an arms race of attack and defense. Key players are bacterial effector proteins, which are delivered through the type III secretion system and suppress basal defenses . In plants, varietal resistance to disease is based on recognition of effectors by the products of resistance (R) genes . When recognized, the effector or in this scenario, avirulence (Avr) protein triggers the hypersensitive resistance reaction (HR), which generates antimicrobial conditions . Unfortunately, such gene-for-gene-based resistance commonly fails because of the emergence of virulent strains of the pathogen that no longer trigger the HR . We have followed the emergence of a new virulent pathotype of the halo-blight pathogen Pseudomonas syringae pv. phaseolicola within leaves of a resistant variety of bean. Exposure to the HR led to the selection of strains lacking the avirulence (effector) gene avrPphB (or hopAR1), which triggers defense in varieties with the matching R3 resistance gene. Loss of avrPphB was through deletion of a 106 kb genomic island (PPHGI-1) that shares features with integrative and conjugative elements (ICElands) and also pathogenicity islands (PAIs) in diverse bacteria . We provide a molecular explanation of how exposure to resistance mechanisms in plants drives the evolution of new virulent forms of pathogens.200516360685
920450.9988Susceptibility Genes in Bacterial Diseases of Plants. Plant susceptibility (S) genes exploited by pathogenic bacteria play critical roles in disease development, collectively contributing to symptoms, pathogen proliferation, and spread. S genes may support pathogen establishment within the host, suppress host immunity, regulate host physiology or development, or function in other ways. S genes can be passive, e.g., involved in pathogen attraction or required for pathogen effector localization or activity, or active, contributing directly to symptoms or pathogen proliferation. Knowledge of S genes is important for understanding disease and other aspects of plant biology. It is also useful for disease management, as nonfunctional alleles can slow or prevent disease and, because they are often quantitative, can exert less selection on pathogens than dominant resistance genes, allowing greater durability. In this review, we discuss bacterial exploitation of S genes, S-gene functional diversity, approaches for identifying S genes, translation of S-gene knowledge for disease control, and future perspectives on this exciting area of plant pathology.202540446167
8560.9988Bacterial disease resistance in Arabidopsis through flagellin perception. Plants and animals recognize microbial invaders by detecting pathogen-associated molecular patterns (PAMPs) such as flagellin. However, the importance of flagellin perception for disease resistance has, until now, not been demonstrated. Here we show that treatment of plants with flg22, a peptide representing the elicitor-active epitope of flagellin, induces the expression of numerous defence-related genes and triggers resistance to pathogenic bacteria in wild-type plants, but not in plants carrying mutations in the flagellin receptor gene FLS2. This induced resistance seems to be independent of salicylic acid, jasmonic acid and ethylene signalling. Wild-type and fls2 mutants both display enhanced resistance when treated with crude bacterial extracts, even devoid of elicitor-active flagellin, indicating the existence of functional perception systems for PAMPs other than flagellin. Although fls2 mutant plants are as susceptible as the wild type when bacteria are infiltrated into leaves, they are more susceptible to the pathogen Pseudomonas syringae pv. tomato DC3000 when it is sprayed on the leaf surface. Thus, flagellin perception restricts bacterial invasion, probably at an early step, and contributes to the plant's disease resistance.200415085136
831570.9988The Induction and Modulation of Plant Defense Responses by Bacterial Lipopolysaccharides. Lipopolysaccharides (LPSs) are ubiquitous, indispensable components of the cell surface of Gram-negative bacteria that apparently have diverse roles in bacterial pathogenesis of plants. As an outer membrane component, LPS may contribute to the exclusion of plant-derived antimicrobial compounds promoting the ability of a bacterial plant pathogen to infect plants. In contrast, LPS can be recognized by plants to directly trigger some plant defense-related responses. LPS can also alter the response of plants to subsequent bacterial inoculation; these delayed effects include alterations in the expression patterns of genes coding for some pathogenesis-related (PR) proteins, promotion of the synthesis of antimicrobial hydroxycinnamoyl-tyramine conjugates, and prevention of the hypersensitive reaction caused by avirulent bacteria. Prevention of the response may allow expression of resistance in the absence of catastrophic tissue damage. Recognition of LPS (and other nonspecific determinants) may initiate responses in plants that restrict the growth of nonpathogenic bacteria, whereas plant pathogens may possess hrp gene-dependent mechanisms to suppress such responses.200011701843
32580.9988Use of Arabidopsis thaliana and Pseudomonas syringae in the Study of Plant Disease Resistance and Tolerance. The interaction between Arabidopsis thaliana and the bacterium Pseudomonas syringae is being developed as a model experimental system for plant pathology research. Race-specific ("gene-for-gene") resistance has been demonstrated for this interaction, and pathogen genes that determine avirulence have been isolated and characterized. Because certain lines of both Arabidopsis and soybean are resistant to bacteria carrying the avirulence genes avrRpt2 and avrB, extremely similar pathogen recognition mechanisms are apparently present in these two plant species. Isogenic bacterial strains that differ by the presence of single avirulence genes are being used to analyze plant resistance. Plant resistance genes have been identified in crosses between resistant and susceptible lines. The extensive map-based cloning tools available in Arabidopsis are being used to isolate these resistance genes. In a related project, ethylene-insensitive Arabidopsis mutants are being used to examine the role of ethylene in disease development. Ethylene apparently mediates symptom formation in susceptible plants and is not required for resistance, suggesting possible strategies for enhancement of disease tolerance in crops.199319279805
824690.9988From Functional Characterization to the Application of SWEET Sugar Transporters in Plant Resistance Breeding. The occurrence of plant diseases severely affects the quality and quantity of plant production. Plants adapt to the constant invasion of pathogens and gradually form a series of defense mechanisms, such as pathogen-associated molecular pattern-triggered immunity and microbial effector-triggered immunity. Moreover, many pathogens have evolved to inhibit the immune defense system and acquire plant nutrients as a result of their coevolution with plants. The sugars will eventually be exported transporters (SWEETs) are a novel family of sugar transporters that function as uniporters. They provide a channel for pathogens, including bacteria, fungi, and viruses, to hijack sugar from the host. In this review, we summarize the functions of SWEETs in nectar secretion, grain loading, senescence, and long-distance transport. We also focus on the interaction between the SWEET genes and pathogens. In addition, we provide insight into the potential application of SWEET genes to enhance disease resistance through the use of genome editing tools. The summary and perspective of this review will deepen our understanding of the role of SWEETs during the process of pathogen infection and provide insights into resistance breeding.202235446562
9198100.9988Recognition of bacterial avirulence proteins occurs inside the plant cell: a general phenomenon in resistance to bacterial diseases? One of the recent exciting developments in the research area of plant-microbe interactions is a breakthrough in understanding part of the initial signalling between avirulent Gram-negative bacteria and resistant plants. For resistance to occur, both interacting organisms need to express matching genes, the plant resistance gene and the bacterial avirulence gene. The biochemical function of bacterial avirulence genes and the nature of the signal molecules recognized by the plant have been a mystery for a long time. Recently, several laboratories have shown that bacterial avirulence proteins function as elicitors that are perceived within the plant cell.19979263447
9202110.9988Microbial avirulence determinants: guided missiles or antigenic flak? SUMMARY Avirulence (avr) determinants are incompatibility factors which elicit host plant defence responses in a gene-for-gene manner. They are produced by fungi, bacteria and viruses, and their recognition by resistance genes has been extensively studied for decades. But why should a microbe keep a molecule that allows it to be recognized? One argument is that avr genes perform some essential function and must be kept despite giving the pathogen away. Many bacterial avr determinants have been shown to be effectors, which contribute to virulence and aggressiveness. If this were always the case, mutants lacking these essential molecules would be at a serious disadvantage. Some disadvantage has been shown for a small number, but for the majority there is no effect on virulence. This has been explained by functional redundancy for bacterial and fungal avr determinants, with other molecules compensating for the deletion of these essential genes. However, this argument is counter-intuitive because by definition these individual genes are no longer essential; so why keep them? With increasing numbers of avr genes being identified, efforts to elucidate their function are increasing. In this review, we take stock of the accumulating literature, and consider what the real function of avr determinants might be.200520565679
80120.9988Virus infection induces resistance to Pseudomonas syringae and to drought in both compatible and incompatible bacteria-host interactions, which are compromised under conditions of elevated temperature and CO(2) levels. Plants are simultaneously exposed to a variety of biotic and abiotic stresses, such as infections by viruses and bacteria, or drought. This study aimed to improve our understanding of interactions between viral and bacterial pathogens and the environment in the incompatible host Nicotiana benthamiana and the susceptible host Arabidopsis thaliana, and the contribution of viral virulence proteins to these responses. Infection by the Potato virus X (PVX)/Plum pox virus (PPV) pathosystem induced resistance to Pseudomonas syringae (Pst) and to drought in both compatible and incompatible bacteria-host interactions, once a threshold level of defence responses was triggered by the virulence proteins P25 of PVX and the helper component proteinase of PPV. Virus-induced resistance to Pst was compromised in salicylic acid and jasmonic acid signalling-deficient Arabidopsis but not in N. benthamiana lines. Elevated temperature and CO(2) levels, parameters associated with climate change, negatively affected resistance to Pst and to drought induced by virus infection, and this correlated with diminished H(2)O(2) production, decreased expression of defence genes and a drop in virus titres. Thus, diminished virulence should be considered as a potential factor limiting the outcome of beneficial trade-offs in the response of virus-infected plants to drought or bacterial pathogens under a climate change scenario.202031730035
86130.9988Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. Genes encoding the virulence-promoting type III secretion system (T3SS) in phytopathogenic bacteria are induced at the start of infection, indicating that recognition of signals from the host plant initiates this response. However, the precise nature of these signals and whether their concentrations can be altered to affect the biological outcome of host-pathogen interactions remain speculative. Here we use a metabolomic comparison of resistant and susceptible genotypes to identify plant-derived metabolites that induce T3SS genes in Pseudomonas syringae pv tomato DC3000 and report that mapk phosphatase 1 (mkp1), an Arabidopsis mutant that is more resistant to bacterial infection, produces decreased levels of these bioactive compounds. Consistent with these observations, T3SS effector expression and delivery by DC3000 was impaired when infecting the mkp1 mutant. The addition of bioactive metabolites fully restored T3SS effector delivery and suppressed the enhanced resistance in the mkp1 mutant. Pretreatment of plants with pathogen-associated molecular patterns (PAMPs) to induce PAMP-triggered immunity (PTI) also restricts T3SS effector delivery and enhances resistance by unknown mechanisms, and the addition of the bioactive metabolites similarly suppressed both aspects of PTI. Together, these results demonstrate that DC3000 perceives multiple signals derived from plants to initiate its T3SS and that the level of these host-derived signals impacts bacterial pathogenesis.201424753604
8233140.9988Local early induced resistance of plants as the first line of defence against bacteria. This paper is an overview of a non-specific local early induced resistance (EIR) mechanism, distinct from the incompatible-specific hypersensitive reaction (HR). We have shown that the local induced resistance (LIR) described earlier is not a single and uniform response to pathogen infection, because an early (EIR) and a late form can be distinguished. EIR operates from 3-6 h post-inoculation (hpi) until about 20 hpi, and is inhibited by a short heat-shock or the eukaryotic protein synthesis inhibitor, cycloheximide. In contrast, LIR, which corresponds to the induced resistance forms discovered earlier, requires more time (about 24 h) and intensive illumination to develop, and is effective for a longer period. EIR develops parallel with HR and is sometimes able to prevent it when the induction time of HR is longer than the time required for the development of EIR. It seems that EIR inhibits the metabolism of bacteria and the activity of hrp genes which otherwise are required for the induction of HR. In a compatible host-pathogen relationship the effect of EIR fails to take place. The rapid development of EIR is greatly influenced by temperature and the physiological state of the plant. EIR activates the accumulation of hydrogen peroxide at the bacterial attachment, expressing new peroxidase isoenzymes in the initiated plant tissue. It seems that this is a native general local defence mechanism which can localise foreign organisms even at the penetration site.200312701709
83150.9988Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide. Many plant-pathogen interactions are controlled by specific interactions between pathogen avirulence (avr) gene loci and the corresponding plant resistance R locus (gene-for-gene-hypothesis). Very often, this type of interaction culminates in a hypersensitive reaction (HR). However, recently pathogen-associated molecular patterns (PAMPs) such as flagellin or lipopolysaccharides (LPS) that are common to all bacteria have been shown to act as general elicitors of basal or innate immune responses in several plant species. Here, we summarize the genetic programs in Arabidopsis thaliana behind the LPS-induced basal response and the HR induced by harpin, respectively. Using Agilent Arabidopsis cDNA microarrays consisting of approximately 15,000 oligomers, changes in transcript accumulation of treated cells were monitored over a period of 24h after elicitor treatment. Analysis of the array data revealed significant responses to LPS (309 genes), harpin (951 genes) or both (313 genes). Concentrating our analysis on the genes encoding transcription factors, defence genes, cell wall biogenesis-related genes and signal transduction components we monitored interesting parallels, but also remarkably different expression patterns. Harpin and LPS induced an overlapping set of genes involved in cell wall biogenesis, cellular communication and signalling. The pattern of induced genes associated with cell rescue and general stress responses such as small heat-shock proteins was highly similar. In contrast, there is a striking difference regarding some of the most prominent, central components of plant defence such as WRKY transcription factors and oxidative burst-associated genes like NADPH oxidases, whose expression became apparent only after treatment with harpin. While both harpin and LPS can stimulate plant immunity in Arabidopsis, the PAMP LPS induces much more subtle host reactions at the transcriptome scale. The defence machinery induced by harpin resembles the known HR-type host responses leading to cell death after treatment with this elicitor. LPS is a weak inducer of basal resistance and induces a different pattern of genes. Strikingly the biggest overlap (40) of responding genes was found between the early harpin response (30min) and the late LPS response (24h).200818406364
323160.9988Systemic acquired resistance delays race shifts to major resistance genes in bell pepper. ABSTRACT The lack of durability of host plant disease resistance is a major problem in disease control. Genotype-specific resistance that involves major resistance (R) genes is especially prone to failure. The compatible (i.e., disease) host-pathogen interaction with systemic acquired resistance (SAR) has been studied extensively, but the incompatible (i.e., resistant) interaction less so. Using the pepper-bacterial spot (causal agent, Xanthomonas axonopodis pv. vesicatoria) pathosystem, we examined the effect of SAR in reducing the occurrence of race-change mutants that defeat R genes in laboratory, greenhouse, and field experiments. Pepper plants carrying one or more R genes were sprayed with the plant defense activator acibenzolar-S-methyl (ASM) and challenged with incompatible strains of the pathogen. In the greenhouse, disease lesions first were observed 3 weeks after inoculation. ASM-treated plants carrying a major R gene had significantly fewer lesions caused by both the incompatible (i.e., hypersensitive) and compatible (i.e., disease) responses than occurred on nonsprayed plants. Bacteria isolated from the disease lesions were confirmed to be race-change mutants. In field experiments, there was a delay in the detection of race-change mutants and a reduction in disease severity. Decreased disease severity was associated with a reduction in the number of race-change mutants and the suppression of disease caused by the race-change mutants. This suggests a possible mechanism related to a decrease in the pathogen population size, which subsequently reduces the number of race-change mutants for the selection pressure of R genes. Thus, inducers of SAR are potentially useful for increasing the durability of genotype-specific resistance conferred by major R genes.200418943709
322170.9987Resistance inducers modulate Pseudomonas syringae pv. tomato strain DC3000 response in tomato plants. The efficacy of hexanoic acid (Hx) as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria.201425244125
81180.9987Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. Means to control bacterial wilt caused by the phytopathogenic root bacteria Ralstonia solanacearum are limited. Mutants in a large cluster of genes (hrp) involved in the pathogenicity of R. solanacearum were successfully used in a previous study as endophytic biocontrol agents in challenge inoculation experiments on tomato. However, the molecular mechanisms controlling this resistance remained unknown. We developed a protection assay using Arabidopsis thaliana as a model plant and analyzed the events underlying the biological control by genetic, transcriptomic and molecular approaches. High protection rates associated with a significant decrease in the multiplication of R. solanacearum were observed in plants pre-inoculated with a ΔhrpB mutant strain. Neither salicylic acid, nor jasmonic acid/ethylene played a role in the establishment of this resistance. Microarray analysis showed that 26% of the up-regulated genes in protected plants are involved in the biosynthesis and signalling of abscissic acid (ABA). In addition 21% of these genes are constitutively expressed in the irregular xylem cellulose synthase mutants (irx), which present a high level of resistance to R. solanacearum. We propose that inoculation with the ΔhrpB mutant strain generates a hostile environment for subsequent plant colonization by a virulent strain of R. solanacearum.201222432714
9203190.9987Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense. Plants inherently show resistance to pathogen attack but are susceptible to multiple bacteria, viruses, fungi, and phytoplasmas. Diseases as a result of such infection leads to the deterioration of crop yield. Several pathogen-sensitive gene activities, promoters of such genes, associated transcription factors, and promoter elements responsible for crosstalk between the defense signaling pathways are involved in plant resistance towards a pathogen. Still, only a handful of genes and their promoters related to plant resistance have been identified to date. Such pathogen-sensitive promoters are accountable for elevating the transcriptional activity of certain genes in response to infection. Also, a suitable promoter is a key to devising successful crop improvement strategies as it ensures the optimum expression of the required transgene. The study of the promoters also helps in mining more details about the transcription factors controlling their activities and helps to unveil the involvement of new genes in the pathogen response. Therefore, the only way out to formulate new solutions is by analyzing the molecular aspects of these promoters in detail. In this review, we provided an overview of the promoter motifs and cis-regulatory elements having specific roles in pathogen attack response. To elaborate on the importance and get a vivid picture of the pathogen-sensitive promoter sequences, the key motifs and promoter elements were analyzed with the help of PlantCare and interpreted with available literature. This review intends to provide useful information for reconstructing the gene networks underlying the resistance of plants against pathogens.202033214765