Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
805401.0000Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs.201931505392
805510.9998Effects of nano-zerovalent iron on antibiotic resistance genes during the anaerobic digestion of cattle manure. This study investigated the effects of adding nano-zerovalent iron (nZVI) at three concentrations (0, 80, and 160 mg/L) on the methane yield and the fate of antibiotic resistance genes (ARGs) during the anaerobic digestion (AD) of cattle manure. The addition of nZVI effectively enhanced the methane yield, where it significantly increased by 6.56% with 80 mg/L nZVI and by 6.43% with 160 mg/L nZVI. The reductions in the abundances of ARGs and Tn916/1545 were accelerated by adding 160 mg/L nZVI after AD. Microbial community analysis showed that nZVI mainly increased the abundances of bacteria with roles in hydrolysis and acidogenesis, whereas it reduced the abundance of Acinetobacter. Redundancy analysis indicated that the changes in mobile genetic elements made the greatest contribution to the fate of ARGs. The results suggest that 160 mg/L nZVI is a suitable additive for reducing the risks due to ARGs in AD.201931247529
805620.9998Antibiotic resistance gene profiles and evolutions in composting regulated by reactive oxygen species generated via nano ZVI loaded on biochar. In this study, nano zero-valent iron loaded on biochar (BC-nZVI) was analyzed for its effects on antibiotic resistance genes (ARGs) in composting. The results showed that BC-nZVI increased reactive oxygen species (ROS) production, and the peak values of H(2)O(2) and OH were 22.95 % and 55.30 % higher than those of the control group, respectively. After 65 days, the relative abundances of representative ARGs decreased by 56.12 % in the nZVI group (with BC-nZVI added). An analysis of bacterial communities and networks revealed that Actinobacteria, Proteobacteria, and Firmicutes were the main hosts for ARGs, and BC-nZVI weakened the link between ARGs and host bacteria. Distance-based redundancy analysis showed that BC-nZVI altered the microbial community structure through environmental factors and that most ARGs were negatively correlated with ROS, suggesting that ROS significantly affected the relative abundance of ARGs. According to these results, BC-nZVI showed potential for decreasing the relative abundance of ARGs in composting.202337611721
805330.9998Increasing the removal efficiency of antibiotic resistance through anaerobic digestion with free nitrous acid pretreatment. Swine manure is a significant reservoir for antibiotic resistance. Anaerobic digestion (AD) is a common biological process used to treat swine manure but still faces low efficiencies in biogas production and antibiotic resistance removal. It is here shown that AD with free nitrous acid pretreatment (FNA) was effective in reducing antibiotic resistance genes (ARGs) in swine manure. FNA pretreatment (nitrite =250 mg N/L, pH=5.0, temperature=20 ± 1 °C) simultaneously reduced antibiotics (Tetracyclines, Quinones and Sulfonamides), inactivated antibiotics resistance bacteria (ARB) by 0.5-3 logs, and decreased ARGs tet, sul and qnr by 1-2, 1-3 and 0.5 logs, respectively. In the following AD step, the total residual ARGs was reduced to ~3.49 × 10(7) gene copies/g dry total solids (TS), ~1 log lower than that in the AD without pretreatment (3.55 ×10(8) gene copies/g dry TS). Microbial community and network analyses revealed that the ARG removal was mainly driven by the direct FNA effect on reducing ARGs and antibiotics, not related to ARB. Besides, the FNA pretreatment doubled biochemical methane production potential from swine manure. Together these results demonstrate that AD with FNA pretreatment is a useful process greatly facilitating swine manure management.202235816802
805840.9997Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. It is currently still difficult to decrease the high contents of antibiotics and their corresponding antibiotic resistance genes (ARGs) in sludge vermicompost. To decrease the environmental risk of vermicompost as a bio-fertilizer, this study investigated the feasibility of biochar addition to decrease the levels of antibiotics and ARGs during vermicomposting of dewatered sludge. To achieve this, 1.25% and 5% of corncob and rice husk biochars, respectively, were added to sludge, which was then vermicomposted by Eisenia fetida for 60 days. The sludge blended with corncob biochar showed increased decomposition and humification of organic matter. Higher biochar concentration promoted both the number and diversity of bacteria, and differed dominant genera. The level of antibiotics significantly decreased as a result of biochar addition (P < 0.05), and tetracycline was completely removed. Relative to the control without addition of biochars, ermF and tetX genes significantly decreased with corncob biochar treatment (P < 0.05). Rice husk biochar (5%) could effectively decrease sul-1 and sul-2 genes in vermicompost (P < 0.05). However, the abundance of the intI-1 gene increased with biochar concentration. This study suggests that biochar addition can lessen the antibiotic and ARG pollution in sludge vermicompost, depending on the type and concentration of biochars.202032388093
805950.9997Particle size of zero-valent iron affects the risks from antibiotic resistance genes in waste activated sludge during anaerobic digestion. Zero-valent iron (ZVI) is the promising enhancer for sludge anaerobic digestion (AD) performance and for mitigating the proliferation of antibiotic resistance genes (ARGs). However, concerns about its size effects in shifting the behavior and risk of ARGs in sludge, during the AD process. Here, the metagenomics-based profile of ARGs, along with their potential (pathogenic) hosts in sludge were investigated, during mesophilic AD enhanced by ZVI with three different sizes. Results showed that the size of ZVI affected the profiles of ARGs, with nano-ZVI (nZVI, 50 nm) demonstrating the most significant reduction in abundance (by 45.0 %) and diversity (by 8.6 %) of total ARGs, followed by micron-ZVI (150 μm) and iron scrap (1 mm). Similar trends were also observed for high-risk ARGs, pathogens, and potential pathogenic hosts for ARGs. Notably, nZVI achieved the greatest reductions in the abundance of risk ARGs and potential pathogenic hosts (superbugs) by 58.8 % and 53.9 %, respectively. Correlation and redundancy analyses revealed that, the size of ZVI induced concentration differences in ammonium nitrogen, pH, carbonaceous matters, iron, and potential microbial hosts were the main reasons for the variation in the risk of ARGs. Moreover, the down-regulation of genes involved in oxidative stress contributed to the lower risk of ARGs in the three ZVI groups, especially in nZVI. This study provides insights into AD processes of solid wastes using ZVI enhancers.202540043404
806160.9996The addition of nano zero-valent iron during compost maturation effectively removes intracellular and extracellular antibiotic resistance genes by reducing the abundance of potential host bacteria. Applying compost to soil may lead to the spread of antibiotic resistance genes (ARGs) in the environment. Therefore, removing ARGs from compost is critical. In this study, for the first time, nano zero-valent iron (nZVI) was added to compost during the maturation stage to remove ARGs. After adding 1 g/kg of nZVI, the abundance of total intracellular and total extracellular ARGs was decreased by 97.62% and 99.60%, and that of total intracellular and total extracellular mobile genetic elements (MGEs) was decreased by 92.39% and 99.31%, respectively. A Mantel test and network analysis indicated that the reduction in potential host bacteria and intI1 after nZVI treatment promoted the removal of intracellular and extracellular ARGs. The addition of nZVI during composting reduced the horizontal transfer of ARGs and improve the total nitrogen and germination index of compost, allowing it to meet the requirements for organic fertilizers.202337352990
809270.9996Effect of pH on the mitigation of extracellular/intracellular antibiotic resistance genes and antibiotic resistance pathogenic bacteria during anaerobic fermentation of swine manure. Effects of various initial pH values (i.e., 3, 5, 7, 11) during anaerobic fermentation of swine manure on intracellular and extracellular antibiotic resistance genes (iARGs and eARGs) and ARG-carrying potential microbial hosts were investigated. The abundance of almost all iARGs and eARGs decreased by 0.1-1.7 logs at pH 3 and pH 5. The abundance of only three iARGs and eARGs decreased by 0.1-0.9 logs at pH 7 and pH 11. Under acidic initial fermentation conditions (pH 3 and pH 5), the ARG removal effect was more pronounced. Acidic conditions (pH 3 and pH 5) significantly reduced the diversity and abundance of the microbial community, thereby eliminating many potential ARG hosts and antibiotic-resistant pathogenic bacteria (ARPB). Therefore, the study results contribute to the investigation of the effects of swine manure anaerobic fermentation on the removal and risk of contamination of ARGs and ARPB.202336746211
806280.9996Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost. Livestock manure has been identified as a significant hotspot for antibiotic resistance genes (ARGs). However, the impact of nanoscale zero-valent iron (nZVI) on the fate of ARGs during livestock manure composting remains poorly understood. Here, we investigated the evolution of ARGs in chicken manure compost exposed to 100 and 600 mg kg(-1) nZVI. The results showed that nZVI addition reduced the concentration of some antibiotics such as doxycycline and sulfamethoxazole. Furthermore, nZVI addition decreased the abundances of most ARGs at the end of composting, but nZVI dosage did not have any significant effect. The abundances of the dominant ARGs (sul1 and sul2) were significantly correlated to the class 1 integron-integrase gene (intI1). A network analysis revealed that the genera Bacteroides, Bacillus, Corynebacterium, Thiopseudomonas and Pseudomonas were the main potential hosts for multiple ARGs, and the decreased abundance of these bacteria contributed to the removal of ARGs. Structural equation models demonstrated that the reduction in intI1 played a predominant role in ARG removal. The nZVI also had direct effects on the intI1 abundance. These findings suggest that the addition of nZVI is a promising strategy to minimize ARG release in chicken manure compost.202234416685
754390.9996Aerobic granular sludge for swine wastewater treatment: Implications for antibiotic and antibiotic resistance gene elimination. Swine wastewater (SW) contains high levels of traditional pollutants, antibiotics, and antibiotic resistance genes (ARGs), necessitating effective elimination. Two parallel aerobic granular sludge (AGS) reactors, R(1) and R(2), were constructed and optimized for treating SW from two pig farms, identified as SW(1) and SW(2). R(2) showed higher antibiotic removal efficiency, particularly in the removal of sulfonamides, while fluoroquinolones tended to adsorb onto the sludge. Process optimization by introducing an additional anoxic phase enhanced denitrification and reduced effluent ARG levels, also aiding in the improved removal of fluoroquinolones. The nitrite-oxidizing bacteria (NOB) Nitrospira accumulated after the treatment process, reaching 12.8 % in R(1) and 14.1 % in R(2), respectively. Mantel's test revealed that pH, NH(4)(+)-N, and Mg significantly affected ARGs and microbial community. Sulfadiazine and sulfamethazine were found to significantly impact ARGs and the microbial communities. This study provides innovative insights into the application of AGS for the treatment of real SW.202439153702
8018100.9996Analysis for microbial denitrification and antibiotic resistance during anaerobic digestion of cattle manure containing antibiotic. This study investigated the effects of tylosin (0, 10, and 100 mg/kg dry weight) on the denitrification genes and microbial community during the anaerobic digestion of cattle manure. N(2) emissions were reduced and N(2)O emissions were increased by 10 mg/kg tylosin. Adding 100 mg/kg tylosin increased the emission of both N(2)O and N(2). The different responses of denitrifying bacteria and genes to tylosin may have been due to the presence of antibiotic resistance genes (ARGs). Network analysis indicated that denitrification genes and ARGs had the same potential host bacteria. intI1 was more important for the horizontal transfer of denitrification genes and ARGs during anaerobic digestion than intI2. The anaerobic digestion of manure containing tylosin may increase nitrogen losses and the associated ecological risk.201931326686
8057110.9996SiO(2) nanoparticles can enhance nitrogen retention and reduce copper resistance genes during aerobic composting of swine manure. SiO(2) nanoparticles (SiO(2) NPs) are low-cost, environmentally friendly materials with significant potential to remove pollutants from complex environments. In this study, SiO(2) NPs were used for the first time as an additive in aerobic composting to enhance nitrogen retention and reduce the expression of copper resistance genes. The addition of 0.5 g kg(-1) SiO(2) NPs effectively reduced nitrogen loss by 72.33 % by decreasing denitrification genes (nosZ, nirK, and napA) and increasing nitrogen fixation gene (nifH). The dominant factors affecting nitrification and denitrification genes were Firmicutes and C/N ratio. Additionally, SiO(2) NPs decreased copper resistance genes by 28.96 % - 37.52 % in compost products. Copper resistance genes decreased most in the treatment with 0.5 g kg(-1) SiO(2) NPs. In summary, 0.5 g kg(-1) SiO(2) NPs have the potential to reduce copper resistance genes and enhance nitrogen retention during aerobic composting, which may be used to improve compost quality.202439374833
8017120.9995Dose-Dependent Effect of Tilmicosin Residues on ermA Rebound Mediated by IntI1 in Pig Manure Compost. The impact of varying antibiotic residue levels on antibiotic resistance gene (ARG) removal during composting is still unclear. This study investigated the impact of different residue levels of tilmicosin (TIM), a common veterinary macrolide antibiotic, on ARG removal during pig manure composting. Three groups were used: the CK group (no TIM), the L group (246.49 ± 22.83 mg/kg TIM), and the H group (529.99 ± 16.15 mg/kg TIM). Composting removed most targeted macrolide resistance genes (MRGs) like ereA, ermC, and ermF (>90% removal), and reduced ermB, ermX, ermQ, acrA, acrB, and mefA (30-70% removal). However, ermA increased in abundance. TIM altered compost community structure, driving succession through a deterministic process. At low doses, TIM reduced MRG-bacteria co-occurrence, with horizontal gene transfer via intI1 being the main cause of ermA rebound. In conclusion, composting reduces many MRG levels in pig manure, but the persistence and rebound of genes like ermA reveal the complex interactions between composting conditions and microbial gene transfer.202541011454
8060130.9995Responses of bacterial communities and antibiotic resistance genes to nano-cellulose addition during pig manure composting. Treatment with exogenous additives during composting can help to alleviate the accumulation of antibiotic resistance genes (ARGs) caused by the direct application of pig manure to farmland. In addition, nano-cellulose has an excellent capacity for adsorbing pollutants. Thus, the effects of adding 300, 600, and 900 mg/kg nano-cellulose to compost on the bacterial communities, mobile genetic elements (MGEs), and ARGs were determined in this study. After composting, treatment with nano-cellulose significantly reduced the relative abundance of ARGs, which was lowest in the compost product with 600 mg/kg added nano-cellulose. Nano-cellulose inhibited the rebound in ARGs from the cooling period to the maturity period, and weakened the selective pressure of heavy metals on microorganisms by passivating bio-Cu. The results also showed that MGEs explained most of the changes in the abundances of ARGs, and MGEs had direct effects on ARGs. The addition of 600 mg/kg nano-cellulose reduced the abundances of bacterial genera associated with ermQ, tetG, and other genes, and the number of links (16) between ARGs and MGEs was lowest in the treatment with 600 mg/kg added nano-cellulose. Therefore, adding 600 mg/kg nano-cellulose reduced the abundances of ARGs by affecting host bacteria and MGEs. The results obtained in this study demonstrate the positive effect of nano-cellulose on ARG pollution in poultry manure, where adding 600 mg/kg nano-cellulose was most effective at reducing the abundances of ARGs.202134649327
7923140.9995Effect of ultrasonic and ozone pretreatment on the fate of enteric indicator bacteria and antibiotic resistance genes, and anaerobic digestion of dairy wastewater. In this study, the effect of ultrasound (US), ozone and US combined with ozone (US/ozone) pretreatments on the fate of enteric indicator bacteria and antibiotic resistance genes (ARGs), and anaerobic digestion (AD) of dairy wastewater was investigated. The pretreatment conditions included US power 200 W, ozone concentration 4.2 mg O(3)/L, and pretreatment time 0-30 min. The results showed that US/ozone pretreatment was effective in the inactivation of enteric indicator bacteria. Total coliforms and enterococci were reduced by 99% and 92% after 30 min US/ozone pretreatment. Pretreatments could not decrease ARGs in absolute concentration, but could decrease ARGs in relative abundance. In the subsequent AD process, methane production increased more than 10% with 20 min ozone or 20 min US/ozone pretreatments. Pretreatment-AD together obviously inhibited the enrichment of ARGs in relative abundance. This study provided a pretreatment way to enhance methane production and to prevent the enrichment of ARGs.202133186838
8075150.9995Exploring the impact of biochar on antibiotics and antibiotics resistance genes in pig manure aerobic composting through untargeted metabolomics and metagenomics. This study investigated the effect of biochar on antibiotics and antibiotic resistance genes (ARGs) during aerobic composting of pig manure. First, the composition and content of antibiotics in the manure were determined qualitatively and quantitatively. Biochar promoted the degradation of these antibiotics (oxytetracycline, chlortetracycline, and tetracycline). The relative abundance (RA) of antibiotic-resistant bacteria carrying ARGs accounted for about 29.32% of the total bacteria. Firmicutes and Actinomycetes were dominant phylum-level bacteria at the early and late stages of composting, respectively. Biochar decreased the total RA of ARGs by 16.83%±4.10%. tetW and tetL, closely related to tetracycline resistance, were significantly diminished during aerobic composting, and biochar was able to promote this removal. Biochar enhanced RAs of Mycobacterium tuberculosis kasA mutant. RAs of ARGs related to antibiotic efflux pumps, such as baeS and arlS, remained at a high level. Conclusively, biochar promotes degradation of antibiotics and removal of ARGs.202235398213
8050160.9995Effects of antibiotics on corncob supported solid-phase denitrification: Denitrification and antibiotics removal performance, mechanism, and antibiotic resistance genes. Solid-phase denitrification (SPD) has been used in wastewater treatment plant effluent to enhance nitrate removal, and antibiotics co-existing in the effluent is a common environmental problem. In this study, it was systematically investigated the effect of single trace sulfamethoxazole (SMX)/trimethoprim (TMP) and their mixture on microbial denitrification performance, the antibiotics removal, and antibiotics resistance genes (ARGs) in corncob supported SPD system. The average denitrification rate was improved by 46.90% or 61.09% with single 50 µg/L SMX or TMP, while there was no significant inhibition with mixed SMX and TMP. The abundance of dominant denitrifiers (Comamonadaceae family and Azospia) and fermentation bacteria (Ancalomicrobium) were consistent with the denitrification performance of different antibiotics groups. Single SMX and TMP achieved relatively higher denitrification gene and enzyme abundance. Mixed SMX and TMP improved the denitrification gene copies, but they reduced the key denitrification enzymes except for EC 1.7.7.2. Additionally, the removal efficiency of TMP (56.70% ± 3.18%) was higher than that of SMX (25.44% ± 2.62%) in single antibiotic group, and the existence of other antibiotics (i.e. SMX or TMP) had no significant impact on the TMP or SMX removal performance. Biodegradation was the main removal mechanism of SMX and TMP, while sludge and corncob adsorption contributed a little to their removal. SMX had the risk of sulfanilamide resistance genes (SRGs) dissemination. Furthermore, network analysis indicated that Niveibacterium and Bradyrhizobium were the potential hosts of SRGs, which promoted the horizontal transmission of ARGs.202337032040
8019170.9995In-feed antibiotic use changed the behaviors of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting. The dynamics of oxytetracycline (OTC), sulfamerazine (SM1), ciprofloxacin (CIP) and related antibiotic resistance genes (ARGs) during swine manure composting were compared between manure collected from swine fed a diet containing these three antibiotics (T(D)) and manure directly spiked with these drugs (T(S)). The composting removal efficiency of OTC (94.9 %) and CIP (87.8 %) in the T(D) treatment was significantly higher than that of OTC (83.8 %, P <  0.01) and CIP (83.9 %, P <  0.05) in the T(S) treatment, while SM1 exhibited no significant difference (P >  0.05) between the two treatments. Composting effectively reduced the majority of ARGs in both T(D) and T(S) types of manure, especially tetracycline resistance genes (TRGs). Compared with the T(S) treatment, the abundance of some ARGs, such as tetG, qepA, sul1 and sul2, increased dramatically up to 309-fold in the T(D) treatment. The microbial composition of the composting system changed significantly during composting due to antibiotic feeding. Redundancy analysis suggested that the abundance of ARGs had a considerable impact on alterations in the physicochemical parameters (C/N, pH and temperature) and bacterial communities (Actinobacteria, Proteobacteria and Firmicutes) during the composting of swine manure.202133254754
7550180.9995Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes. The effects of activated carbon (AC) on methane production and the fate of antibiotic resistance genes (ARGs) were evaluated through comparing the anaerobic digestion performance and transformation of ARGs among anaerobic mono-digestion of food waste, co-digestion of food waste and chicken manure, and co-digestion of food waste and waste activated sludge. Results showed that adding AC in anaerobic digesters improved methane yield by at least double through the enrichment of bacteria and archaea. Conventional digestion process showed ability in removing certain types of ARGs, such as tetA, tetX, sul1, sul2, cmlA, floR, and intl1. Supplementing AC in anaerobic digester enhanced the removal of most of the ARGs in mono-digestion of food waste. The effects tended to be minimal in co-digestion of co-substrates such as chicken manure and waste activated sludge, both of which contain a certain amount of antibiotics.201829096147
8008190.9995Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater. Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors. Results demonstrated that membrane bioreactor (MBR) and sequencing batch reactor (SBR) significantly reduced ARB abundances in the ranges of 2.80∼3.54 log and 2.70∼3.13 log, respectively, followed by activated sludge (AS). Biological filter (BF) and anaerobic (upflow anaerobic sludge blanket, UASB) techniques led to relatively low reductions. In contrast, ARGs were not equally reduced as ARB. AS and SBR also showed significant potentials on ARGs reduction, whilst MBR and UASB could not reduce ARGs effectively. Redundancy analysis implied that the purification of wastewater quality parameters (COD, NH4 (+)-N, and turbidity) performed a positive correlation to ARB and ARGs reductions.201627384166