Biofilm enhanced the mitigations of antibiotics and resistome in sulfadiazine and trimethoprim co-contaminated soils. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
808601.0000Biofilm enhanced the mitigations of antibiotics and resistome in sulfadiazine and trimethoprim co-contaminated soils. Reducing antibiotic levels in soil ecosystems is vital to curb the dissemination of antimicrobial resistance genes (ARGs) and mitigate global health threats. However, gaps persist in understanding how antibiotic resistome can be suppressed during antibiotic degradation. Herein, we investigate the efficacy of a biochar biofilm incorporating antibiotics-degrading bacterial strain (Arthrobacter sp. D2) to mitigate antibiotic resistome in non-manured and manure-amended soils with sulfadiazine (SDZ) and trimethoprim (TMP) contamination. Results show that biofilm enhanced SDZ degradation by 83.0% within three days and increased TMP attenuation by 55.4% over 60 days in non-manured soils. In the non-manured black soil, the relative abundance of ARGs increased initially after biofilm inoculation. However, by day 30, it decreased by 20.5% compared to the controls. Moreover, after 7 days, biofilm reduced TMP by 38.5% in manured soils and decreased the total ARG abundance by 19.0%. Thus, while SDZ degradation did not increase sulfonamide resistance genes, TMP dissipation led to a proliferation of insertion sequences and related TMP resistance genes. This study underscores the importance of antibiotic degradation in reducing related ARGs while cautioning against the potential proliferation and various ARGs transfer by resistant microorganisms.202439255667
808510.9999Elevated CO(2) alleviated the dissemination of antibiotic resistance genes in sulfadiazine-contaminated soil: A free-air CO(2) enrichment study. Climate change affects soil microbial communities and their genetic exchange, and subsequently modifies the transfer of antibiotic resistance genes (ARGs) among bacteria. However, how elevated CO(2) impacts soil antibiotic resistome remains poorly characterized. Here, a free-air CO(2) enrichment system was used in the field to investigate the responses of ARGs profiles and bacterial communities to elevated CO(2) (+200 ppm) in soils amended with sulfadiazine (SDZ) at 0, 0.5 and 5 mg kg(-1). Results showed that SDZ exposure induced the co-occurrence of beta-lactamase and tetracycline resistance genes, and SDZ at 5 mg kg(-1) enhanced the abundance of aminoglycoside, sulfonamide and multidrug resistance genes. However, elevated CO(2) weakened the effects of SDZ at 0.5 mg kg(-1) following an observed reduction in the total abundance of ARGs and mobile genetic elements. Additionally, elevated CO(2) significantly decreased the abundance of vancomycin resistance genes and alleviated the stimulation of SDZ on the dissemination of aminoglycoside resistance genes. Correlation analysis and structural equation models revealed that elevated CO(2) could directly influence the spread of ARGs or impose indirect effects on ARGs by affecting soil properties and bacterial communities. Overall, our results furthered the knowledge of the dissemination risks of ARGs under future climate scenarios.202336857828
808420.9999Metagenomic insights into effects of carbon/nitrogen ratio on microbial community and antibiotic resistance in moving bed biofilm reactor. This study investigated the effects of carbon/nitrogen (C/N) ratio on microbial community in moving bed biofilm reactor (MBBR) using metagenomic analysis, and the dynamic changes of relevant antibiotic resistance genes (ARGs) were also analyzed. The results showed that under low C/N ratio, MBBR exhibited average removal rates of 98.41 % for ammonia nitrogen and 75.79 % for total nitrogen. Metagenomic analysis showed low C/N ratio altered the structure of biofilm and water microbiota, resulting in the detachment of bacteria such as Actinobacteria from biofilm into water. Furthermore, sulfamethazine (SMZ)-resistant bacteria and related ARGs were released into water under low C/N ratio, which lead to the increase of SMZ resistance rate to 90%. Moreover, most dominant genera are potential hosts for both nitrogen cycle related genes and ARGs. Specifically, Nitrosomonas that carried gene sul2 might be released from biofilm into water. These findings implied the risks of antibiotic resistance dissemination in MBBR under low C/N ratio.202438901747
808230.9999Deciphering the toxic effects of antibiotics on denitrification: Process performance, microbial community and antibiotic resistance genes. The extensive application of antibiotics, and the occurrence and spread of antibiotic resistance genes (ARGs) shade health risks to human and animal. The long-term effects of sulfamethoxazole (SMX) and tetracycline (TC) on denitrification process were evaluated in this study, with the focus on nitrogen removal performance, microbial community and ARGs. Results showed that low-concentration SMX and TC (<0.2 mg L(-1)) initially caused a deterioration in nitrogen removal performance, while higher concentrations (0.4-20 mg L(-1)) of both antibiotics had no further inhibitory influences. The abundances of ARGs in both systems generally increased during the whole period, and most of them had significant correlations with intI1, especially efflux-pump genes. Castellaniella, which was the dominant genus under antibiotic pressure, might be potential resistant bacteria. These findings provide an insight into the toxic effects of different antibiotics on denitrification process, and guides future efforts to control antibiotics pollution in ecosystems.202032250829
808340.9999Alteration of the migration trajectory of antibiotic resistance genes by microplastics in a leachate activated sludge system. The environmental behavior of emerging contaminants of microplastics (MPs), antibiotics and antibiotic resistance genes (ARGs) in the leachate activated sludge system has been monitored and analyzed comprehensively. The results suggested that MPs could effectively alter the migration trajectory of tetracycline resistance genes (tet genes) in the leachate activated sludge system under intermittent and continuous influent conditions. After adding MPs, the total average abundance of tet genes in leachate increased from 0.74 ± 0.07 to 0.78 ± 0.07 (log(10)tet genes/log(10) 16S rRNA) and that in sludge increased from 0.65 ± 0.08 to 0.70 ± 0.06 (log(10)tet genes/log(10) 16S rRNA). Except for tetA, the abundance of tetB, tetO, tetM and tetQ on MPs increased with increasing TC concentration under both aerobic and anaerobic conditions. MPs not only significantly affect the abundance level and migration trajectory of ARGs in the leachate activated sludge system, but also remarkably improve the level of heavy metals in the ambient environment, indirectly promoting the selective effect of antibiotic-resistant bacteria (ARB) and promoting the development of antibiotic resistance (AR). In addition, MPs changed their physicochemical properties and released hazardous substances with aging to force tet genes to migrate from the leachate activated sludge system to the MPs, making AR more difficult to eliminate and persisted in wastewater treatment plants. Meanwhile, microorganisms played a driving role, making MPs serve as a niche for ARGs and ARB colonization. The co-occurrence network analysis indicated the specific distribution pattern of tet genes and microorganisms in different media, and the potential host was speculated. This study improves the understanding of the environmental behavior of emerging contaminants in leachate activated sludge system and lays a theoretical for protecting the ecological environment.202337321316
755250.9999Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach. As antibiotic resistance continues to spread globally, there is growing interest in the potential to limit the spread of antibiotic resistance genes (ARGs) from wastewater sources. In particular, operational conditions during sludge digestion may serve to discourage selection of resistant bacteria, reduce horizontal transfer of ARGs, and aid in hydrolysis of DNA. This study applied metagenomic analysis to examine the removal efficiency of ARGs through thermophilic and mesophilic anaerobic digestion using bench-scale reactors. Although the relative abundance of various ARGs shifted from influent to effluent sludge, there was no measureable change in the abundance of total ARGs or their diversity in either the thermophilic or mesophilic treatment. Among the 35 major ARG subtypes detected in feed sludge, substantial reductions (removal efficiency >90%) of 8 and 13 ARGs were achieved by thermophilic and mesophilic digestion, respectively. However, resistance genes of aadA, macB, and sul1 were enriched during the thermophilic anaerobic digestion, while resistance genes of erythromycin esterase type I, sul1, and tetM were enriched during the mesophilic anaerobic digestion. Efflux pump remained to be the major antibiotic resistance mechanism in sludge samples, but the portion of ARGs encoding resistance via target modification increased in the anaerobically digested sludge relative to the feed. Metagenomic analysis provided insight into the potential for anaerobic digestion to mitigate a broad array of ARGs.201525994259
702260.9999Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants. The removal of antibiotics, antibiotic-resistant bacteria (ARB), and cell-free antibiotic-resistant genes (ARGs) and the microbial community of ARB were investigated in detail to understand their fate and provide valuable information on the feasibility of full-scale membrane bioreactor (MBR). The potential risks of cell-free ARGs to the receiving environment were discovered. High influent antibiotic concentration could inhibit the microbial activity of MBR sludge, whereas good antibiotic removal could be maintained because of relatively long solid retention time and high biomass retention. Approximately 61.8%-77.5% of the total antibiotics were degraded, and 22.5%-38.2% of the total antibiotics were adsorbed by MBR sludge on average. The individual antibiotic removal presented intense discrepancy because of the chemical construction and distribution coefficient of antibiotics. Aeromonas exhibited specific antibiotic resistance to ampicillin and erythromycin, Escherichia became the predominant genera in kanamycin-ARB and tetracycline-ARB, and Klebsiella and Bacteroides were the particular genera that exhibited distinct antibiotic resistance to ciprofloxacin. A significant correlation was found between cell-free ARG abundance and ARB content, and relatively high effluent cell-free ARG abundance facilitated the proliferation and transmission of ARB. The impacts of the receiving environment to eliminate the ecological risks and severe threats to human health should be investigated because of the low decay ratio and long-term persistence of cell-free ARGs.202031986335
695070.9999Ceftiofur in swine manure contributes to reducing pathogens and antibiotic resistance genes during composting. Aerobic composting is a common way for the disposal of feces produced in animal husbandry, and can reduce the release of antibiotic resistance genes (ARGs) from feces into the environment. In this study, we collected samples from two distinct treatments of swine manure compost with and without ceftiofur (CEF), and identified the ARGs, mobile genetic elements (MGEs), and bacterial community by metagenomic sequencing. The impacts of CEF on the bacterial community composition and fate of ARGs and MGEs were investigated. With increasing composting temperature and pH, the concentration of CEF in the manure decreased rapidly, with a degradation half-life of 1.12 d and a 100% removal rate after 10 d of aerobic composting. Metagenomics demonstrated that CEF in the manure might inhibit the growth of Firmicutes and Proteobacteria, thereby reducing some ARGs and MGEs hosted by these two bacteria, which was further confirmed by the variations of ARGs and MGEs. A further redundancy analysis suggested that pH and temperature are key environmental factors affecting ARG removal during composting, and intI1 and bacterial communities also have significant influence on ARG abundance. These results are of great significance for promoting the removal of some ARGs from animal manure by controlling some key environmental factors and the type of antibiotics used in animals.202438685300
808980.9999Reductions in abundances of intracellular and extracellular antibiotic resistance genes by SiO(2) nanoparticles during composting driven by mobile genetic elements. Applying exogenous additives during the aerobic composting of livestock manure is effective for slowing down the spread of antibiotic resistance genes (ARGs) in the environment. Nanomaterials have received much attention because only low amounts need to be added and they have a high capacity for adsorbing pollutants. Intracellular ARGs (i-ARGs) and extracellular ARGs (e-ARGs) comprise the resistome in livestock manure but the effects of nanomaterials on the fates of these different fractions during composting are still unclear. Thus, we investigated the effects of adding SiO(2) nanoparticles (SiO(2)NPs) at four levels (0 (CK), 0.5 (L), 1 (M), and 2 g/kg (H)) on i-ARGs, e-ARGs, and the bacterial community during composting. The results showed that i-ARGs represented the main fraction of ARGs during aerobic composting of swine manure, and their abundance was lowest under M. Compared with CK, M increased the removal rates of i-ARGs and e-ARGs by 17.9% and 100%, respectively. SiO(2)NPs enhanced the competition between ARGs hosts and non-hosts. M optimized the bacterial community by reducing the abundances of co-hosts (Clostridium_sensu_stricto_1, Terrisporobacter, and Turicibacter) of i-ARGs and e-ARGs (by 96.0% and 99.3%, respectively) and killing 49.9% of antibiotic-resistant bacteria. Horizontal gene transfer dominated by mobile genetic elements (MGEs) played a key role in the changes in the abundances of ARGs. i-intI1 and e-Tn916/1545 were key MGEs related closely to ARGs, and the maximum decreases of 52.8% and 100%, respectively, occurred under M, which mainly explained the decreased abundances of i-ARGs and e-ARGs. Our findings provide new insights into the distribution and main drivers of i-ARGs and e-ARGs, as well as demonstrating the possibility of adding 1 g/kg SiO(2)NPs to reduce the propagation of ARGs.202337148762
807990.9999Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting. Heavy metals driven co-selection of antibiotic resistance in soil and water bodies has been widely concerned, but the response of antibiotic resistance to co-existence of antibiotics and heavy metals in composting system is still unknown. Commonly used sulfamethoxazole and copper were individually and jointly added into four reactors to explore their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), heavy metal resistance genes (MRGs) and bacterial community structure. The abundance of total ARGs and MGEs were notably decreased by 68.64%-84.95% and 91.27-97.38%, respectively, after the composting. Individual addition of sulfamethoxazole, individual addition of copper, simultaneously addition of sulfamethoxazole and copper increased the abundance of ARGs and MGEs throughout the composting period. Co-exposure of sulfamethoxazole and copper elevated the total abundance of ARGs by 1.17-1.51 times by the end of the composting compared to individual addition of sulfamethoxazole or copper. Network analysis indicated that the shifts in potential host bacteria determined the ARGs variation. Additionally, MGEs and MRGs had significant effects on ARGs, revealing that horizontal gene transfer and heavy metals induced co-resistance could promote ARGs dissemination.202234537705
7032100.9999Free Radicals on Aging Microplastics Regulated the Prevalence of Antibiotic Resistance Genes in the Aquatic Environment: New Insight into the Effect of Microplastics on the Spreading of Biofilm Resistomes. The spread of antibiotic resistance genes (ARGs) by microplastics has received a great concern in coexisting "hotspots". Despite most microplastics suffering from natural aging, little is known about the effect of aging microplastics (A-MPs) on ARGs dissemination. Here, we demonstrated significant suppression of A-MPs on ARGs dissemination in natural rivers. Although ARGs and mobile genetic elements (MGEs) were effectively enriched on A-MPs, the relative abundance of ARGs and MGEs on A-MPs as well as in receiving water decreased by approximately 21.4% to 42.3% during a period of 30 days of dissemination. Further investigation revealed that (•)OH was consistently generated on A-MPs with a maximum value of 0.2 μmol/g. Importantly, scavenging of (•)OH significantly increased the relative abundance of ARGs and MGEs both on A-MPs and in receiving water 1.4-29.1 times, indicating the vital role of (•)OH in suppressing ARGs dissemination. Microbial analysis revealed that (•)OH inhibited the potential antibiotic-resistant bacteria in surface biofilms, such as Pseudomonas and Acinetobacter (with a decrease of 68.8% and 89.3%). These results demonstrated that (•)OH was extensively produced on A-MPs, which greatly reduced both the vertical and horizontal gene transfer of ARGs. This study provided new insights into the dissemination of ARGs through microplastics in natural systems.202540359213
7563110.9999Polystyrene microplastics alleviate the effects of sulfamethazine on soil microbial communities at different CO(2) concentrations. Microplastics were reported to adsorb antibiotics and may modify their effects on soil systems. But there has been little research investigating how microplastics may affect the toxicities of antibiotics to microbes under future climate conditions. Here, we used a free-air CO(2) enrichment system to investigate the responses of soil microbes to sulfamethazine (SMZ, 1 mg kg(-1)) in the presence of polystyrene microplastics (PS, 5 mg kg(-1)) at different CO(2) concentrations (ambient at 380 ppm and elevated at 580 ppm). SMZ alone decreased bacterial diversity, negatively affected the bacterial structure and inter-relationships, and enriched the sulfonamide-resistance genes (sul1 and sul2) and class 1 integron (intl1). PS, at both CO(2) conditions, showed little effect on soil bacteria but markedly alleviated SMZ's adverse effects on bacterial diversity, composition and structure, and inhibited sul1 transmission by decreasing the intl1 abundance. Elevated CO(2) had limited modification in SMZ's disadvantages to microbial communities but markedly decreased the sul1 and sul2 abundance. Results indicated that increasing CO(2) concentration or the presence of PS affected the responses of soil microbes to SMZ, providing new insights into the risk prediction of antibiotics under future climate conditions.202133592488
7034120.9999Meta-analysis reveals the processes and conditions of using biochar to control antibiotic resistance genes in soil. Soil is a significant reservoir of antibiotic resistance genes (ARGs) and an important habitat for pathogens associated with many clinical infections and plant disease outbreaks. Although scientists have found that biochar can reduce ARGs in soil, the understanding of how biochar removes soil ARGs and the influencing factors remains limited. Here, a meta-analysis of 65 published studies was conducted to illuminate the mechanisms through which biochar remediates ARG-contaminated soils. In biochar-amended soil, the antibiotic content significantly decreased by 24.1 %, while the abundances of mobile genetic elements and ARG host bacteria declined by 23.5 % and 12.1 %, respectively. The reduced antibiotic content, suppressed mobile genetic elements, and altered bacterial community structure collectively led to a 41.8 % reduction in soil ARG abundance. In addition, wood-derived biochar pyrolyzed at 300-500 °C exhibited a substantial advantage in the remediation of ARGs. Furthermore, biochar application decreased the abundance of ARGs in alkaline and neutral soil more markedly than that in acidic soil. The results of this research confirmed the positive mitigating effect of biochar on ARGs in soil, providing valuable insights for the prevention and control of ARG pollution.202540359860
7033130.9999Environmental drivers and interaction mechanisms of heavy metal and antibiotic resistome exposed to amoxicillin during aerobic composting. The environmental accumulation and spread of antibiotic resistance pose a major threat to global health. Aerobic composting has become an important hotspot of combined pollution [e.g., antibiotic resistance genes (ARGs) and heavy metals (HMs)] in the process of centralized treatment and resource utilization of manure. However, the interaction mechanisms and environmental drivers of HMs resistome (MRGs), antibiotic resistance (genotype and phenotype), and microbiome during aerobic composting under the widely used amoxicillin (AMX) selection pressure are still poorly understood. Here, we investigated the dynamics of HMs bioavailability and their MRGs, AMX-resistant bacteria (ARB) and antibiotic resistome (ARGs and intI1), and bacterial community to decipher the impact mechanism of AMX by conducting aerobic composting experiments. We detected higher exchangeable HMs and MRGs in the AMX group than the control group, especially for the czrC gene, indicating that AMX exposure may inhibit HMs passivation and promote some MRGs. The presence of AMX significantly altered bacterial community composition and AMX-resistant and -sensitive bacterial structures, elevating antibiotic resistome and its potential transmission risks, in which the proportions of ARB and intI1 were greatly increased to 148- and 11.6-fold compared to the control group. Proteobacteria and Actinobacteria were significant biomarkers of AMX exposure and may be critical in promoting bacterial resistance development. S0134_terrestrial_group was significantly negatively correlated with bla(TEM) and czrC genes, which might play a role in the elimination of some ARGs and MRGs. Except for the basic physicochemical (MC, C/N, and pH) and nutritional indicators (NO(3) (-)-N, NH(4) (+)-N), Bio-Cu may be an important environmental driver regulating bacterial resistance during composting. These findings suggested the importance of the interaction mechanism of combined pollution and its synergistic treatment during aerobic composting need to be emphasized.202236687604
7542140.9999Antibiotics resistance removal from piggery wastewater by an integrated anaerobic-aerobic biofilm reactor: Efficiency and mechanism. Antibiotic resistance residual in piggery wastewater poses serious threat to environment and human health. Biological treatment process is commonly installed to remove nutrient from piggery wastewater and also effective in removing antibiotics to varying degrees. But the specific pathways and mechanisms involved in the removal of antibiotic resistance are not yet well-understood. An integrated anaerobic-aerobic biofilm reactor (IAOBR) has been demonstrated efficient in removing conventional nutrients. It is here shown that the IAOBR effectively removed 79.0% of Sulfonamides, 55.7% of Tetracyclines and 53.6% of Quinones. Antibiotic resistance bacteria (ARB) were simultaneously inactivated by ~0.5 logs. Antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) were decreased by 0.51 logs and 0.42 logs, respectively. The antibiotics were mainly removed through aerobic compartments of the IAOBR. The mass loss of antibiotics in the reactor was achieved by biodegradation and adsorption, accounting for 52.1% and 47.9%, respectively. An obvious accumulation of ARGs was observed in the activated sludge. The potential host of ARGs was analyzed via microbial community and network. Partial least squares-structural equation model and correlation analysis revealed that the enrichment of ARGs was positively affected by MGEs, followed by bacterial community and ARBs, but the effect of antibiotics on ARGs was negative. Outcomes of this study provide valuable insights into the mechanisms of antibiotic resistance removal in biological treatment processes.202337714352
7023150.9999Metagenomic absolute quantification of antibiotic resistance genes and virulence factor genes-carrying bacterial genomes in anaerobic digesters. Sewage treatment works have been considered as hotspots for the dissemination of antibiotic resistance genes (ARGs). Anaerobic digestion (AD) has emerged as a promising approach for controlling the spread of ARGs while destroying biomass in sludge. Evaluating the impact of AD on ARG removal relies on the absolute quantification of ARGs. In this study, we quantified the ARG concentrations in both full-scale and lab-scale AD systems using a cellular spike-ins based absolute quantification approach. Results demonstrated that AD effectively removed 68 ± 18 %, 55 ± 12 %, and 57 ± 19 % of total ARGs in semi-continuous AD digesters, with solid retention times of 15, 20, and 25 days, respectively. The removal efficiency of total ARGs increased as the AD process progressed in the batch digesters over 40 days. A significant negative correlation was observed between digestion time and the concentrations of certain ARG types, such as beta-lactam, sulfonamide, and tetracycline. However, certain potential pathogenic antibiotic resistant bacteria (PARB) and multi-resistant high-risk ARGs-carrying populations robustly persisted throughout the AD process, regardless of the operating conditions. This study highlighted the influence of the AD process and its operating parameters on ARG removal, and revealed the broad spectrum and persistence of PARB in AD systems. These findings provided critical insights for the management of microbial hazards.202438359594
7533160.9999NO(3)(-) as an electron acceptor elevates antibiotic resistance gene and human bacterial pathogen risks in managed aquifer recharge (MAR): A comparison with O(2). Managed aquifer recharge (MAR) stands out as a promising strategy for ensuring water resource sustainability. This study delves into the comparative impact of nitrate (NO(3)(-)) and oxygen (O(2)) as electron acceptors in MAR on water quality and safety. Notably, NO(3)(-), acting as an electron acceptor, has the potential to enrich denitrifying bacteria, serving as hosts for antibiotic resistance genes (ARGs) and enriching human bacterial pathogens (HBPs) compared to O(2). However, a direct comparison between NO(3)(-) and O(2) remains unexplored. This study assessed risks in MAR effluent induced by NO(3)(-) and O(2), alongside the presence of the typical refractory antibiotic sulfamethoxazole. Key findings reveal that NO(3)(-) as an electron acceptor resulted in a 2 times reduction in dissolved organic carbon content compared to O(2), primarily due to a decrease in soluble microbial product production. Furthermore, NO(3)(-) significantly enriched denitrifying bacteria, the primary hosts of major ARGs, by 747%, resulting in a 66% increase in the overall abundance of ARGs in the effluent of NO(3)(-) MAR compared to O(2). This escalation was predominantly attributed to horizontal gene transfer mechanisms, as evidenced by a notable 78% increase in the relative abundance of mobile ARGs, alongside a minor 27% rise in chromosomal ARGs. Additionally, the numerous denitrifying bacteria enriched under NO(3)(-) influence also belong to the HBP category, resulting in a significant 114% increase in the abundance of all HBPs. The co-occurrence of ARGs and HBPs was also observed to intensify under NO(3)(-) influence. Thus, NO(3)(-) as an electron acceptor in MAR elevates ARG and HBP risks compared to O(2), potentially compromising groundwater quality and safety.202438266895
7559170.9999Fate of antibiotic resistance genes and resistant bacteria under various operating temperatures of sludge anaerobic digestion. This study investigates the impact of varying temperatures on reducing antibiotic resistance genes (ARGs) during anaerobic digestion (AD) of mixed raw sludge in wastewater treatment plants. Employing three different operating temperatures, i.e., 37, 55, and 65 °C, the research aims to identify how these conditions affect the diminution of resistant genes. The results, based on quantitative PCR analysis and metagenomic sequencing, show that higher temperatures significantly enhance the reduction of ARGs, with the most substantial decreases observed at 65 °C. This temperature-dependent reduction correlates with changes in the microbial community structure, where specific bacterial genera like Alicycliphilus, Macellibacteroides, Dokdonella, Ahniella, Thauera, and Zoogloea associated with ARGs exhibit decreased abundance at elevated temperatures. The study infers that AD at higher temperatures could be a more effective strategy in mitigating the spread of antibiotic resistance in the environment, suggesting a pivotal role of operational temperature in optimizing wastewater treatment processes for ARGs attenuation. The findings highlight the need for further research to refine AD protocols, aiming to minimize the environmental impact of antibiotic resistance dissemination.202540662898
6951180.9999The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers. The prevalence of bacterial resistance caused by the application of animal manure has become an important environmental issue. Herein, the vertical migration of antibiotic resistance genes (ARGs) and pathogens in soil and vegetables after the application of different fertilizers was explored. The results showed that the application of composted manure considerably enhanced the abundance of most ARGs and pathogens, especially in surface soil and pakchoi roots. Moreover, the soil ARGs increased partially from log 1.93 to log 4.65 after the application of composted manure, and six pathogens were simultaneously detected. It was observed that the increase in soil depth decreased most ARGs and pathogens by log 1.04-2.24 and 53.98 %~85.54 %, respectively. This indicated that ARGs and pathogens still existed in the deep soil (80-100 cm). Moreover, total organic carbon had a significant influence on the pathogen distribution, whereas bacterial communities primarily drove the vertical migration of ARGs rather than environmental factors. Although most of the ARG-host associations observed in the surface soil were disappeared in deep soil as revealed by network analysis, some co-occurrence pattern still occurred in deep soil, suggesting that some ARGs might be carried to deep soil by their host bacteria. These results were novel in describing the vertical migration of ARGs in the environment after the application of different fertilizers, providing ideas for curbing their migration to crops.202234400159
7030190.9998Metagenomic profiling of antibiotic resistance genes/bacteria removal in urban water: Algal-bacterial consortium treatment system. Antibiotic resistance genes (ARGs) have exhibited significant ecological concerns, especially in the urban water that are closely associated with human health. In this study, with presence of exogenous Chlorella vulgaris-Bacillus licheniformis consortium, most of the typical ARGs and MGEs were removed. Furthermore, the relative abundance of potential ARGs hosts has generally decreased by 1-4 orders of magnitude, revealing the role of algal-bacterial consortium in cutting the spread of ARGs in urban water. While some of ARGs such as macB increased, which may be due to the negative impact of algicidal bacteria and algal viruses in urban water on exogenous C. vulgaris and the suppression of exogenous B. licheniformis by indigenous microorganisms. A new algal-bacterial interaction might form between C. vulgaris and indigenous microorganisms. The interplay between C. vulgaris and bacteria has a significant impact on the fate of ARGs removal in urban water.202438801952