SiO(2) nanoparticles can enhance nitrogen retention and reduce copper resistance genes during aerobic composting of swine manure. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
805701.0000SiO(2) nanoparticles can enhance nitrogen retention and reduce copper resistance genes during aerobic composting of swine manure. SiO(2) nanoparticles (SiO(2) NPs) are low-cost, environmentally friendly materials with significant potential to remove pollutants from complex environments. In this study, SiO(2) NPs were used for the first time as an additive in aerobic composting to enhance nitrogen retention and reduce the expression of copper resistance genes. The addition of 0.5 g kg(-1) SiO(2) NPs effectively reduced nitrogen loss by 72.33 % by decreasing denitrification genes (nosZ, nirK, and napA) and increasing nitrogen fixation gene (nifH). The dominant factors affecting nitrification and denitrification genes were Firmicutes and C/N ratio. Additionally, SiO(2) NPs decreased copper resistance genes by 28.96 % - 37.52 % in compost products. Copper resistance genes decreased most in the treatment with 0.5 g kg(-1) SiO(2) NPs. In summary, 0.5 g kg(-1) SiO(2) NPs have the potential to reduce copper resistance genes and enhance nitrogen retention during aerobic composting, which may be used to improve compost quality.202439374833
806110.9997The addition of nano zero-valent iron during compost maturation effectively removes intracellular and extracellular antibiotic resistance genes by reducing the abundance of potential host bacteria. Applying compost to soil may lead to the spread of antibiotic resistance genes (ARGs) in the environment. Therefore, removing ARGs from compost is critical. In this study, for the first time, nano zero-valent iron (nZVI) was added to compost during the maturation stage to remove ARGs. After adding 1 g/kg of nZVI, the abundance of total intracellular and total extracellular ARGs was decreased by 97.62% and 99.60%, and that of total intracellular and total extracellular mobile genetic elements (MGEs) was decreased by 92.39% and 99.31%, respectively. A Mantel test and network analysis indicated that the reduction in potential host bacteria and intI1 after nZVI treatment promoted the removal of intracellular and extracellular ARGs. The addition of nZVI during composting reduced the horizontal transfer of ARGs and improve the total nitrogen and germination index of compost, allowing it to meet the requirements for organic fertilizers.202337352990
809220.9997Effect of pH on the mitigation of extracellular/intracellular antibiotic resistance genes and antibiotic resistance pathogenic bacteria during anaerobic fermentation of swine manure. Effects of various initial pH values (i.e., 3, 5, 7, 11) during anaerobic fermentation of swine manure on intracellular and extracellular antibiotic resistance genes (iARGs and eARGs) and ARG-carrying potential microbial hosts were investigated. The abundance of almost all iARGs and eARGs decreased by 0.1-1.7 logs at pH 3 and pH 5. The abundance of only three iARGs and eARGs decreased by 0.1-0.9 logs at pH 7 and pH 11. Under acidic initial fermentation conditions (pH 3 and pH 5), the ARG removal effect was more pronounced. Acidic conditions (pH 3 and pH 5) significantly reduced the diversity and abundance of the microbial community, thereby eliminating many potential ARG hosts and antibiotic-resistant pathogenic bacteria (ARPB). Therefore, the study results contribute to the investigation of the effects of swine manure anaerobic fermentation on the removal and risk of contamination of ARGs and ARPB.202336746211
807130.9997Impact of ciprofloxacin and copper combined pollution on activated sludge: Abundant-rare taxa and antibiotic resistance genes. This study aimed to explore the impacts of ciprofloxacin (CIP, 0.05-40 mg/L) and copper (3 mg/L) combined pollution on nitrification, microbial community and antibiotic resistance genes (ARGs) in activated sludge system during stress- and post-effect periods. Higher CIP concentration inhibited nitrification and an average of 50% total nitrogen removal occurred under 40 mg/L of CIP pressure. The stress- and post-effects on bacterial diversity and structure were obviously distinct. Abundant genera were more sensitive to combined pollution than rare genera based on full-scale classification and conditionally rare or abundant taxa were keystone taxa in their interactions. Ammonia oxidation genes were inhibited under high CIP level, but some aerobic denitrifying bacteria (Thauera, Comamonas and Azoarcus) and key genes increased. 96 ARG subtypes were detected with complex positive relationships and their potential hosts (abundant-rare-functional genera) changed in two periods. This study highlights the different stress- and post-effects of combined pollution on activated sludge.202235217161
805540.9997Effects of nano-zerovalent iron on antibiotic resistance genes during the anaerobic digestion of cattle manure. This study investigated the effects of adding nano-zerovalent iron (nZVI) at three concentrations (0, 80, and 160 mg/L) on the methane yield and the fate of antibiotic resistance genes (ARGs) during the anaerobic digestion (AD) of cattle manure. The addition of nZVI effectively enhanced the methane yield, where it significantly increased by 6.56% with 80 mg/L nZVI and by 6.43% with 160 mg/L nZVI. The reductions in the abundances of ARGs and Tn916/1545 were accelerated by adding 160 mg/L nZVI after AD. Microbial community analysis showed that nZVI mainly increased the abundances of bacteria with roles in hydrolysis and acidogenesis, whereas it reduced the abundance of Acinetobacter. Redundancy analysis indicated that the changes in mobile genetic elements made the greatest contribution to the fate of ARGs. The results suggest that 160 mg/L nZVI is a suitable additive for reducing the risks due to ARGs in AD.201931247529
754350.9997Aerobic granular sludge for swine wastewater treatment: Implications for antibiotic and antibiotic resistance gene elimination. Swine wastewater (SW) contains high levels of traditional pollutants, antibiotics, and antibiotic resistance genes (ARGs), necessitating effective elimination. Two parallel aerobic granular sludge (AGS) reactors, R(1) and R(2), were constructed and optimized for treating SW from two pig farms, identified as SW(1) and SW(2). R(2) showed higher antibiotic removal efficiency, particularly in the removal of sulfonamides, while fluoroquinolones tended to adsorb onto the sludge. Process optimization by introducing an additional anoxic phase enhanced denitrification and reduced effluent ARG levels, also aiding in the improved removal of fluoroquinolones. The nitrite-oxidizing bacteria (NOB) Nitrospira accumulated after the treatment process, reaching 12.8 % in R(1) and 14.1 % in R(2), respectively. Mantel's test revealed that pH, NH(4)(+)-N, and Mg significantly affected ARGs and microbial community. Sulfadiazine and sulfamethazine were found to significantly impact ARGs and the microbial communities. This study provides innovative insights into the application of AGS for the treatment of real SW.202439153702
807260.9997Response of microbial communities based on full-scale classification and antibiotic resistance genes to azithromycin and copper combined pollution in activated sludge nitrification laboratory mesocosms at low temperature. This study aimed to investigate the short-term response of abundant-rare genera and antibiotic resistance genes (ARGs) to azithromycin (AZM, 0.05-40 mg/L) and copper (1 mg/L) combined pollution in activated sludge nitrification system at low temperature. Nitrification was as expected inhibited in stress- and post-effects periods under AZM concentration higher than 5 mg/L. Abundant and rare taxa presented dissimilar responses based on full-scale classification. Conditionally rare or abundant taxa (CRAT) were keystone taxa. Relative abundance of ammonia-oxidizing archaea increased, and three aerobic denitrifying bacteria (Brevundimonas, Comamonas and Trichococcus) were enriched (from 9.83% to 68.91% in total). Ammonia nitrogen assimilating into Org-N and denitrification may be nitrogen pathways based on predict analysis. 29 ARGs were found with more co-occurrence patterns and high concentration of AZM (greater than 5 mg/L) caused their proliferation. Importantly, expect for some abundant taxa, rare taxa, potential pathogens and nitrogen-removal functional genera were the main potential hosts of ARGs.202134523571
806070.9997Responses of bacterial communities and antibiotic resistance genes to nano-cellulose addition during pig manure composting. Treatment with exogenous additives during composting can help to alleviate the accumulation of antibiotic resistance genes (ARGs) caused by the direct application of pig manure to farmland. In addition, nano-cellulose has an excellent capacity for adsorbing pollutants. Thus, the effects of adding 300, 600, and 900 mg/kg nano-cellulose to compost on the bacterial communities, mobile genetic elements (MGEs), and ARGs were determined in this study. After composting, treatment with nano-cellulose significantly reduced the relative abundance of ARGs, which was lowest in the compost product with 600 mg/kg added nano-cellulose. Nano-cellulose inhibited the rebound in ARGs from the cooling period to the maturity period, and weakened the selective pressure of heavy metals on microorganisms by passivating bio-Cu. The results also showed that MGEs explained most of the changes in the abundances of ARGs, and MGEs had direct effects on ARGs. The addition of 600 mg/kg nano-cellulose reduced the abundances of bacterial genera associated with ermQ, tetG, and other genes, and the number of links (16) between ARGs and MGEs was lowest in the treatment with 600 mg/kg added nano-cellulose. Therefore, adding 600 mg/kg nano-cellulose reduced the abundances of ARGs by affecting host bacteria and MGEs. The results obtained in this study demonstrate the positive effect of nano-cellulose on ARG pollution in poultry manure, where adding 600 mg/kg nano-cellulose was most effective at reducing the abundances of ARGs.202134649327
804480.9997Effect of tetracycline on nitrogen removal in Moving Bed Biofilm Reactor (MBBR) System. The effect of tetracycline (TC) on nitrogen removal in wastewater treatment plants has become a new problem. This study investigated the effects of TC on nitrogen removal using a Moving Bed Biofilm Reactor system. The results showed that there was no significant effect on nitrogen removal performance when the concentration of TC was 5 mg/L, and that the total nitrogen (TN) removal efficiency could reach 75-77%. However, when the concentration of TC increased to 10 mg/L, the denitrification performance was affected and the TN removal efficiency decreased to 58%. The abundance of denitrifying bacteria such as those in the genus Thauera decreased, and TC-resistant bacteria gradually became dominant. At a TC concentration of 10 mg/L, there were also increases and decreases, respectively, in the abundance of resistance and denitrification functional genes. The inhibitory effect of TC on denitrification was achieved mainly by the inhibition of nitrite-reducing bacteria.202235007308
805690.9996Antibiotic resistance gene profiles and evolutions in composting regulated by reactive oxygen species generated via nano ZVI loaded on biochar. In this study, nano zero-valent iron loaded on biochar (BC-nZVI) was analyzed for its effects on antibiotic resistance genes (ARGs) in composting. The results showed that BC-nZVI increased reactive oxygen species (ROS) production, and the peak values of H(2)O(2) and OH were 22.95 % and 55.30 % higher than those of the control group, respectively. After 65 days, the relative abundances of representative ARGs decreased by 56.12 % in the nZVI group (with BC-nZVI added). An analysis of bacterial communities and networks revealed that Actinobacteria, Proteobacteria, and Firmicutes were the main hosts for ARGs, and BC-nZVI weakened the link between ARGs and host bacteria. Distance-based redundancy analysis showed that BC-nZVI altered the microbial community structure through environmental factors and that most ARGs were negatively correlated with ROS, suggesting that ROS significantly affected the relative abundance of ARGs. According to these results, BC-nZVI showed potential for decreasing the relative abundance of ARGs in composting.202337611721
8018100.9996Analysis for microbial denitrification and antibiotic resistance during anaerobic digestion of cattle manure containing antibiotic. This study investigated the effects of tylosin (0, 10, and 100 mg/kg dry weight) on the denitrification genes and microbial community during the anaerobic digestion of cattle manure. N(2) emissions were reduced and N(2)O emissions were increased by 10 mg/kg tylosin. Adding 100 mg/kg tylosin increased the emission of both N(2)O and N(2). The different responses of denitrifying bacteria and genes to tylosin may have been due to the presence of antibiotic resistance genes (ARGs). Network analysis indicated that denitrification genes and ARGs had the same potential host bacteria. intI1 was more important for the horizontal transfer of denitrification genes and ARGs during anaerobic digestion than intI2. The anaerobic digestion of manure containing tylosin may increase nitrogen losses and the associated ecological risk.201931326686
8059110.9996Particle size of zero-valent iron affects the risks from antibiotic resistance genes in waste activated sludge during anaerobic digestion. Zero-valent iron (ZVI) is the promising enhancer for sludge anaerobic digestion (AD) performance and for mitigating the proliferation of antibiotic resistance genes (ARGs). However, concerns about its size effects in shifting the behavior and risk of ARGs in sludge, during the AD process. Here, the metagenomics-based profile of ARGs, along with their potential (pathogenic) hosts in sludge were investigated, during mesophilic AD enhanced by ZVI with three different sizes. Results showed that the size of ZVI affected the profiles of ARGs, with nano-ZVI (nZVI, 50 nm) demonstrating the most significant reduction in abundance (by 45.0 %) and diversity (by 8.6 %) of total ARGs, followed by micron-ZVI (150 μm) and iron scrap (1 mm). Similar trends were also observed for high-risk ARGs, pathogens, and potential pathogenic hosts for ARGs. Notably, nZVI achieved the greatest reductions in the abundance of risk ARGs and potential pathogenic hosts (superbugs) by 58.8 % and 53.9 %, respectively. Correlation and redundancy analyses revealed that, the size of ZVI induced concentration differences in ammonium nitrogen, pH, carbonaceous matters, iron, and potential microbial hosts were the main reasons for the variation in the risk of ARGs. Moreover, the down-regulation of genes involved in oxidative stress contributed to the lower risk of ARGs in the three ZVI groups, especially in nZVI. This study provides insights into AD processes of solid wastes using ZVI enhancers.202540043404
8038120.9996Hydroxyl radicals dominated the reduction of antibiotic resistance genes by inactivating Gram-negative bacteria during soil electrokinetic treatment. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants that widely exist in the environment. Effective reduction of ARB and ARGs from soil and water could be achieved by electrokinetic remediation (EKR) technology. In water, hydroxyl radicals (·OH) are proved to play a major role in the EKR process; while the reduction mechanism of ARB and ARGs is still unclear in soil. In this study, different concentrations of hydroxyl radical scavengers (salicylic acid) were added to the EKR system to explore the possible role of ·OH in the reduction of ARB and ARGs. The results showed that generally, ·OH played a more vital role in the reduction of ARB (65.24-72.46%) compared to the reduction of total cultivable bacteria (57.50%). And ·OH contributed to a higher reduction of sul genes (60.94%) compared to tet genes (47.71%) and integrons (36.02%). It was found that the abundance of Gram-negative bacteria (Chloroflexi, Acidobacteria and norank_c_Acidobacteria) was significantly reduced, and the correlation between norank_f_Gemmatimonadaceae and sul1 was weakened in the presence of ·OH. Correlation analysis indicated that the abundance of ARGs (especially sul1) was closely related to the Gram-negative bacteria (Proteobacteria, Acidobacteria, and Gemmatimonadetes) in the soil EKR treatment. Moreover, changes in bacterial community structure affected the abundance of ARB and ARGs indirectly. Overall, this study revealed the reduction mechanism of ARB and ARGs by ·OH in the soil EKR system for the first time. These findings provide valuable support for soil remediation efforts focusing on controlling antibiotic resistance.202439312876
8089130.9996Reductions in abundances of intracellular and extracellular antibiotic resistance genes by SiO(2) nanoparticles during composting driven by mobile genetic elements. Applying exogenous additives during the aerobic composting of livestock manure is effective for slowing down the spread of antibiotic resistance genes (ARGs) in the environment. Nanomaterials have received much attention because only low amounts need to be added and they have a high capacity for adsorbing pollutants. Intracellular ARGs (i-ARGs) and extracellular ARGs (e-ARGs) comprise the resistome in livestock manure but the effects of nanomaterials on the fates of these different fractions during composting are still unclear. Thus, we investigated the effects of adding SiO(2) nanoparticles (SiO(2)NPs) at four levels (0 (CK), 0.5 (L), 1 (M), and 2 g/kg (H)) on i-ARGs, e-ARGs, and the bacterial community during composting. The results showed that i-ARGs represented the main fraction of ARGs during aerobic composting of swine manure, and their abundance was lowest under M. Compared with CK, M increased the removal rates of i-ARGs and e-ARGs by 17.9% and 100%, respectively. SiO(2)NPs enhanced the competition between ARGs hosts and non-hosts. M optimized the bacterial community by reducing the abundances of co-hosts (Clostridium_sensu_stricto_1, Terrisporobacter, and Turicibacter) of i-ARGs and e-ARGs (by 96.0% and 99.3%, respectively) and killing 49.9% of antibiotic-resistant bacteria. Horizontal gene transfer dominated by mobile genetic elements (MGEs) played a key role in the changes in the abundances of ARGs. i-intI1 and e-Tn916/1545 were key MGEs related closely to ARGs, and the maximum decreases of 52.8% and 100%, respectively, occurred under M, which mainly explained the decreased abundances of i-ARGs and e-ARGs. Our findings provide new insights into the distribution and main drivers of i-ARGs and e-ARGs, as well as demonstrating the possibility of adding 1 g/kg SiO(2)NPs to reduce the propagation of ARGs.202337148762
8041140.9996Insights into the microalgae-bacteria consortia treating swine wastewater: Symbiotic mechanism and resistance genes analysis. This study investigated the effects of microalgae-bacteria consortia (MBC) (Chlorella pyrenoidosa-activated sludge (AS)) treating swine wastewater with low C/N ratios. After co-culture, the removal rates of NH(4)(+)-N and PO(4)(3-)-P increased by 53.84% and 43.52%. Furthermore, the sulfamethoxazole (SMX) degradation rates in MBC were slightly higher than in the activated sludge process. Interestingly, the absolute abundance of antibiotic resistance genes (ARGs) in effluent from MBC is relatively less than in the AS process. C. pyrenoidosa has a negative zeta potential that allows bacteria to adhere to its surface. The concentrations of carbohydrates and proteins in extracellular polymeric substance (EPS) of MBC dramatically increased compared with the AS process. At the phylum level, Proteobacteria, Bacteroidota, and Cyanobacteria were the main bacteria, while Ascomycota and Basidiomycota were the primary fungi in MBC. Overall, those findings lead to a better understanding of the swine wastewater containing antibiotic treatment by MBC.202235217162
8053150.9996Increasing the removal efficiency of antibiotic resistance through anaerobic digestion with free nitrous acid pretreatment. Swine manure is a significant reservoir for antibiotic resistance. Anaerobic digestion (AD) is a common biological process used to treat swine manure but still faces low efficiencies in biogas production and antibiotic resistance removal. It is here shown that AD with free nitrous acid pretreatment (FNA) was effective in reducing antibiotic resistance genes (ARGs) in swine manure. FNA pretreatment (nitrite =250 mg N/L, pH=5.0, temperature=20 ± 1 °C) simultaneously reduced antibiotics (Tetracyclines, Quinones and Sulfonamides), inactivated antibiotics resistance bacteria (ARB) by 0.5-3 logs, and decreased ARGs tet, sul and qnr by 1-2, 1-3 and 0.5 logs, respectively. In the following AD step, the total residual ARGs was reduced to ~3.49 × 10(7) gene copies/g dry total solids (TS), ~1 log lower than that in the AD without pretreatment (3.55 ×10(8) gene copies/g dry TS). Microbial community and network analyses revealed that the ARG removal was mainly driven by the direct FNA effect on reducing ARGs and antibiotics, not related to ARB. Besides, the FNA pretreatment doubled biochemical methane production potential from swine manure. Together these results demonstrate that AD with FNA pretreatment is a useful process greatly facilitating swine manure management.202235816802
8058160.9996Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. It is currently still difficult to decrease the high contents of antibiotics and their corresponding antibiotic resistance genes (ARGs) in sludge vermicompost. To decrease the environmental risk of vermicompost as a bio-fertilizer, this study investigated the feasibility of biochar addition to decrease the levels of antibiotics and ARGs during vermicomposting of dewatered sludge. To achieve this, 1.25% and 5% of corncob and rice husk biochars, respectively, were added to sludge, which was then vermicomposted by Eisenia fetida for 60 days. The sludge blended with corncob biochar showed increased decomposition and humification of organic matter. Higher biochar concentration promoted both the number and diversity of bacteria, and differed dominant genera. The level of antibiotics significantly decreased as a result of biochar addition (P < 0.05), and tetracycline was completely removed. Relative to the control without addition of biochars, ermF and tetX genes significantly decreased with corncob biochar treatment (P < 0.05). Rice husk biochar (5%) could effectively decrease sul-1 and sul-2 genes in vermicompost (P < 0.05). However, the abundance of the intI-1 gene increased with biochar concentration. This study suggests that biochar addition can lessen the antibiotic and ARG pollution in sludge vermicompost, depending on the type and concentration of biochars.202032388093
8042170.9996Algal-bacterial consortium mediated system offers effective removal of nitrogen nutrients and antibiotic resistance genes. The sulfonamide antibiotic resistance genes (ARGs) especially sul1 was identified as the dominant in eutrophic water. The performance of Chlorella vulgaris-B. licheniformis consortium toward sul1 removal, total nitrogen (TN) removal, and the mechanism of sul1 removal was investigated. The removal efficiency of exogenous ARGs plasmids carrying sul1 reached (97.2 ± 2.3)%. The TN removal rate reached (98.5 ± 1.2)%. The enhancements of carbon metabolism, nitrogen metabolism, aminoacyl-tRNA biosynthesis, and glycoproteins had significant influences on sul1 and TN removals, under the premise of normal growth of algae and bacteria. The quantitative polymerase chain reaction (qPCR) results suggested that the absolute abundances of sul1 were low in algal-bacterial systems (0 gene copies/mL) compared with individual systems ((1 × 10(6) ± 15) gene copies/mL). The duplication of sul1 was inhibited in algal cells and bacterial cells. The algal-bacterial consortium seems to be a promising technology for wastewater treatment with a potential to overcome the eutrophication and ARGs challenges.202236049708
8093180.9996Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure. Manure pH may vary depending on its inherent composition or additive contents. However, the effect of pH on the fate of antibiotics and antibiotic resistance determinants in manure remains unclear. This work demonstrated that pH adjustment promoted the removal of different sulfonamide antibiotics (SAs) within swine manure under incubation conditions, which increased from 26-60.8% to 75.0-86.0% by adjusting the initial pH from neutral (7.4) to acidic (5.4-4.8). Acidification was also demonstrated to inhibit the accumulation of antibiotic resistance genes in manure during incubation. Acidified manure contained both lower absolute and relative abundances of sul1 and sul2 than those at a neutral pH like 7.4. Further investigation indicated that acidification promoted the reduction of sul genes in manure by restricting sulfonamide-resistant bacteria (SRB) proliferation and inhibiting IntI1 accumulation. Furthermore, pH adjustment significantly influenced the composition of the manure bacterial community after incubation, which increased Firmicutes and decreased Proteobacteria. Close relationships were observed between pH-induced enrichment of the Firmicutes bacterial phylum, enhanced SAs degradation, and the fates of antibiotic resistance determinants. Overall, lowering the pH of manure promotes the degradation of SAs, decreases sul genes and SRB, and inhibits horizontal sul gene transfer, which could be a simple yet highly-effective manure management option to reduce antibiotic resistance.202032302890
7585190.9996Impacts of engineered nanoparticles and antibiotics on denitrification: Element cycling functional genes and antibiotic resistance genes. The wide presence of antibiotics and minerals warrants their combined effects on the denitrification in natural aquatic environment. Herein, we investigated the effects of two antibiotics, sulfamethazine (SMZ) and chlortetracycline (CTC), on the reduction of NO(3)(-)-N and accumulation of NO(2)(-)-N in the absence and presence of engineered nanoparticles (NPs) (Al(2)O(3), SiO(2), and geothite) using 16 S rRNA sequencing and high-throughput quantitative PCR. The results showed that the addition of antibiotics inhibited the reduction of NO(3)(-)-N by changing the bacterial community structure and reducing the abundance of denitrification genes, while engineered NPs promoted the denitrification by increasing the abundance of denitrification genes. In the binary systems, engineered NPs alleviated the inhibitory effect of antibiotics through enriching the denitrification genes and adsorbing antibiotics. Antibiotics and its combination with engineered NPs changed the composition of functional genes related to C, N, P, S metabolisms (p < 0.01). The addition of antibiotics and/or engineered NPs altered the bacterial community structure, which is dominated by the genera of Enterobacter (40.7-90.5%), Bacillus (4.9-58.5%), and Pseudomonas (0.21-12.7%). The significant relationship between denitrification, carbon metabolism genes, and antibiotic resistance genes revealed that the heterotrophic denitrifying bacteria may host the antibiotic resistance genes and denitrification genes simultaneously. The findings underscore the significance of engineered NPs in the toxicity assessment of pollutants, and provide a more realistic insight into the toxicity of antibiotics in the natural aquatic environment.202235738104