Enhanced removal of antibiotic resistance genes and mobile genetic elements during swine manure composting inoculated with mature compost. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
810101.0000Enhanced removal of antibiotic resistance genes and mobile genetic elements during swine manure composting inoculated with mature compost. Livestock manure is a major source of antibiotic resistance genes (ARGs) that enter the environment. This study assessed the effects of inoculation with mature compost (MC) on the fates of ARGs and the bacterial community during swine manure composting. The results showed that MC prolonged the thermophilic period and promoted the decomposition of organic matter, which was due to the rapid growth and reproduction of thermophilic bacteria (Bacillus, Thermobifida, and Thermobacillus). MC significantly reduced the relative abundances of ARGs (1.02 logs) and mobile genetic elements (MGEs) (1.70 logs) after composting, especially sulfanilamide resistance genes. The total ARGs removal rate was 1.11 times higher in MC than the control. Redundancy analysis and structural equation modeling showed that horizontal gene transfer mediated by MGEs (ISCR1 and intI1) was the main direct factor related to the changes in ARGs during composting, whereas the C/N ratio and pH were the two most important indirect factors. Network analysis showed that members of Firmicutes comprising Romboutsia, Clostridisensu_stricto_1, and Terrisporobacter were the main bacterial hosts of ARGs and MGEs. MC reduced the risk of ARGs transmission by decreasing the abundances of bacterial hosts. Thus, MC is a promising strategy for reducing the proliferation risk of ARGs.202133858100
691710.9999Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. This research investigated biogas residue and biochar addition on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and changes in bacterial community during agricultural waste composting. Sequencing technique investigated bacterial community structure and ARGs, MGEs changes. Correlations among physicochemical factors, ARGs, MGEs, and bacterial community structure were determined using redundancy analysis. Results confirmed that biochar and biogas residue amendments effectively lowered the contents of ARGs and MGEs. The main ARGs detected was sul1. Proteobacteria and Firmicutes were the main host bacteria strongly associated with the dissemination of ARGs. The dynamic characteristics of the bacterial community were strongly correlated with pile temperature and pH (P < 0.05). Redundancy and network analysis revealed that nitrate, intI1, and Firmicutes mainly affected the in ARGs changes. Therefore, regulating these key variables would effectively suppress the ARGs spread and risk of compost use.202336657587
810020.9999Composting temperature directly affects the removal of antibiotic resistance genes and mobile genetic elements in livestock manure. The high antibiotic resistance gene (ARGs) contents in livestock manure pose a potential risk to environment and human health. The heap composting with an ambient temperature and thermophilic composting are two methods for converting livestock manure into fertilizer. This study investigated the variations in ARGs and mobile genetic elements (MGEs) and revealed potential mechanisms for ARGs removal using the two composting methods. The ARGs abundance were enriched by 44-fold in heap composting, among them, the macrolide-resistance genes increased significantly. On the contrary, the ARGs were removed by 92% in thermophilic composting, among them, tetracycline-resistance genes decreased by 97%. The bacterial hosts of ARGs were associated with the variations of ARGs and MGEs. The tetO was correlated with the most diverse bacteria in heap composting, and Bacteroidetes was the major host bacteria. While tetT was correlated with the most diverse bacteria in thermophilic composting, and Proteobacteria was the major host bacteria. Structural equation models showed that the enrichment of ARGs in heap composting was mainly correlated with bacterial communities, whereas, the removal of ARGs in thermophilic composting was directly affect by MGEs. Composting temperature directly affected the variations in ARGs. Higher and lower temperatures significantly decreased and increased, respectively, ARGs and MGEs abundance levels.202235306090
809430.9998Additive quality influences the reservoir of antibiotic resistance genes during chicken manure composting. Aerobic composting is commonly used to dispose livestock manure and is an efficient way to reduce antibiotic resistance genes (ARGs). Here, the effects of different quality substrates on the fate of ARGs were assessed during manure composting. Results showed that the total relative abundances of ARGs and intI1 in additive treatments were lower than that in control, and high quality treatment with low C/N ratio and lignin significantly decreased the relative abundance of tetW, ermB, ermC, sul1 and sul2 at the end of composting. Additionally, higher quality treatment reduced the relative abundances of some pathogens such as Actinomadura and Pusillimonas, and some thermotolerant degrading-related bacteria comprising Pseudogracilibacillus and Sinibacillus on day 42, probably owing to the change of composting properties in piles. Structural equation models (SEMs) further verified that the physiochemical properties of composting were the dominant contributor to the variations in ARGs and they could also indirectly impact ARGs by influencing bacterial community and the abundance of intI1. Overall, these findings indicated that additives with high quality reduced the reservoir of antibiotic resistance genes of livestock manure compost.202134139628
806240.9998Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost. Livestock manure has been identified as a significant hotspot for antibiotic resistance genes (ARGs). However, the impact of nanoscale zero-valent iron (nZVI) on the fate of ARGs during livestock manure composting remains poorly understood. Here, we investigated the evolution of ARGs in chicken manure compost exposed to 100 and 600 mg kg(-1) nZVI. The results showed that nZVI addition reduced the concentration of some antibiotics such as doxycycline and sulfamethoxazole. Furthermore, nZVI addition decreased the abundances of most ARGs at the end of composting, but nZVI dosage did not have any significant effect. The abundances of the dominant ARGs (sul1 and sul2) were significantly correlated to the class 1 integron-integrase gene (intI1). A network analysis revealed that the genera Bacteroides, Bacillus, Corynebacterium, Thiopseudomonas and Pseudomonas were the main potential hosts for multiple ARGs, and the decreased abundance of these bacteria contributed to the removal of ARGs. Structural equation models demonstrated that the reduction in intI1 played a predominant role in ARG removal. The nZVI also had direct effects on the intI1 abundance. These findings suggest that the addition of nZVI is a promising strategy to minimize ARG release in chicken manure compost.202234416685
809950.9998The fate of antibiotic resistance genes during co-composting of swine manure with cauliflower and corn straw. Composting is not completely effective in reducing antibiotic resistance genes (ARGs) in animal manure. This work studied the effects of different treatment conditions on the fate of ARGs in composting swine manure with cauliflower and corn straw as bulking agents. The results showed that the addition of microbial agents or the ratio of corn stalks to cauliflower (1:12) could significantly decrease the absolute abundances of most ARGs (an average of 480 times) compared with the control treatment. Principal component analysis indicated that bacterial communities were significantly correlated with ARG abundance, suggesting that microbial communities have an impact on ARG variation during co-composting. Redundancy and Network analysis confirmed the changing patterns of individual ARGs (qnrS, bla(AmpC), bla(TEM-1)) were influenced by the selectivity of host bacteria (Pseudomonas, Klebsiella, and Halocella) and environmental variables (TN, NH(3)-N, TOC, and pH). These findings helped to optimize composting conditions, thereby reducing the risk of ARGs spread.202031891854
691660.9998Mobile genetic elements in potential host microorganisms are the key hindrance for the removal of antibiotic resistance genes in industrial-scale composting with municipal solid waste. During the municipal solid waste (MSW) composting, antibiotic resistance genes (ARGs) could be one of the concerns to hinder the application of MSW composting. However, the understanding of enrichment and dissemination of ARGs during the industrial-scale composting is still not clear. Hence, this study aimed to investigate the ARG distributions at different stages in an industrial-scale MSW composting plant. Seven target ARGs and four target mobile genetic elements (MGEs) and bacterial communities were investigated. The abundances of ARGs and MGEs increased during two aerobic thermophilic stages, but they decreased in most ARGs and MGEs after composting. Network analysis showed that potential host bacteria of ARGs were mainly Firmicutes and Actinobacteria. The reduction of potential host bacteria was important to remove ARGs. MGEs were an important factor hindering ARG removal. Water-extractable S and pH were two main physicochemical factors in the changes of microbial community and the abundance of ARGs.202031962245
691970.9998Enhanced removal of antibiotic resistance genes during chicken manure composting after combined inoculation of Bacillus subtilis with biochar. This study explored the combined effects of Bacillus subtilis inoculation with biochar on the evolution of bacterial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) during the composting of chicken manure. The results showed that B. subtilis inoculation combined with biochar increased bacterial abundance and diversity as well as prolonged the compost thermophilic period. Promoted organic matter biodegradation and facilitated the organic waste compost humification process, reduced the proliferation of ARGs by altering the bacterial composition. Firmicutes and Actinobacteriota were the main resistant bacteria related to ARGs and MGEs. The decrease in ARGs and MGEs was associated with the reduction in the abundance of related host bacteria. Compost inoculation with B. subtilis and the addition of biochar could promote nutrient transformation, reduce the increase in ARGs and MGEs, and increase the abundance of beneficial soil taxa.202437778803
691580.9998Industrial-scale aerobic composting of livestock manures with the addition of biochar: Variation of bacterial community and antibiotic resistance genes caused by various composting stages. The presence of large amounts of antibiotic resistance genes (ARGs) in livestock manures poses an impending, tough safety risk to ecosystems. To investigate more comprehensively the mechanisms of ARGs removal from industrial-scale composting of livestock manure based on biochar addition, we tracked the dynamics of bacterial community and ARGs at various stages of aerobic composting of livestock manures with 10% biochar. There were no significant effects of biochar on the bacterial community and the profiles of ARGs. During aerobic composting, the relative abundance of ARGs and mobile genetic elements (MGEs) showed overall trends of decreasing and then increasing. The key factor driving the dynamics of ARGs was bacterial community composition, and the potential hosts of ARGs were Caldicoprobacter, Tepidimicrobium, Ignatzschineria, Pseudogracilibacillus, Actinomadura, Flavobacterium and Planifilum. The retention of the thermophilic bacteria and the repopulation of the initial bacteria were the dominant reasons for the increase in ARGs at maturation stage. Additionally, among the MGEs, the relative abundance of transposon gene was substantially removed, while the integron genes remained at high relative abundance. Our results highlighted that the suitability of biochar addition to industrial-scale aerobic composting needs to be further explored and that effective measures are needed to prevent the increase of ARGs content on maturation stage.202236162559
691490.9998Responses of antibiotic and heavy metal resistance genes to bamboo charcoal and bamboo vinegar during aerobic composting. The application of compost in agriculture has led to the accumulation of antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs) in the soil environment. In this study, the response of ARGs and MRGs to bamboo charcoal (BC) and bamboo vinegar (BV) during aerobic composting was investigated. Results showed that BC + BV treatment reduced the abundances of ARGs and mobile genetic elements (MGEs) during the thermophilic period, as well as achieved the lowest rebound during the cooling period. BC + BV promoted the growth of Firmicutes, thereby facilitating the thermophilic period of composting. The rebound of ARGs and MGEs can be explained by increasing the abundance of Actinobacteria and Proteobacteria at the end of composting. Composting reduced the abundances of MRGs comprising pcoA, tcrB, and cueO, whereas cusA and copA indicated the selective pressure imposed by heavy metals on bacteria. The fate of ARGs was mainly driven by MGEs, and heavy metals explained most of the variation in MRGs. Interestingly, nitrogen conversion also had an important effect on ARG and MRG profiles. Our current findings suggest that the addition of BC + BV during compost preparation is an effective method in controlling the mobility of ARGs and MRGs, thereby reducing the environmental problems.201931252107
7546100.9998Reduction of antibiotic resistance genes under different conditions during composting process of aerobic combined with anaerobic. Single aerobic or anaerobic composting is reportedly as inefficient for removing antibiotic resistance genes (ARGs) from animal manure. This study investigates the effects of ARG removal during aerobic combined with anaerobic composting (ACA) under different conditions. The results showed that a turning frequency of once a day, the proportion of swine manure and corn straw (3:1) and an anaerobic time of 6 days were the best operating conditions for ARG reduction (>95%, especially ermF: 99.78%) during ACA. Moreover, redundancy analysis demonstrated that the bacterial community (especially Truepera, Petrimonas and Ureibacillus) had a stronger effect on ARG removal than environmental factors did (especially temperature, total phosphorus, ammonia nitrogen and pH). Network analysis indicated the important effect of these potential host bacteria on the spread of ARGs through significant co-occurrence between individual ARGs and specific bacteria. These findings offer an effective technology to reduce and block ARGs spread from animal manure.202133493747
8091110.9998Changes in antibiotic resistance genes and mobile genetic elements during cattle manure composting after inoculation with Bacillus subtilis. This study explored the effects of Bacillus subtilis at four levels (0, 0.5%, 1%, and 2% w/w compost) on the variations in ARGs, mobile genetic elements (MGEs), and the bacterial community during composting. The composting process had a greater impact on ARGs than Bacillus subtilis. The main ARG detected was sul1. The addition of Bacillus subtilis at 0.5% reduced the relative abundances of ARGs, MGEs, and human pathogenic bacteria (by 2-3 logs) in the mature products. Network and redundancy analyses suggested that intI1, Firmicutes, and pH were mainly responsible for the changes in ARGs, thus controlling these factors might help to inhibit the spread of ARGs.201931442833
8076120.9998Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion. As antibiotic and heavy metals are over used in the livestock industry, animal manure is a reservoir of antibiotic resistance genes (ARGs). Anaerobic digestion has been reported to have the potential to reduce ARGs. However, few studies investigated whether reduction of ARGs would be affected by different external pressures including antibiotics and heavy metals during anaerobic digestion. The purpose of this study was thus to investigate effects of both chlortetracycline (CTC) and Cu on reduction of ARGs, heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) during the swine manure anaerobic digestion. The results showed that the predominant ARGs (tetO, tetW, tetX, tetL) could be effectively reduced (approximately 1.00 log copies/g TS) through mesophilic anaerobic digestion. Microbial community evolution was the main driver. It was interesting that Treponema might indicate the termination of anaerobic digestion and compete with ARGs host bacteria. Addition of CTC, Cu and CTC+Cu affected microbial community change and hindered removal of ARGs, especially, CTC+Cu seriously affected Treponema and ARGs during anaerobic digestion.201728432950
6923130.9998Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts. Sewage sludge was generally considered a significant reservoir of antibiotic resistance genes (ARGs) and could enter agricultural systems as fertilizer after composting. Soil types and the discrepancy of sludge composts could have influenced the fate of antibiotic-resistant bacteria (ARB) following the land application of sludge composts, which deserved to be clarified. Thus, the fate of ARB and ARGs following the land application of three types of sludge composts (A, B, and C) to three different soils (red soil, loess, and black soil) was investigated. The results showed that tetX, which was enriched the most during composting, did not affect the soil resistome, whereas tetG did. Soil types influenced the dynamics of ARB and ARGs significantly, whereas no significant difference was observed among compost types. The advantage of reducing ARGs during the composting process in compost B did not extend to land application. Land application of composts influenced the microbial community significantly at the early stage, but the microbial community returned to the control pattern gradually. Changes in the microbial community contributed more to the dynamics of ARGs in red and black soil compared with other factors, including co-selection from heavy metals, horizontal gene transfer, biomass and environmental factors, whereas horizontal gene transfer, reflected by intI1 levels, contributed the most in loess.201829793114
8098140.9998Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. This study used a metagenomic approach to investigate the effects of earthworms on ARGs and HPB during the vermicomposting of dewatered sludge. Results showed that 139 types of ARGs were found in sludge vermicompost, affiliated to 30 classes. Compared with the control, the total abundance of ARGs in sludge vermicompost decreased by 41.5%. Moreover, the types and sequences of plasmids and integrons were also decreased by vermicomposting. Proteobacteria and Actinobacteria were the most dominant hosts of ARGs in sludge vermicompost. In addition, earthworms reduced the total HPB abundance and modified their diversity, thus leading to higher abundance of Enterobacteriaceae in sludge vermicompost. However, the sludge vermicompost was still ARG and HPB enriched, indicating a remaining environmental risk for agricultural purpose. The observed change of microbial community and the reduction of mobile genetic elements caused by earthworm activity are the main reasons for the alleviation of ARG pollution during vermicomposting.202031787516
8122150.9998Enhanced removal of antibiotic resistance genes and mobile genetic elements during sewage sludge composting covered with a semi-permeable membrane. Transmission of antibiotic resistance genes (ARGs) via air media, such as particulate matter, has been intensively investigated due to human exposure through inhalation. However, whether particulate matter originating from the atmospheric environment of composting plants can impact ARG abundance during composting is unknown. Here, we investigated the effects of the atmospheric environment of composting plants on ARG abundance during sewage sludge composting using semi-permeable membrane-covered thermophilic composting (smTC) and conventional thermophilic composting (cTC). After smTC treatment, the total abundances of ARGs and mobile genetic elements (MGEs) decreased by 42.1 % and 38.1 % compared with those of the initial phase, respectively, but they increased by 4.5- and 1.6-fold after cTC, respectively. This result suggested that smTC was more efficient at decreasing ARGs and MGEs than cTC, mainly due to a significant reduction in bacterial contamination from the atmospheric environment of composting plants that accelerated the resurgence of ARGs and MGEs. Furthermore, culture experiments demonstrated that the abundance and diversity of antibiotic-resistant bacteria during the mature phase of smTC were also significantly (P <  0.05) lower than those in the cTC treatment. Thus, covering composting with a semi-permeable membrane could decrease the risk of ARGs spreading.202032361132
8060160.9998Responses of bacterial communities and antibiotic resistance genes to nano-cellulose addition during pig manure composting. Treatment with exogenous additives during composting can help to alleviate the accumulation of antibiotic resistance genes (ARGs) caused by the direct application of pig manure to farmland. In addition, nano-cellulose has an excellent capacity for adsorbing pollutants. Thus, the effects of adding 300, 600, and 900 mg/kg nano-cellulose to compost on the bacterial communities, mobile genetic elements (MGEs), and ARGs were determined in this study. After composting, treatment with nano-cellulose significantly reduced the relative abundance of ARGs, which was lowest in the compost product with 600 mg/kg added nano-cellulose. Nano-cellulose inhibited the rebound in ARGs from the cooling period to the maturity period, and weakened the selective pressure of heavy metals on microorganisms by passivating bio-Cu. The results also showed that MGEs explained most of the changes in the abundances of ARGs, and MGEs had direct effects on ARGs. The addition of 600 mg/kg nano-cellulose reduced the abundances of bacterial genera associated with ermQ, tetG, and other genes, and the number of links (16) between ARGs and MGEs was lowest in the treatment with 600 mg/kg added nano-cellulose. Therefore, adding 600 mg/kg nano-cellulose reduced the abundances of ARGs by affecting host bacteria and MGEs. The results obtained in this study demonstrate the positive effect of nano-cellulose on ARG pollution in poultry manure, where adding 600 mg/kg nano-cellulose was most effective at reducing the abundances of ARGs.202134649327
7548170.9998Maturity phase is crucial for removing antibiotic resistance genes during composting: novel insights into dissolved organic matter-microbial symbiosis system. Composting is widely regarded as an effective method for reducing antibiotic resistance genes (ARGs) in livestock and poultry manure. However, the critical mechanisms of ARGs in different composting phase are still unclear. In this study, normal composting and two types of rapid composting (without mature phase) were used to analyze the removal of ARGs and the succession of dissolved organic matter (DOM). Compared to normal composting, rapid composting reactivated tetracyclines, sulfonamide, and quinolones resistance genes during the maturation phase and reduced the total ARGs removal rates by 45.58 %-57.87 %. Humus-like components could inhibit the proliferation of ARGs, and the enrichment of protein-like components increased abundances of Pusillimonas, Persicitalea, and Pseudomonas, indirectly reducing the removal. This study is the first to demonstrate the contribution of DOM and microbial community to ARGs removal, emphasizing the importance of the maturation phase for ARGs elimination. This research provides guidance for producing safe compost products.202540311709
7556180.9998The fate and behavior mechanism of antibiotic resistance genes and microbial communities in anaerobic reactors treating oxytetracycline manufacturing wastewater. In this study, two parallel-operated expanded granular sludge bed (EGSB) reactors, one used to treat oxytetracycline (OTC) manufacturing wastewater with gradual increase of OTC concentration as experimental reactor and the other fed with the same wastewater without OTC as control reactor, were operated to investigate the behavior of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs) and their possible relationships with bacterial community among influent, sludge and effluent environments. Though the average absolute abundance of ARGs slightly decreased (0.26 - log), the ARGs' relative abundance normalized to 16S-rRNA gene copy numbers showed a significant upward trend in effluent (2 multiples - increase) and the absolute and relative abundances both extremely increased in anaerobic sludge, indicating that anaerobic treatment process cannot reduce ARGs efficiently, inversely can increase the risk of ARGs through the proliferation of antibiotics resistance bacteria (ARB) under the suppression of OTC. MGEs, bacterial communities and OTC concentration mainly impacted the ARGs profiles, which contributed 88.4% to the variation of ARGs. The differences and correlations of hosts in influent, effluent and sludge were further confirmed by network analysis. Overall, this study enhanced the understanding of the prevalence and transfer of ARGs in OTC production effluents during anaerobic treatment.202234740157
7547190.9998Mechanism concerning the occurrence and removal of antibiotic resistance genes in composting product with ozone post-treatment. The soil application of composting product will probably cause the spread of antibiotic resistance genes (ARGs) to environment, thereby it is crucial to remove ARGs in composting product. Ozone was adopted for the first time as a post-treatment method to remove the ARGs in composting product in this study. Ozone treatment significantly removed the total ARGs and mobile genetic elements (MGEs) once ozonation process finished. After 10-day storage stage, although the amount of total intracellular ARGs and MGEs increased, the total extracellular ARGs and MGEs decreased in the ozone-treated compost product. Correlation analysis revealed that the reduction in intracellular 16S rRNA contributed to intracellular tetQ and tetW removal, while the variations of other ARGs after ozonation related to MGEs abundance. Network analysis suggested that the reduction of potential host bacteria, as well as the decline in NH(4)(+)-N and TOC after the ozonation, contributed to the intracellular ARGs removal.202133257169