# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8080 | 0 | 1.0000 | Fates of antibiotic resistance genes and bacterial/archaeal communities of activated sludge under stress of copper: Gradient increasing/decreasing exposure modes. Effect of copper (Cu) on antibiotic resistance genes (ARGs) and bacterial/archaeal community of activated sludge under gradient increasing (0.5-10 mg/L) or decreasing exposure (10-0.5 mg/L) modes was explored. Here, 29 genes were detected among 48 selected ARGs and mobile gene elements (MGEs). Two exposure modes showed dissimilar effects on ARGs and distribution was more affected by environmental concentrations of Cu, which promoted transmission of ARGs (multiple drug resistance and sulfonamide). Cellular protection was main resistance mechanism, which was less inhibited than efflux pumps. The tnpA-02, as main MGE, interacted closely with ARGs (sul2, floR, etc.). Gradient increasing exposure mode had more effects on bacterial/archaeal structure and composition. Bacteria were main hosts for specific ARGs and tnpA-02, while archaea carried multiple ARGs (cmx(A), adeA, etc.), and bacteria (24.24 %) contributed more to changes of ARGs than archaea (19.29 %). This study clarified the impacts of Cu on the proliferation and transmission of ARGs. | 2022 | 36096328 |
| 8085 | 1 | 0.9999 | Elevated CO(2) alleviated the dissemination of antibiotic resistance genes in sulfadiazine-contaminated soil: A free-air CO(2) enrichment study. Climate change affects soil microbial communities and their genetic exchange, and subsequently modifies the transfer of antibiotic resistance genes (ARGs) among bacteria. However, how elevated CO(2) impacts soil antibiotic resistome remains poorly characterized. Here, a free-air CO(2) enrichment system was used in the field to investigate the responses of ARGs profiles and bacterial communities to elevated CO(2) (+200 ppm) in soils amended with sulfadiazine (SDZ) at 0, 0.5 and 5 mg kg(-1). Results showed that SDZ exposure induced the co-occurrence of beta-lactamase and tetracycline resistance genes, and SDZ at 5 mg kg(-1) enhanced the abundance of aminoglycoside, sulfonamide and multidrug resistance genes. However, elevated CO(2) weakened the effects of SDZ at 0.5 mg kg(-1) following an observed reduction in the total abundance of ARGs and mobile genetic elements. Additionally, elevated CO(2) significantly decreased the abundance of vancomycin resistance genes and alleviated the stimulation of SDZ on the dissemination of aminoglycoside resistance genes. Correlation analysis and structural equation models revealed that elevated CO(2) could directly influence the spread of ARGs or impose indirect effects on ARGs by affecting soil properties and bacterial communities. Overall, our results furthered the knowledge of the dissemination risks of ARGs under future climate scenarios. | 2023 | 36857828 |
| 8079 | 2 | 0.9999 | Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting. Heavy metals driven co-selection of antibiotic resistance in soil and water bodies has been widely concerned, but the response of antibiotic resistance to co-existence of antibiotics and heavy metals in composting system is still unknown. Commonly used sulfamethoxazole and copper were individually and jointly added into four reactors to explore their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), heavy metal resistance genes (MRGs) and bacterial community structure. The abundance of total ARGs and MGEs were notably decreased by 68.64%-84.95% and 91.27-97.38%, respectively, after the composting. Individual addition of sulfamethoxazole, individual addition of copper, simultaneously addition of sulfamethoxazole and copper increased the abundance of ARGs and MGEs throughout the composting period. Co-exposure of sulfamethoxazole and copper elevated the total abundance of ARGs by 1.17-1.51 times by the end of the composting compared to individual addition of sulfamethoxazole or copper. Network analysis indicated that the shifts in potential host bacteria determined the ARGs variation. Additionally, MGEs and MRGs had significant effects on ARGs, revealing that horizontal gene transfer and heavy metals induced co-resistance could promote ARGs dissemination. | 2022 | 34537705 |
| 8081 | 3 | 0.9999 | Potential threat of antibiotics resistance genes in bioleaching of heavy metals from sediment. Bioleaching is considered a promising technology for remediating heavy metals pollution in sediments. During bioleaching, the pressure from the metals bioleached is more likely to cause the spread of antibiotic resistance genes (ARGs). The changes in abundance of ARGs in two typical heavy metal bioleaching treatments using indigenous bacteria or functional bacteria agent were compared in this study. Results showed that both treatments successfully bioleached heavy metals, with a higher removal ratio of Cu with functional bacteria agent. The absolute abundances of most ARGs decreased by one log unit after bioleaching, particularly tetR (p = 0.02) and tetX (p = 0.04), and intI1 decreased from 10(6) to 10(4) copies/g. As for the relative abundance, ARGs in the non-agent treatment increased from 3.90 × 10(-4) to 1.67 × 10(-3) copies/16S rRNA gene copies (p = 0.01), and in the treatment with agent, it reached 6.65 × 10(-2) copies/16S rRNA gene copies, and intI1 relative abundance was maintained at 10(-3) copies/16S rRNA gene copies. The relative abundance of ARGs associated with efflux pump mechanism and ribosomal protection mechanism increased the most. The co-occurrence network indicated that Cu bioleached was the environmental factor determining the distribution of ARGs, Firmicutes might be the potential hosts of ARGs. Compared to bioleaching with indigenous bacteria, the addition of functional bacteria agent engendered a decrease in microbial alpha diversity and an increase in the amount of Cu bioleached, resulting in a higher relative abundance of ARGs. Heavy metal pollution can be effectively removed from sediments using the two bioleaching treatments, however, the risk of ARGs propagation posed by those procedures should be considered, especially the treatment with functional bacteria agents. In the future, an economical and efficient green technology that simultaneously reduces both the absolute abundance and relative abundance of ARGs should be developed. | 2022 | 34979232 |
| 8089 | 4 | 0.9999 | Reductions in abundances of intracellular and extracellular antibiotic resistance genes by SiO(2) nanoparticles during composting driven by mobile genetic elements. Applying exogenous additives during the aerobic composting of livestock manure is effective for slowing down the spread of antibiotic resistance genes (ARGs) in the environment. Nanomaterials have received much attention because only low amounts need to be added and they have a high capacity for adsorbing pollutants. Intracellular ARGs (i-ARGs) and extracellular ARGs (e-ARGs) comprise the resistome in livestock manure but the effects of nanomaterials on the fates of these different fractions during composting are still unclear. Thus, we investigated the effects of adding SiO(2) nanoparticles (SiO(2)NPs) at four levels (0 (CK), 0.5 (L), 1 (M), and 2 g/kg (H)) on i-ARGs, e-ARGs, and the bacterial community during composting. The results showed that i-ARGs represented the main fraction of ARGs during aerobic composting of swine manure, and their abundance was lowest under M. Compared with CK, M increased the removal rates of i-ARGs and e-ARGs by 17.9% and 100%, respectively. SiO(2)NPs enhanced the competition between ARGs hosts and non-hosts. M optimized the bacterial community by reducing the abundances of co-hosts (Clostridium_sensu_stricto_1, Terrisporobacter, and Turicibacter) of i-ARGs and e-ARGs (by 96.0% and 99.3%, respectively) and killing 49.9% of antibiotic-resistant bacteria. Horizontal gene transfer dominated by mobile genetic elements (MGEs) played a key role in the changes in the abundances of ARGs. i-intI1 and e-Tn916/1545 were key MGEs related closely to ARGs, and the maximum decreases of 52.8% and 100%, respectively, occurred under M, which mainly explained the decreased abundances of i-ARGs and e-ARGs. Our findings provide new insights into the distribution and main drivers of i-ARGs and e-ARGs, as well as demonstrating the possibility of adding 1 g/kg SiO(2)NPs to reduce the propagation of ARGs. | 2023 | 37148762 |
| 8071 | 5 | 0.9999 | Impact of ciprofloxacin and copper combined pollution on activated sludge: Abundant-rare taxa and antibiotic resistance genes. This study aimed to explore the impacts of ciprofloxacin (CIP, 0.05-40 mg/L) and copper (3 mg/L) combined pollution on nitrification, microbial community and antibiotic resistance genes (ARGs) in activated sludge system during stress- and post-effect periods. Higher CIP concentration inhibited nitrification and an average of 50% total nitrogen removal occurred under 40 mg/L of CIP pressure. The stress- and post-effects on bacterial diversity and structure were obviously distinct. Abundant genera were more sensitive to combined pollution than rare genera based on full-scale classification and conditionally rare or abundant taxa were keystone taxa in their interactions. Ammonia oxidation genes were inhibited under high CIP level, but some aerobic denitrifying bacteria (Thauera, Comamonas and Azoarcus) and key genes increased. 96 ARG subtypes were detected with complex positive relationships and their potential hosts (abundant-rare-functional genera) changed in two periods. This study highlights the different stress- and post-effects of combined pollution on activated sludge. | 2022 | 35217161 |
| 8078 | 6 | 0.9999 | Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment. In present study, copper (Cu), zinc (Zn), tetracycline (TC) and ampicillin (AMP) were selected to study the individual and synergistic effects of antibiotics and heavy metals on the microbial communities and resistance genes on polyvinyl chloride microplastics (PVC MPs) and surrounding sewage after 28 and 84 days. The results indicated that PVC MPs enriched many microorganisms from surrounding sewage, especially pathogenic bacteria such as Mycobacterium and Aquabacterium. The resistance gene with the highest abundance enriched on PVC MPs was tnpA (average abundance of 1.0 × 10(7) copies/mL sewage). The single presence of Zn, TC and AMP inhibited these enrichments for a short period of time (28 days). But the single presence of Cu and the co-existence of antibiotics and heavy metals inhibited these enrichments for a long period of time (84 days), resulting in relatively low microbial diversities and resistance genes abundances. Transpose tnpA had significantly positive correlations (p < 0.05) with all other genes. Pathogenic bacteria Mycobacterium and Legionella were potential hosts harboring 5 and 1 resistance genes, respectively. Overall, PVC MPs played important roles in the distribution and transfer of pathogenic bacteria and resistance genes in sewage with the presence of antibiotics or (and) heavy metals. | 2021 | 33254740 |
| 7043 | 7 | 0.9999 | Antibiotic resistance gene transfer during anaerobic digestion with added copper: Important roles of mobile genetic elements. The abuse of heavy metals as feed additives in livestock is widespread and it might aggravate the spread of antibiotic resistance genes (ARGs) in the environment. However, the mechanisms that allow heavy metals to increase the transmission of ARGs in the environment remain unclear. Cu is the heavy metal present at the highest concentration in livestock manure, and thus Cu was selected to investigate the responses of ARGs to heavy metals. The effects of the microbial communities, mobile genetic elements (MGEs), and heavy metal resistance genes (HMRGs) on ARGs were determined in the presence of 75 and 227 mg L(-1) Cu in a swine manure anaerobic digestion (AD) system. In the AD products, the presence of residual Cu (75 and 227 mg L(-1)) increased the total ARGs, HMRGs, and some MGEs, and the higher Cu selected more ARGs than the lower Cu treatment. The results demonstrated that Cu could promote the co-selection of HMRGs, ARGs, and MGEs. The different levels of Cu did not change the bacterial community composition, but they influenced the abundances of bacteria during AD. Network analysis showed that the presence of Cu increased the co-occurrence of specific bacteria containing ARGs, HMRGs, and MGEs. Furthermore, the co-occurrence of MGEs and ARGs increased greatly compared with that of HMRGs and ARGs. Therefore, compared HMRGs, the increased MGEs had the main effect on increasing of ARGs. | 2020 | 32659562 |
| 8086 | 8 | 0.9998 | Biofilm enhanced the mitigations of antibiotics and resistome in sulfadiazine and trimethoprim co-contaminated soils. Reducing antibiotic levels in soil ecosystems is vital to curb the dissemination of antimicrobial resistance genes (ARGs) and mitigate global health threats. However, gaps persist in understanding how antibiotic resistome can be suppressed during antibiotic degradation. Herein, we investigate the efficacy of a biochar biofilm incorporating antibiotics-degrading bacterial strain (Arthrobacter sp. D2) to mitigate antibiotic resistome in non-manured and manure-amended soils with sulfadiazine (SDZ) and trimethoprim (TMP) contamination. Results show that biofilm enhanced SDZ degradation by 83.0% within three days and increased TMP attenuation by 55.4% over 60 days in non-manured soils. In the non-manured black soil, the relative abundance of ARGs increased initially after biofilm inoculation. However, by day 30, it decreased by 20.5% compared to the controls. Moreover, after 7 days, biofilm reduced TMP by 38.5% in manured soils and decreased the total ARG abundance by 19.0%. Thus, while SDZ degradation did not increase sulfonamide resistance genes, TMP dissipation led to a proliferation of insertion sequences and related TMP resistance genes. This study underscores the importance of antibiotic degradation in reducing related ARGs while cautioning against the potential proliferation and various ARGs transfer by resistant microorganisms. | 2024 | 39255667 |
| 6948 | 9 | 0.9998 | Fate of antibiotic resistance genes and metal resistance genes during the thermophilic fermentation of solid and liquid swine manures in an ectopic fermentation system. Environmental pollution due to resistance genes from livestock manure has become a serious issue that needs to be resolved. However, little studies focused on the removal of resistance genes in simultaneous processing of livestock feces and urine. This study investigated the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and class 1 integron-integrase gene (intI1) during thermophilic fermentation of swine manure in an ectopic fermentation system (EFS), which has been regarded as a novel system for efficiently treating both feces and urine. The abundances of MRGs and tetracycline resistance genes were 34.44-97.71% lower in the EFS. The supplementation of heavy metals significantly increased the abundance of intI1, with the enhancement effect of copper being more prominent than that of zinc. The highest abundances of resistance genes and intI1 were observed at high Cu levels (A2), indicating that Cu can increase the spreading of resistance genes through integrons. Network analysis revealed the co-occurrence of ARGs, MRGs, and intI1, and these genes potentially shared the same host bacteria. Redundancy analysis showed that the bacterial community explained most of the variations in ARGs, and environmental factors had influences on ARGs abundances by modulating the bacterial community composition. The decreased Sphingomonas, Comamonas, Acinetobacter, Lactobacillus, Bartonella, Rhizobium, and Bacteroides were mainly responsible for the reduced resistance genes. These results demonstrate that EFS can reduce resistance genes in simultaneous processing of livestock feces and urine. | 2021 | 33592372 |
| 8084 | 10 | 0.9998 | Metagenomic insights into effects of carbon/nitrogen ratio on microbial community and antibiotic resistance in moving bed biofilm reactor. This study investigated the effects of carbon/nitrogen (C/N) ratio on microbial community in moving bed biofilm reactor (MBBR) using metagenomic analysis, and the dynamic changes of relevant antibiotic resistance genes (ARGs) were also analyzed. The results showed that under low C/N ratio, MBBR exhibited average removal rates of 98.41 % for ammonia nitrogen and 75.79 % for total nitrogen. Metagenomic analysis showed low C/N ratio altered the structure of biofilm and water microbiota, resulting in the detachment of bacteria such as Actinobacteria from biofilm into water. Furthermore, sulfamethazine (SMZ)-resistant bacteria and related ARGs were released into water under low C/N ratio, which lead to the increase of SMZ resistance rate to 90%. Moreover, most dominant genera are potential hosts for both nitrogen cycle related genes and ARGs. Specifically, Nitrosomonas that carried gene sul2 might be released from biofilm into water. These findings implied the risks of antibiotic resistance dissemination in MBBR under low C/N ratio. | 2024 | 38901747 |
| 8091 | 11 | 0.9998 | Changes in antibiotic resistance genes and mobile genetic elements during cattle manure composting after inoculation with Bacillus subtilis. This study explored the effects of Bacillus subtilis at four levels (0, 0.5%, 1%, and 2% w/w compost) on the variations in ARGs, mobile genetic elements (MGEs), and the bacterial community during composting. The composting process had a greater impact on ARGs than Bacillus subtilis. The main ARG detected was sul1. The addition of Bacillus subtilis at 0.5% reduced the relative abundances of ARGs, MGEs, and human pathogenic bacteria (by 2-3 logs) in the mature products. Network and redundancy analyses suggested that intI1, Firmicutes, and pH were mainly responsible for the changes in ARGs, thus controlling these factors might help to inhibit the spread of ARGs. | 2019 | 31442833 |
| 8082 | 12 | 0.9998 | Deciphering the toxic effects of antibiotics on denitrification: Process performance, microbial community and antibiotic resistance genes. The extensive application of antibiotics, and the occurrence and spread of antibiotic resistance genes (ARGs) shade health risks to human and animal. The long-term effects of sulfamethoxazole (SMX) and tetracycline (TC) on denitrification process were evaluated in this study, with the focus on nitrogen removal performance, microbial community and ARGs. Results showed that low-concentration SMX and TC (<0.2 mg L(-1)) initially caused a deterioration in nitrogen removal performance, while higher concentrations (0.4-20 mg L(-1)) of both antibiotics had no further inhibitory influences. The abundances of ARGs in both systems generally increased during the whole period, and most of them had significant correlations with intI1, especially efflux-pump genes. Castellaniella, which was the dominant genus under antibiotic pressure, might be potential resistant bacteria. These findings provide an insight into the toxic effects of different antibiotics on denitrification process, and guides future efforts to control antibiotics pollution in ecosystems. | 2020 | 32250829 |
| 8090 | 13 | 0.9998 | Swine Manure Composting With Compound Microbial Inoculants: Removal of Antibiotic Resistance Genes and Their Associations With Microbial Community. In this study, compound microbial inoculants, including three Bacillus strains and one Yeast strain, were inoculated into swine manure composting to explore the effects on antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), microbial community structure, and pathogenic bacteria. The results indicated that the abundances of the detected ARGs ranged from 3.6 × 10(3) to 1.13 × 10(8) copies/g. The ARGs with the highest abundance was sul2, and the lowest was blaCTX. Composting removes most of the ARGs and MGEs by 22.8-99.7%. These ARGs were significantly reduced during the thermophilic phase of compost. The removal rate of ARGs at the different layers of compost pile was different as follows: middle layer > upper layer > lower layer. But some ARGs proliferated significantly in the maturation phase of compost, especially the sulfonamide resistance genes. Compound microbial inoculants increased the temperature of compost, accelerated water loss, nitrogen fixation, and increased the removal rate of β-lactamase resistance genes, the transposon gene tn916 and part of tetracycline resistance genes by 3.7-23.8% in compost. Compound microbial inoculants changed the community structure and increased the Bacillus abundance in the thermophilic phase of compost. And it was helpful for removing pathogens during composting. The addition of compound microbial inoculants causes the decrease of Firmicutes and the increase of Bacteroidetes, which may be related to the removal and proliferation of ARGs. | 2020 | 33250880 |
| 6950 | 14 | 0.9998 | Ceftiofur in swine manure contributes to reducing pathogens and antibiotic resistance genes during composting. Aerobic composting is a common way for the disposal of feces produced in animal husbandry, and can reduce the release of antibiotic resistance genes (ARGs) from feces into the environment. In this study, we collected samples from two distinct treatments of swine manure compost with and without ceftiofur (CEF), and identified the ARGs, mobile genetic elements (MGEs), and bacterial community by metagenomic sequencing. The impacts of CEF on the bacterial community composition and fate of ARGs and MGEs were investigated. With increasing composting temperature and pH, the concentration of CEF in the manure decreased rapidly, with a degradation half-life of 1.12 d and a 100% removal rate after 10 d of aerobic composting. Metagenomics demonstrated that CEF in the manure might inhibit the growth of Firmicutes and Proteobacteria, thereby reducing some ARGs and MGEs hosted by these two bacteria, which was further confirmed by the variations of ARGs and MGEs. A further redundancy analysis suggested that pH and temperature are key environmental factors affecting ARG removal during composting, and intI1 and bacterial communities also have significant influence on ARG abundance. These results are of great significance for promoting the removal of some ARGs from animal manure by controlling some key environmental factors and the type of antibiotics used in animals. | 2024 | 38685300 |
| 7584 | 15 | 0.9998 | Responses of microbial community and antibiotic resistance genes to co-existence of chloramphenicol and salinity. In recent years, the risk from environmental pollution caused by chloramphenicol (CAP) has emerged as a serious concern worldwide, especially for the co-selection of antibiotic resistance microorganisms simultaneously exposed to CAP and salts. In this study, the multistage contact oxidation reactor (MCOR) was employed for the first time to treat the CAP wastewater under the co-existence of CAP (10-80 mg/L) and salinity (0-30 g/L NaCl). The CAP removal efficiency reached 91.7% under the co-existence of 30 mg/L CAP and 10 g/L NaCl in the influent, but it fluctuated around 60% with the increase of CAP concentration and salinity. Trichococcus and Lactococcus were the major contributors to the CAP and salinity shock loads. Furthermore, the elevated CAP and salinity selection pressures inhibited the spread of CAP efflux pump genes, including cmlA, tetC, and floR, and significantly affected the composition and abundance of antibiotic resistance genes (ARGs). As the potential hosts of CAP resistance genes, Acinetobacter, Enterococcus, and unclassified_d_Bacteria developed resistance against high osmotic pressure and antibiotic environment using the efflux pump mechanism. The results also revealed that shifting of potential host bacteria significantly contributed to the change in ARGs. Overall, the co-existence of CAP and salinity promoted the enrichment of core genera Trichococcus and Lactococcus; however, they inhibited the proliferation of ARGs. KEY POINTS: • Trichococcus and Lactococcus were the core bacteria related to CAP biodegradation • Co-existence of CAP and salinity inhibited proliferation of cmlA, tetC, and floR • The microorganism resisted the CAP using the efflux pump mechanism. | 2022 | 36205764 |
| 8024 | 16 | 0.9998 | High Concentrations of Tilmicosin Promote the Spread of Multidrug Resistance Gene tolC in the Pig Gut Microbiome Through Mobile Genetic Elements. The impact of antibiotic therapy on the spread of antibiotic resistance genes (ARGs) and its relationship to gut microbiota remains unclear. This study investigated changes in ARGs, mobile genetic elements (MGEs), and gut microbial composition following tilmicosin administration in pigs. Thirty pigs were randomly divided into control (CK), low-concentration (0.2 g/kg; L), and high-concentration (0.4 g/kg; H) groups. Tilmicosin concentration in manure peaked on day 16 of dosing and dropped below detectable levels by day 13 of the withdrawal period. While tilmicosin did not significantly affect the total abundance of macrolide resistance genes (MRGs) (p > 0.05), it significantly increased the abundance of the multidrug resistance gene tolC in the H group compared with the L and CK groups during the withdrawal period (p < 0.05). This increase was associated with a coincidental rise in the abundance of MGEs (e.g., int1 and int2) and the growth of potential tolC-hosting bacteria such as Paenalcaligenes and Proteiniclasticum. Redundancy analysis showed gut microbial composition as the primary driver of MRG abundance, with MGEs, tilmicosin concentration, and manure physicochemical properties playing secondary roles. These findings suggest that high-dose tilmicosin may alter the gut microbiota and promote ARG spread via MGE-mediated transfer. | 2024 | 39795013 |
| 7533 | 17 | 0.9998 | NO(3)(-) as an electron acceptor elevates antibiotic resistance gene and human bacterial pathogen risks in managed aquifer recharge (MAR): A comparison with O(2). Managed aquifer recharge (MAR) stands out as a promising strategy for ensuring water resource sustainability. This study delves into the comparative impact of nitrate (NO(3)(-)) and oxygen (O(2)) as electron acceptors in MAR on water quality and safety. Notably, NO(3)(-), acting as an electron acceptor, has the potential to enrich denitrifying bacteria, serving as hosts for antibiotic resistance genes (ARGs) and enriching human bacterial pathogens (HBPs) compared to O(2). However, a direct comparison between NO(3)(-) and O(2) remains unexplored. This study assessed risks in MAR effluent induced by NO(3)(-) and O(2), alongside the presence of the typical refractory antibiotic sulfamethoxazole. Key findings reveal that NO(3)(-) as an electron acceptor resulted in a 2 times reduction in dissolved organic carbon content compared to O(2), primarily due to a decrease in soluble microbial product production. Furthermore, NO(3)(-) significantly enriched denitrifying bacteria, the primary hosts of major ARGs, by 747%, resulting in a 66% increase in the overall abundance of ARGs in the effluent of NO(3)(-) MAR compared to O(2). This escalation was predominantly attributed to horizontal gene transfer mechanisms, as evidenced by a notable 78% increase in the relative abundance of mobile ARGs, alongside a minor 27% rise in chromosomal ARGs. Additionally, the numerous denitrifying bacteria enriched under NO(3)(-) influence also belong to the HBP category, resulting in a significant 114% increase in the abundance of all HBPs. The co-occurrence of ARGs and HBPs was also observed to intensify under NO(3)(-) influence. Thus, NO(3)(-) as an electron acceptor in MAR elevates ARG and HBP risks compared to O(2), potentially compromising groundwater quality and safety. | 2024 | 38266895 |
| 8083 | 18 | 0.9998 | Alteration of the migration trajectory of antibiotic resistance genes by microplastics in a leachate activated sludge system. The environmental behavior of emerging contaminants of microplastics (MPs), antibiotics and antibiotic resistance genes (ARGs) in the leachate activated sludge system has been monitored and analyzed comprehensively. The results suggested that MPs could effectively alter the migration trajectory of tetracycline resistance genes (tet genes) in the leachate activated sludge system under intermittent and continuous influent conditions. After adding MPs, the total average abundance of tet genes in leachate increased from 0.74 ± 0.07 to 0.78 ± 0.07 (log(10)tet genes/log(10) 16S rRNA) and that in sludge increased from 0.65 ± 0.08 to 0.70 ± 0.06 (log(10)tet genes/log(10) 16S rRNA). Except for tetA, the abundance of tetB, tetO, tetM and tetQ on MPs increased with increasing TC concentration under both aerobic and anaerobic conditions. MPs not only significantly affect the abundance level and migration trajectory of ARGs in the leachate activated sludge system, but also remarkably improve the level of heavy metals in the ambient environment, indirectly promoting the selective effect of antibiotic-resistant bacteria (ARB) and promoting the development of antibiotic resistance (AR). In addition, MPs changed their physicochemical properties and released hazardous substances with aging to force tet genes to migrate from the leachate activated sludge system to the MPs, making AR more difficult to eliminate and persisted in wastewater treatment plants. Meanwhile, microorganisms played a driving role, making MPs serve as a niche for ARGs and ARB colonization. The co-occurrence network analysis indicated the specific distribution pattern of tet genes and microorganisms in different media, and the potential host was speculated. This study improves the understanding of the environmental behavior of emerging contaminants in leachate activated sludge system and lays a theoretical for protecting the ecological environment. | 2023 | 37321316 |
| 7042 | 19 | 0.9998 | Response of antibiotic resistance genes abundance by graphene oxide during the anaerobic digestion of swine manure with copper pollution. The pollution of various environments with antibiotic resistance genes (ARGs) is an urgent problem that needs to be addressed, especially in heavy metal-polluted environments. This study investigated the responses of ARGs and mobile genetic elements (MGEs) to the addition of graphene oxide (GO) to swine manure containing a high concentration copper during anaerobic digestion. The total copy numbers of ARGs and MGEs were significantly enhanced by the pressure due to Cu. GO significantly decreased the ARG and MGE copy numbers, where the low GO concentration performed better than the high GO concentration. Network analysis showed that most of the ARGs and MGEs co-occurred and they shared the same major potential host bacteria. The contributions of different factors to ARG abundances were assessed by redundancy analysis and MGEs had the most important effect on the fate of ARGs. Thus, GO may reduce the abundance of ARGs mainly by removing MGEs. | 2019 | 30445329 |