Ecological risks of sulfonamides and quinolones degradation intermediates: Toxicity, microbial community, and antibiotic resistance genes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
804801.0000Ecological risks of sulfonamides and quinolones degradation intermediates: Toxicity, microbial community, and antibiotic resistance genes. The ecological risks posed by incompletely degraded antibiotic intermediates in aquatic environments warrant significant attention. This study investigated the degradation mechanisms of sulfonamides (sulfadiazine, sulfamethoxazole) and quinolones (ciprofloxacin, norfloxacin) during thermally activated persulfate (TAP) treatment. The main degradation mechanisms for sulfonamides involved S-N bond cleavage and -NH(2) oxidation mediated by sulfate and hydroxyl radicals, whereas quinolone degradation occurred primarily through piperazine ring cleavage facilitated by a single linear oxygen. Toxic degradation intermediates were found to be enriched with bacteria in real water samples, including Aeromonas (SDZ-50, 9.61%), Acinetobacter (SMZ-50, 21.91%), unclassified Archaea (CIP-50, 19.32%), and Herbaspirillum (NOR-50, 17.36%). Meanwhile, the abundance of sulfonamide-associated antibiotic resistance genes (ARGs) (sul1 and sul2) and quinolone-associated ARGs (mfpA, emrA, and lfrA) significantly increased, with SMZ-50 and NOR-50 reaching 659.34 and 2009.98 RPKM, respectively. Correlation analysis revealed differences in host diversity and composition driven by the same classes of antibiotics and their intermediates.202539662843
800410.9997Elimination of antibiotic-resistant bacteria and resistance genes by earthworms during vermifiltration treatment of excess sludge. Vermifiltration (VF) and a conventional biofilter (BF, no earthworm) were investigated by metagenomics to evaluate the removal rates of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and class 1 integron-integrase (intI1), as well as the impact mechanism in combination with the microbial community. According to the findings of qPCR and metagenomics, the VF facilitated greater removal rates of ARGs (78.83% ± 17.37%) and ARB (48.23% ± 2.69%) than the BF (56.33% ± 14.93%, 20.21% ± 6.27%). Compared to the control, the higher biological activity of the VF induced an increase of over 60% in the inhibitory effect of earthworm coelomic fluid on ARB. The removal rates of ARGs by earthworm guts also reached over 22%. In addition, earthworms enhanced the decomposition of refractory organics, toxic, and harmful organics, which led to a lower selective pressure on ARGs and ARB. It provides a strategy for reducing resistant pollution in sewage treatment plants and recognizing the harmless stability of sludge.202438170354
779520.9997Factors influencing the removal of antibiotic-resistant bacteria and antibiotic resistance genes by the electrokinetic treatment. The performance of the electrokinetic remediation process on the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) was evaluated with different influencing factors. With chlortetracycline (CTC), oxytetracycline (OTC), and tetracycline (TC) as template chemicals, the removal of both ARB and ARGs was enhanced with the increase of voltage gradient (0.4-1.2 V cm(-1)) and prolonged reaction time (3-14 d). The greatest removal (26.01-31.48% for ARB, 37.93-83.10% for ARGs) was obtained applying a voltage of 1.2 V cm(-1), leading to the highest electrical consumption. The effect of polarity reversal intervals on the inactivation ratio of ARB followed the order of 0 h (66.06-80.00%) > 12 h (17.07-24.75%) > 24 h (10.44-13.93%). Lower pH, higher current density, and more evenly-distributed voltage drop was observed with a polarity reversal interval of 12 h compared with that of 24 h, leading to more efficient electrochemical reactions in soil. Compared with sul genes, tet genes were more vulnerable to be attacked in an electric field. It was mainly attributed to the lower abundance of tet genes (except tetM) and the varied effects of electrokinetic remediation process on different ARGs. Moreover, a relatively less removal ratio of tetC and tetG was obtained mainly due to the mechanism of the efflux pump upregulation. Both tet and sul genes were positively correlated with TC-resistant bacteria. The efflux pump genes like tetG and the cellular protection genes like tetM showed different correlations with ARB. This study enhances the current understanding on the removal strategies of ARB and ARGs, and it provides important parameters for their destruction by the electrokinetic treatment.201829807293
804230.9997Algal-bacterial consortium mediated system offers effective removal of nitrogen nutrients and antibiotic resistance genes. The sulfonamide antibiotic resistance genes (ARGs) especially sul1 was identified as the dominant in eutrophic water. The performance of Chlorella vulgaris-B. licheniformis consortium toward sul1 removal, total nitrogen (TN) removal, and the mechanism of sul1 removal was investigated. The removal efficiency of exogenous ARGs plasmids carrying sul1 reached (97.2 ± 2.3)%. The TN removal rate reached (98.5 ± 1.2)%. The enhancements of carbon metabolism, nitrogen metabolism, aminoacyl-tRNA biosynthesis, and glycoproteins had significant influences on sul1 and TN removals, under the premise of normal growth of algae and bacteria. The quantitative polymerase chain reaction (qPCR) results suggested that the absolute abundances of sul1 were low in algal-bacterial systems (0 gene copies/mL) compared with individual systems ((1 × 10(6) ± 15) gene copies/mL). The duplication of sul1 was inhibited in algal cells and bacterial cells. The algal-bacterial consortium seems to be a promising technology for wastewater treatment with a potential to overcome the eutrophication and ARGs challenges.202236049708
800540.9997Deciphering the fate of antibiotic resistance genes in norfloxacin wastewater treated by a bio-electro-Fenton system. The misuse of antibiotics has increased the prevalence of antibiotic resistance genes (ARGs), considered a class of critical environmental contaminants due to their ubiquitous and persistent nature. Previous studies reported the potentiality of bio-electro-Fenton processes for antibiotic removal and ARGs control. However, the production and fate of ARGs in bio-electro-Fenton processes triggered by microbial fuel cells are rare. In this study, the norfloxacin (NFLX) average residual concentrations within two days were 2.02, 6.07 and 14.84 mg/L, and the average removal efficiency of NFLX was 79.8 %, 69.6 % and 62.9 % at the initial antibiotic concentrations of 10, 20 and 40 mg/L, respectively. The most prevalent resistance gene type in all processes was the fluoroquinolone antibiotic gene. Furthermore, Proteobacteria was the dominant ARG-carrying bacteria. Overall, this study can provide theoretical support for the efficient treatment of high antibiotics-contained wastewater by bio-electro-Fenton systems to better control ARGs from the perspective of ecological security.202236252757
801150.9997Co-selective Pressure of Cadmium and Doxycycline on the Antibiotic and Heavy Metal Resistance Genes in Ditch Wetlands. Abuse of heavy metals and antibiotics results in the dissemination of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs). Ditch wetlands are important sinks for heavy metals and antibiotics. The relationships between bacterial communities and MRG/ARG dissemination under dual stresses of heavy metals and antibiotics remain unclear. The responses of MRGs and ARGs to the co-selective pressure of cadmium (Cd) and doxycycline (DC) in ditch wetlands were investigated after 7-day and 84-day exposures. In ecological ditches, residual rates of Cd and DC varied from 0.4 to -5.73% and 0 to -0.61%, respectively. The greatest total relative abundance of ARGs was observed in the Cd 5 mg L(-1) + DC 50 mg L(-1) group. A significant level of DC (50 mg L(-1)) significantly reduced the total relative abundances of MRGs at a concentration of 5 mg L(-1) Cd stress. Redundancy analysis indicated that Cd and DC had strong positive effects on most ARGs and MRGs after a 7-day exposure. Meanwhile, the class 1 integron gene (intI1) exhibited strong positive correlations with most ARGs and cadmium resistance genes (czcA) after an 84-day exposure. Network analysis showed that Acinetobacter and Pseudomonas were the potential dominant host genera for ARGs and MRGs, and tetracycline resistance genes (tetA), czcA, and intI1 shared the same potential host bacteria Trichococcus after an 84-day exposure.202235250936
801260.9996Sensitive response mechanism of ARGs and MGEs to initial designed temperature during swine manure and food waste co-composting. The rapid aerobic composting process has been used to reduce organic wastes, but the associated risks of antibiotic resistance genes (ARGs) need to evaluate in an efficient way. The primary objective of this work was to explore the underlying mechanism of initial adjustment in composting temperature on the variation of ARGs, mobile genetic elements (MGEs), and microbial composition during co-composting. The co-composting was initially externally heated (T2) for 5 days. The results showed that ARGs abundance in conventional composting (T1) was reduced by 49.36%, while multidrug was enriched by 86.16% after a period of 30 days. While in T2 ARGs were removed by 79.46% particularly the fraction of sulfonamide, multidrug, and vancomycin resistance genes were >90% without rebounding of any ARGs. Whereas, MGEs were reduced by 68.12% and 93.62% in T1 and T2, while the half-lives of ARGs and MGEs were lower in T2 compared to T1 (86.3%,86.7%). T2 also affected the metabolism function by regulating carbohydrate metabolism (9.62-10.39%) and amino acid metabolism (9.92-10.93%). Apart from this, the potential human pathogenic bacteria Pseudomonas was reduced by 90.6% in T2 and only 32.9% in T1 respectively. Network analysis showed that Ureibacillus, Weissella, Corynebacterium, Escherichia-Shigella, Acinetobacter were the main host of multiple genes. Structural equation models exhibited that bacterial communities were mainly responsible for the enrichment of ARGs in T1, whereas, it was directly affected by MGEs in T2. Similarly, ARGs variation was directly related to composting temperature. With this simple strategy, ARGs associated risk can be significantly reduced in composting.202336208781
804770.9996Simultaneous elimination of antibiotics and antibiotics resistance genes in nitritation of source-separated urine. Antibiotics in human urine could accelerate dissemination of antibiotics resistance genes (ARGs), posing potential threat to sewage. The nitritation of source-separated urine was a critical step to realize the urine resourcelization and nitrogen stabilization. However, the synergic control on antibiotics and ARGs during urine nitritation was unrevealed. This study investigated the removal profiles of five typical antibiotics and the shifts of microbial community and ARGs during stable nitritation. The result showed that sulfamethoxazole and roxithromycin were effectively eliminated with high removal efficiency of (95 ± 5) % and (90 ± 10) %, followed by enrofloxacin with removal efficiency of (60 ± 5) %, whereas trimethoprim and chloramphenicol showed low removal efficiency of less than 40 %. Ammonia oxidation bacteria and heterotrophic bacteria equally contributed to elimination of sulfamethoxazole with a high biodegradation rate of 0.1534 L/gVSS·h, while sorption and biodegradation jointly promoted other antibiotics removal. The total relative abundance of top 25 bacteria genera was decreased by 10 %. The total relative abundance of top 30 ARGs was decreased by more than 20 %, which was corresponding to the variation of bacterial community. The findings in this research would get a deeper insight into the eliminating antibiotics and controlling ARGs dissemination during nitritation of source-separated urine.202235897182
720580.9996Antibiotics and antibiotic resistance genes removal in biological aerated filter. Two laboratory-level biological aerated filters (BAF) were constructed to explore their treatment capacity for simulated antibiotic wastewater at high (1 - 16 mg/L) and low (0 - 0.5 mg/L) concentrations. Results showed that BAF was capable of removing both sulfonamides and tetracyclines with an efficiency of over 90 % at 16 mg/L. The main mechanism for removing antibiotics was found to be biodegradation followed by adsorption. Paenarthrobacter was identified as the key genus in sulfonamides degradation, while Hydrogenophaga played a crucial role in tetracyclines degradation. Antibiotics resistant genes such as intI1, sul1, sul2, tetA, tetW and tetX were frequently detected in the effluent, with interception rates ranging from 10(5) - 10(6) copies/mL. The dominated microorganisms obtained in the study could potentially be utilized to enhance the capacity of biological processes for treating antibiotics contaminated wastewater. These findings contribute to a better understanding of BAF treating wastewater containing antibiotics and resistant genes.202438301943
776690.9996Native Microalgae-Bacteria Consortia: A Sustainable Approach for Effective Urban Wastewater Bioremediation and Disinfection. Urban wastewater is a significant by-product of human activities. Conventional urban wastewater treatment plants have limitations in their treatment, mainly concerning the low removal efficiency of conventional and emerging contaminants. Discharged wastewater also contains harmful microorganisms, posing risks to public health, especially by spreading antibiotic-resistant bacteria and genes. Therefore, this study assesses the potential of a native microalgae-bacteria system (MBS) for urban wastewater bioremediation and disinfection, targeting NH(4)(+)-N and PO(4)(3-)-P removal, coliform reduction, and antibiotic resistance gene mitigation. The MBS showed promising results, including a high specific growth rate (0.651 ± 0.155 d(-1)) and a significant average removal rate of NH(4)(+)-N and PO(4)(3-)-P (9.05 ± 1.24 mg L(-1) d(-1) and 0.79 ± 0.06 mg L(-1) d(-1), respectively). Microalgae-induced pH increase rapidly reduces coliforms (r > 0.9), including Escherichia coli, within 3 to 6 days. Notably, the prevalence of intI1 and the antibiotic resistance genes sul1 and bla(TEM) are significantly diminished, presenting the MBS as a sustainable approach for tertiary wastewater treatment to combat eutrophication and reduce waterborne disease risks and antibiotic resistance spread.202439065189
7793100.9996Treatment of pharmaceutical wastewater by ionizing radiation: Removal of antibiotics, antimicrobial resistance genes and antimicrobial activity. In present study, the treatment of real pharmaceutical wastewater from an erythromycin (ERY) production factory by gamma irradiation was investigated. Results showed that a variety of antimicrobial resistance genes (ARGs), involving MLSB, tet, bla, multidrug, sul, MGEs and van genes and plentiful 9 bacterial phyla were identified in the raw wastewater. In addition to ERY, sulfamethoxazole (SMX) and tetracycline (TC) were also identified with the concentration of 3 order of magnitude lower than ERY. Results showed that the abatement of ARGs and antibiotics was much higher than that of antimicrobial activity and COD. With the absorbed dose of 50 kGy, the removal percentage of ARGs, ERY, antimicrobial activity and COD was 96.5-99.8%, 90.0%, 47.8% and 10.3%, respectively. The culturable bacteria were abated fast and completely at 5.0 kGy during gamma irradiation. The genus Pseudomonas was predominant in raw wastewater (56.7%) and its relative abundance decreased after gamma irradiation, to 1.3% at 50 kGy. With addition of peroxymonosulfate (PMS, 50 mM), the antimicrobial activity disappeared completely and ERY removal reached as high as 99.2% at the lower absorbed dose of 25 kGy. Ionizing radiation-coupled technique is a potential option to treat pharmaceutical wastewater for reduction of antibiotics, ARGs and antimicrobial activity.202134088196
7192110.9996Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors. The abundant microbial community in biological treatment processes in wastewater treatment plants (WWTPs) may potentially enhance the horizontal gene transfer of antibiotic resistance genes with the presence of antibiotics. A lab-scale sequencing batch reactor was designed to investigate response of sulfonamide resistance genes (sulI, sulII) and bacterial communities to various concentrations of sulfamethoxazole (SMX) and chemical oxygen demand (COD) of wastewater. The SMX concentrations (0.001 mg/L, 0.1 mg/L and 10 mg/L) decreased with treatment time and higher SMX level was more difficult to remove. The presence of SMX also significantly reduced the removal efficiency of ammonia nitrogen, affecting the normal function of WWTPs. All three concentrations of SMX raised both sulI and sulII genes with higher concentrations exhibiting greater increases. The abundance of sul genes was positive correlated with treatment time and followed the second-order reaction kinetic model. Interestingly, these two genes have rather similar activity. SulI and sulII gene abundance also performed similar response to COD. Simpson index and Shannon-Weiner index did not show changes in the microbial community diversity. However, the 16S rRNA gene cloning and sequencing results showed the bacterial community structures varied during different stages. The results demonstrated that influent antibiotics into WWTPs may facilitate selection of ARGs and affect the wastewater conventional treatment as well as the bacteria community structures.201728211331
7207120.9996Antibiotic resistant bacteria and genes in shrimp aquaculture water: Identification and removal by ferrate(VI). Enclosed shrimp culturing ponds are breeding environments for the spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the aquatic environment. This paper surveyed the presence of antibiotics, ARB, and ARGs in aquaculture waters and demonstrated their removal by ferrate (Fe(VI), FeO(4)(2-)). Tetracyclines were the most prevalent antibiotics, followed by quinolones and β-lactam. The bacterial resistance rates to three antibiotics were ordered as follows: amoxicillin (AMX) > oxytetracycline (OTC) > enrofloxacin (ENR). Proteobacteria, Verrucomicrobia, and Bacteroidetes were the predominant phyla, while sul1 and sul2 were the predominant ARGs. sul2 was positively correlated with Proteobacteria. Water quality parameters significantly influenced the dissemination of tetracycline resistance genes in aquacultures due to high organic waste accumulation. The removal efficiency of antibiotics by Fe(VI) depended on the structural moieties of antibiotics, with phenol-containing antibiotics more thoroughly oxidized (i.e., OTC) than amine-containing (ENR and AMX) antibiotics. Greater removal of antibiotics in aquaculture waters suggested that the constituents of farming water enhances the efficacy of antibiotics removal by Fe(VI). An acidic pH environment enhanced Fe(VI) inactivation of ARB over the circumneutral pH. The presented results are intended to improve aquaculture managing practices to minimize the antibiotic proliferation in aquaculture waters and the environment.202134252670
7777130.9996Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs.201525950407
7180140.9996Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Antibiotic residues, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are considered new classes of water contaminants due to their potential adverse effects on aquatic ecosystems and human health. This paper provides comprehensive data on the occurrences of 19 antibiotics, bacteria resistant to 10 antibiotics, and 15 ARGs in raw influent and different treatment stages of conventional activated sludge (CAS) and membrane bioreactor (MBR) systems. Seventeen out of the 19 target antibiotics were detected in raw influent with concentrations of up to ten micrograms per liter. Concentrations of antibiotics measured in the secondary effluent were much lower compared to those in the raw influent. Among the antibiotics, amoxicillin, azithromycin, ciprofloxacin, chloramphenicol, meropenem, minocycline, oxytetracycline, sulfamethazine and vancomycin had highest removal by CAS or MBR systems with median removal efficiency (RE) > 70%, while trimethoprim and lincomycin were recalcitrant in the CAS system with median RE <50%. Similarly, the target ARB and ARGs were omnipresent in the raw influent samples with average concentrations as high as 2.6 × 10(6) CFU/mL and 2.0 × 10(7) gene copies/mL, respectively. The concentrations of ARB in secondary effluent of the CAS system declined relative to the raw influent (i.e. lower than raw influent by 2-3 orders of magnitude) and no ARB were detected in the MF permeate of the MBR system. For ARGs, their concentrations in secondary effluent/MF permeate ranged from below method quantification limit (201830193193
8002150.9996Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant. Analyzing the temporal dynamics of antibiotics, antibiotic resistance genes (ARGs) and the functional community could contribute to the regulation and optimization of wastewater treatment plant (WWTP) operation to achieve better antibiotics and ARGs removal performances during different seasons. However, there is little research in this area. Therefore, in this study, samples were collected from the influent, activated sludge (AS), and permeate of the membrane bioreactor (MBR) in a WWTP located in Beijing, China, biweekly over 13 months, and then analyzed systematically. The removal efficiency for all detected antibiotics through biodegradation and adsorption was 59.25 ± 2.79%, with the highest rate of 64.79 ± 4.68% observed in summer, indicating that the higher temperature in summer may promote biodegradation in MBR. In contrast, the elimination of antibiotics through microfiltration was negligible and unfavorable, with negative overall removal rates. However, a positive rejection rate of 9.48 ± 8.92% was only observed in winter, indicating that a colder temperature might lead to better, but still limited, antibiotics rejection. Sulfonamides (SAs) were more likely to impose a selective pressure on their corresponding ARGs. However, due to the degradability of tetracyclines (TCs) and potential selection of ARGs in wastewater before entering WWTP, there were still TC resistances with non-detectable TCs. Significantly negative relationships were observed between the relative abundance of nitrifying bacteria (Nitrosomonas and Nitrospira) and the concentrations of certain antibiotic classes, indicating that nitrifying bacteria could be involved in the co-metabolic biodegradation of certain antibiotics through enzyme catalyzation during nitrification.201930235615
8041160.9996Insights into the microalgae-bacteria consortia treating swine wastewater: Symbiotic mechanism and resistance genes analysis. This study investigated the effects of microalgae-bacteria consortia (MBC) (Chlorella pyrenoidosa-activated sludge (AS)) treating swine wastewater with low C/N ratios. After co-culture, the removal rates of NH(4)(+)-N and PO(4)(3-)-P increased by 53.84% and 43.52%. Furthermore, the sulfamethoxazole (SMX) degradation rates in MBC were slightly higher than in the activated sludge process. Interestingly, the absolute abundance of antibiotic resistance genes (ARGs) in effluent from MBC is relatively less than in the AS process. C. pyrenoidosa has a negative zeta potential that allows bacteria to adhere to its surface. The concentrations of carbohydrates and proteins in extracellular polymeric substance (EPS) of MBC dramatically increased compared with the AS process. At the phylum level, Proteobacteria, Bacteroidota, and Cyanobacteria were the main bacteria, while Ascomycota and Basidiomycota were the primary fungi in MBC. Overall, those findings lead to a better understanding of the swine wastewater containing antibiotic treatment by MBC.202235217162
7208170.9996Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment. In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites.201626658782
8046180.9996Responses of aerobic granular sludge to fluoroquinolones: Microbial community variations, and antibiotic resistance genes. In this study, aerobic granular sludge (AGS) was operated under high levels of ammonium for removing three fluoroquinolones (FQs), i.e., ciprofloxacin (CFX), ofloxacin (OFX), and norfloxacin (NFX) at 3, 300, and 900 µg/L, respectively. Two key objectives were to investigate the differential distribution of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in sludge fractions and to evaluate correlations between ARGs and MGEs to nitrifying and denitrifying bacteria. AGS showed excellent stability under the exposure of FQs, with nitrite-oxidizing bacteria (NOB) more sensitive to FQs than ammonium-oxidizing bacteria (AOB). Specific oxygen utilization rates (SOUR) showed a reduction of 26.9% for NOB but only 4.0% of the reduced activity of AOB by 3 μg/L FQs. AGS performed better removal efficiencies for CFX and NFX than OFX, and the efficiencies increased with their elevated concentrations, except at 900 μg/L FQs. The elevated FQ concentrations led to a significant enrichment of intI1 and genus Thauera, while qnrD and qnrS showed no accumulation. Compared to nitrifiers, FQs relevant ARGs and the intI1 gene preferred to exist in denitrifiers, and the abundance of denitrifiers behaved a decreasing trend with the sludge size. Two quinoline-degrading bacteria were found in the AGS system, i.e., Alicycliphilus and Brevundimonas, possibly carrying qnrS and qnrD, respectively. Their relative abundance increased with the sludge size, which was 2.18% in sludge <0.5 mm and increased to 3.70% in sludge >2.0 mm, suggesting that the AGS may be a good choice in treating FQs-containing wastewater.202133676249
7238190.9996Prevalence of antibiotic resistance genes in different drinking water treatment processes in a northwest Chinese city. Antibiotic resistance genes (ARGs) are an emerging issue which are receiving increasing concerns in drinking water safety. However, the factors (e.g. treatment processes and water quality) affecting the removal efficiency of ARGs in the drinking water treatment plants (DWTPs) is still unclear. This work investigated the ARG profiles in each treatment process of two DWTPs located in a northwest Chinese city. The results showed that tetracycline and sulfonamide resistance genes were predominant among the 14 targeted ARGs. After the treatment, the Z water treatment plant which demonstrated a higher removal rate of ARGs (ranging from 50 to 80%), compared to the S plant (50-75%). And the average removal rate of tetracycline resistance genes (tetA, tetG, tetQ, tetX) was about 49.18% (S plant) and 67.50% (Z plant), as well as the removal rate of 64.2% and 72.9% for sulfonamide resistance (sul1 and sul2) at S and Z water plants, respectively. It was found that the relative abundance of main microbial communities (such as Bacteroidota, Actinobacteria, Verrucomicrobiota, Roseomonas), α-diversity index, as well as the abundance of pathogenic bacteria were all significantly reduced after different treatment processes. Network co-occurrence analysis revealed that Methylocystis possibly was the potential host for most ARGs, and sul1 was found across a broad spectrum of microorganisms in the drinking water environment. Adonis analysis showed that heavy metals and microbial communities explain solely 44.1% and 35.7% of variances of ARGs within DWTPs. This study provides insights into the contamination status and removal efficiencies of ARGs in DWTPs, offering valuable references for future studies on ARG removal, propagation, and diffusion patterns in drinking water treatment.202439316241