Enrichment of the Antibiotic Resistance Gene tet(L) in an Alkaline Soil Fertilized With Plant Derived Organic Manure. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
803201.0000Enrichment of the Antibiotic Resistance Gene tet(L) in an Alkaline Soil Fertilized With Plant Derived Organic Manure. Fifteen antibiotic resistance genes (ARGs) and intI1, a gene involved in horizontal gene transfer (HGT) of ARGs, were quantified in three different soil samples from a 22 year old field experiment that had received inorganic fertilizer (NPK), organic manure (OM; a mixture of wheat straw, soybean oil cake and cotton cake), and control fields that had received no fertilizer and manure (CK). Tet(L) was the most abundant ARG in OM, which also contained considerable levels of intI1. Molecular analysis of yearly collected archived soils over the past 22 years showed that tet(L) and intI1 were higher in OM soils than in NPK soils. The relative abundance of tet(L) was essentially constant during these years, while the level of intI1 in OM soils decreased over time. The main genotype of tet(L) was the same in archived and in fresh soil, OM, and irrigation water. Phylogenetic analysis of the 16S rRNA genes of tetracycline-resistant bacteria (TRB) isolates indicated that the Firmucutes carrying tet(L) in OM were similar to those in the OM soil, suggesting that OM transferred TRB into the OM soils where they survived. Almost all of the TRB isolated from OM carried tet(L) and belonged to the Firmicutes. Survival of bacteria from the organic manure that carried tet(L) may be the cause of the increased level of tet(L) in OM soil.201829904377
712310.9998Presence and fate of antibiotic residues, antibiotic resistance genes and zoonotic bacteria during biological swine manure treatment. The presence and dissemination of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in the environment is of growing concern worldwide. Manure management practices, such as biological removal of nitrogen from swine manure, may help to decrease levels of antibiotic residues, antibiotic resistance genes and zoonotic bacteria present in manure before fertilization, thereby reducing environmental contamination. Therefore, the aim of this study was to monitor the presence and fate of seven antibiotic residues (colistin, sulfadiazine, trimethoprim, doxycycline, oxytetracycline, ceftiofur and tylosin A), nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) and two zoonotic bacteria (Salmonella Typhimurium and Campylobacter coli) during biological nitrogen removal from swine manure over time. Samples from the raw manure, the solid fraction, the liquid fraction and the storage lagoon were analyzed on two farms at six time points with an interval of two weeks. Only the antibiotics which were used during the three months preceding the first sampling could be detected before and after biological nitrogen removal from swine manure. Of all the antibiotics studied, doxycycline was recovered in all of the samples and sulfadiazine was recovered in most samples on both farms. For both antibiotics, there appears to be a reduction of the amount of residues present in the storage lagoon compared to the liquid fraction, however, this reduction was not statistically significant. A significant reduction of the relative abundances of most of the antibiotic resistance genes studied was observed when comparing the liquid fraction and the storage lagoon. For tet(L), no differences were observed between the fractions sampled and for sul2 and erm(F), a significant increase in relative abundances was observed on the second farm sampled. For the zoonotic bacteria, a reduction of at least 1 log was observed after biological nitrogen removal from swine manure. The results indicate that the concentration of certain antibiotic residues and several antibiotic resistance genes and the amount of zoonotic bacteria present in the manure may be reduced in the end product of the biological nitrogen removal from swine manure.201930878661
726220.9998Soil texture-depending effects of doxycycline and streptomycin applied with manure on the bacterial community composition and resistome. Veterinary antibiotics, bacteria carrying antibiotic resistance determinants located on mobile genetic elements and nutrients are spread on agricultural soil using manure as fertilizer. However, systematic quantitative studies linking antibiotic concentrations and antimicrobial resistance genes (ARGs) in manure and the environment are scarce but needed to assess environmental risks. In this microcosm study, a sandy and a loamy soil were mixed with manure spiked with streptomycin or doxycycline at five concentrations. Total-community DNA was extracted on days 28 and 92, and the abundances of ARGs (aadA, strA, tet(A), tet(M), tet(W), tet(Q), sul1, qacE/qacEΔ1) and class 1 and 2 integron integrase genes (intI1 and intI2) were determined by qPCR relative to 16S rRNA genes. Effects on the bacterial community composition were evaluated by denaturing gradient gel electrophoresis of 16S rRNA gene amplicons. Manure application to the soils strongly increased the relative abundance of most tested genes. Antibiotics caused further enrichments which decreased over time and were mostly seen at high concentrations. Strikingly, the effects on relative gene abundances and soil bacterial community composition were more pronounced in sandy soil. The concept of defining antibiotic threshold concentrations for environmental risk assessments remains challenging due to the various influencing factors.201829087461
712430.9998Changes in diversity of cultured bacteria resistant to erythromycin and tetracycline in swine manure during simulated composting and lagoon storage. This study investigated the impact of composting and lagoon storage on survival and change in diversity of tetracycline-resistant (Tc(r) ) and erythromycin-resistant (Em(r) ) bacteria and the resistance genes they carry in swine manure. Treatments were arranged as a 2 × 2 factorial design: composting vs lagoon storage and 0 vs 1% Surround WP Crop Protectant (a clay product) in three replicates. After 48 days of treatments, resistant bacteria were enumerated by selective plating and identified by 16S rRNA gene sequencing. The erm and the tet gene(s) carried by the resistant isolates were screened using class-specific PCR assays. The plate counts of Tc(r) and Em(r) bacteria decreased by 4-7 logs by composting, but only by 1-2 logs by the lagoon treatment. During the treatments, Acinetobacter gave way to Pseudomonas and Providencia as the largest resistant genera. The clay product had little effect on survival or diversity of resistant bacteria. Of six classes of erm and seven classes of tet genes tested, changes in prevalence were also noted. The results indicate that composting can dramatically shift Tc(r) and Em(r) bacterial populations, and composting can be an effective and practical approach to decrease dissemination of antibiotic resistance from swine farms to the environment. SIGNIFICANCE AND IMPACT OF THE STUDY: The presented research provided evidence that composting is much more effective than lagoon storage in dramatically decreasing culturable bacteria resistant to erythromycin and tetracycline in swine manure. Considerable diversity changes of resistant bacteria were also demonstrated during composting or lagoon storage. Overall, Acinetobacter was the major resistant genus in untreated swine manure, but pseudomonads and Providencia became the major resistant genera after the treatments. This is the first study that investigated diversity changes of cultured bacteria resistant to these two antibiotics during composting and lagoon storage of swine manure. New genes encoding resistance to the two antibiotics were also implied in the cultured isolates.201526031793
720140.9998Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria. Recently, the microbial degradation of tetracycline has been widely reported. However, its potential risks in treating wastewater containing high concentrations of tetracycline have not been fully evaluated. In this study, the evolution of the microbial community and drug resistance was traced during the enrichment of tetracycline-degrading bacteria. The results showed that some minor compositions such as Shewanella, Bacillus, and Pseudomonas in the seed sludge became the predominant genera in the enrichment cultures when continuously using tetracycline as the sole carbon source, especially some possible pathogenic bacteria increased significantly in this process. The abundances of most TRGs/16S rDNA were increased after enrichment, although the relative abundance of tetA and tetL genes decreased to some extent. From the enrichment culture, 7 predominant tetracycline-degrading strains were isolated, of which TD-1 (Bacillus) and TD-5 (Shewanella) presented high degradation efficiencies (6-day degradation rate > 95%, half-life period of tetracycline ≈ 24 h). In addition, multiple TRGs, mobile genetic elements (MGEs) and even gene cassettes were found in each tetracycline-degrading isolate. The findings suggested that some risks such as the pathogenicity of isolates and the spread of ARGs should be considered when the biodegradation method is used to treat wastewater polluted with high concentrations of tetracycline.201930660087
803150.9998Anaerobic Digestion of Tetracycline Spiked Livestock Manure and Poultry Litter Increased the Abundances of Antibiotic and Heavy Metal Resistance Genes. Anaerobic digestion is used for the treatment of animal manure by generating biogas. Heavy metals cause environmental pollutions and co-select for antimicrobial resistance. We evaluated the impact of mesophilic anaerobic digestion of cattle manure (CM), swine manure (SM) and poultry litter (PL) on the concentrations of seven tetracycline [tet(A), tet(B), tet(G), tet(M), tet(O), tet(Q), and tet(W)], macrolide [erm(B)], methicillin (mecA and mecC), copper (copB, pcoA, pcoD, and tcrB) and zinc (czrC) resistance genes, and three bacterial species (E. coli, Enterococcus spp. and Staphylococcus aureus). The total bacterial population and total abundance of the seven tet genes significantly increased in the three manure types after digestion. Concentration of tet(M) was strongly correlated with that of erm(B) and enterococci. As concentration of tetracyclines declined during anaerobic digestion, that of four tet genes (A, B, Q, and W) and 16S rRNA increased, that of tet(M) decreased, and that of tet(G) and tet(O) did not change. Concentrations of copB and pcoA did not change; while that of pcoD did not change in the PL, it increased in the SM and CM. While the concentration of enterococci remained unchanged in CM, it significantly increased in the PL and SM. Concentrations of tcrB significantly increased in the three manure types. While concentrations of S. aureus significantly increased in the CM and PL, that of SM was not affected. Concentrations of mecC significantly increased in all manure types after digestion; while mecA concentrations did not change in the SM, they significantly increased in CM and PL. While concentration of czrC remained low in the CM, it increased in the PL but declined in the SM. In conclusion, while mesophilic anaerobic digestion of animal manure decreased concentration of tetracyclines, it increased the concentrations of total bacteria, tet genes, E. coli, enterococci and S. aureus and methicillin resistance genes. It did not have any effect on concentrations of heavy metals; concentrations of heavy metal resistance genes either increased or remained unaffected depending on the animal species. This study showed the need for post-digestion treatments of animal manure to remove bacteria, antibiotic resistance genes, heavy metals and their resistance genes.202033391245
706960.9998Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications. Bacterial genes responsible for resistance to antibiotic agents (ARG) are spread from livestock to soil through application of manure, threatening environmental and human health. We investigated the mechanisms of ARG dissemination and persistence to disentangle i) the influence of nutrients and microorganisms on the soil tetracycline (TET) resistome, and ii) the role of indigenous soil microbiota in preventing ARG spread. We analysed short-term (7 days) and persistent (84 days) effects of manure on the resistome of three antibiotic-free pasture soils. Four microcosm treatments were evaluated: control, mineral nutrient fertilization, and deposition of a layer of fresh manure onto soil or γ-irradiated soil. We quantified five TET-resistance genes, isolated 135 TET-resistant bacteria and sequenced both culturable TET-resistant and whole bacterial communities. Manure amendments, but not nutrient addition, increased the abundance of TET-r genes such as tet(Y). Such changes persisted with time, in contrast with the TET-resistant bacterial composition, which partially recovered after manure amendments. Manured γ-irradiated soils showed significantly lower nutrient content and higher TET-r gene abundance than non-irradiated soils, suggesting that native soil bacteria are essential for the fertilization effect of manure on soil as well as control the dissemination of potentially risky TET-r genes.201931043618
719770.9998The response of copper resistance genes, antibiotic resistance genes, and intl1/2 to copper addition during anaerobic digestion in laboratory. Heavy metal pollution can serve as a selective pressure for antibiotic resistance genes in polluted environments. Anaerobic fermentation, as a recommended wastewater treatment method, is an effective mitigation measure of antibiotic resistance diffusion. To explore the influence of copper on anaerobic fermentation, we exposed the fermentation substrate to copper in a laboratory setup. We found that the relative abundance of 8 genes (pcoD, tetT, tetA, tetB, tetO, qnrS, ermA and ermB) increased at the late stage of fermentation and their abundance was linked to copper content. Corynebacterium and Streptococcus were significantly positively correlated with ermA, ermB, tetA and tetB (P < 0.05). The relative abundance of tetT was significantly positively correlated with Terrisporobacter, Clostridium_sensu_stricto_1 and Turicibacter (P < 0.05). We screened 90 strains of copper resistant bacteria from blank, medium and high copper test groups on days 25, 31 and 37. The number of fragments carried by a single strain increased with time while intl1, ermA and ermB existed in almost all combinations of the multiple fragments we identified. The relative abundance of these three genes were linearly correlated with Corynebacterium and Streptococcus. The antibiotic resistance genes carried by class 1 integrons gradually increased with time in the fermentation system and integrons carrying ermA and ermB most likely contributed to host survival through the late stages of fermentation. The genera Corynebacterium and Streptococcus may be the primary carriers of such integrated mobile gene element and this was most likely the reason for their rebound in relative abundance during the late fermentation stages.202133418156
706880.9998Land application of sewage sludge: Response of soil microbial communities and potential spread of antibiotic resistance. The effect of land application of sewage sludge on soil microbial communities and the possible spread of antibiotic- and metal-resistant strains and resistance determinants were evaluated during a 720-day field experiment. Enzyme activities, the number of oligotrophic bacteria, the total number of bacteria (qPCR), functional diversity (BIOLOG) and genetic diversity (DGGE) were established. Antibiotic and metal resistance genes (ARGs, MRGs) were assessed, and the number of cultivable antibiotic- (ampicillin, tetracycline) and heavy metal- (Cd, Zn, Cu, Ni) resistant bacteria were monitored during the experiment. The application of 10 t ha(-1) of sewage sludge to soil did not increase the organic matter content and caused only a temporary increase in the number of bacteria, as well as in the functional and structural biodiversity. In contrast to expectations, a general adverse effect on the tested microbial parameters was observed in the fertilized soil. The field experiment revealed a significant reduction in the activities of alkaline and acid phosphatases, urease and nitrification potential. Although sewage sludge was identified as the source of several ARGs and MRGs, these genes were not detected in the fertilized soil. The obtained results indicate that the effect of fertilization based on the recommended dose of sewage sludge was not achieved.202133383416
725290.9998Aerobic Composting and Anaerobic Digestion Decrease the Copy Numbers of Antibiotic-Resistant Genes and the Levels of Lactose-Degrading Enterobacteriaceae in Dairy Farms in Hokkaido, Japan. Efficient methods for decreasing the spread of antimicrobial resistance genes (ARGs) and transfer of antimicrobial-resistant bacteria (ARB) from livestock manure to humans are urgently needed. Aerobic composting (AC) or anaerobic digestion (AD) are widely used for manure treatment in Japanese dairy farms. To clarify the effects of AC and AD on antimicrobial resistance, the abundances of antimicrobial (tetracycline and cefazolin)-resistant lactose-degrading Enterobacteriaceae as indicator bacteria, copy numbers of ARGs (tetracycline resistance genes and β-lactamase coding genes), and concentrations of residual antimicrobials in dairy cow manure were determined before and after treatment. The concentration of tetracycline/cefazolin-resistant lactose-degrading Enterobacteriaceae was decreased over 1,000-fold by both AC and AD. ARGs such as tetA, tetB, and bla (TEM) were frequently detected and their copy numbers were significantly reduced by ∼1,000-fold by AD but not by AC. However, several ARG copies remained even after AD treatment. Although concentrations of the majority of residual antimicrobials were decreased by both AC and AD, oxytetracycline level was not decreased after treatment in most cases. In addition, 16S rRNA gene amplicon-based metagenomic analysis revealed that both treatments changed the bacterial community structure. These results suggest that both AC and AD could suppress the transmission of ARB, and AD could reduce ARG copy numbers in dairy cow manure.202134659165
7071100.9998Impacts of multi-year field exposure of agricultural soil to macrolide antibiotics on the abundance of antibiotic resistance genes and selected mobile genetic elements. Exposure of environmental bacteria to antibiotics may be increasing the global resistome. Antibiotic residues are entrained into agricultural soil through the application of animal and human wastes, and irrigation with reclaimed water. The impact of a mixture of three macrolide antibiotics on the abundance of selected genes associated with antibiotic resistance and genetic mobility were determined in a long-term field experiment undertaken in London, Canada. Replicated plots received annual applications of a mixture of erythromycin, clarithromycin and azithromycin every spring since 2010. Each antibiotic was added directly to the soil at a concentration of either 0.1 or 10 mg kg soil(-1) and all plots were cropped to soybeans. By means of qPCR, no gene targets were enriched in soil exposed to the 0.1 mg kg soil(-1) dose compared to untreated control. In contrast, the relative abundance of several gene targets including int1, sul2 and mphE increased significantly with the annual exposure to the 10 mg kg soil(-1) dose. By means of high-throughput qPCR, numerous gene targets associated with resistance to aminoglycosides, sulfonamides, trimethoprim, streptomycin, quaternary ammonium chemicals as well as mobile genetic elements (tnpA, IS26 and IS6100) were detected in soil exposed to 10 mg kg soil(-1), but not the lower dose. Overall, exposure of soil to macrolide antibiotics increased the relative abundance of numerous gene targets associated with resistance to macrolides and other antibiotics, and mobile genetic elements. This occurred at an exposure dose that is unrealistically high, but did not occur at the lower more realistic exposure dose.202032330714
7190110.9998Dynamics of microbial community and tetracycline resistance genes in biological nutrient removal process. The occurrence of antibiotics in wastewater has become a serious concern due to the possible development of antibiotic resistant bacteria in wastewater treatment process. In order to understand the dynamics of microbial community and tetracycline resistance genes in biological nutrient removal (BNR) process, three lab-scale sequencing batch reactors (SBRs) were operated under the stress of tetracycline. Results indicated that microbial community structure was altered, and tetracycline efflux pump genes were enhanced over 150-day operation in the presence of trace tetracycline of 20 and 50 μg L(-1), respectively. Furthermore, when the initial tetracycline concentrations were increased to 2 and 5 mg L(-1), substantial enhancement of tetracycline resistance was observed, accompanied with a sharp shift in microbial community structure. In this study, horizontal gene transfer was found to be the main mechanism for the development of tetracycline resistance genes under the long-terms stress of trace tetracycline. About 90.34% of the observed variations in tetracycline resistance genes could be explained by the dynamics of potential hosts of tetracycline resistance genes and class 1 integron. It should be noticed that the functional bacteria (e.g. Nitrospira, Dechloromonas, Rhodobacter and Candidatus_Accumulibacter) responsible for nutrient removal were positively correlated with tetracycline resistance, which might promote the prevalence of tetracycline resistance during biological wastewater treatment. Consequently, this study provided in-depth insights into the occurrence and prevalence of tetracycline resistance genes and their microbial hosts in BNR process.201930849601
7202120.9998Cyanobacterial extracellular antibacterial substances could promote the spread of antibiotic resistance: impacts and reasons. Many studies have shown that antibiotic resistance genes (ARGs) can be facilitated by a variety of antibacterial substances. Cyanobacteria are photosynthetic bacteria that are widely distributed in the ocean. Some extracellular substances produced by marine cyanobacteria have been found to possess antibacterial activity. However, the impact of these extracellular substances on ARGs is unclear. Therefore, we established groups of seawater microcosms that contained different concentrations (1000, 100, 10, 1, 0.1, 0.01, and 0 μg mL(-1)) of cyanobacterial extracellular substances (CES), and tracked the changes of 17 types of ARGs, the integron gene (intI1), as well as the bacterial community at different time points. The results showed that CES could enrich most ARGs (15/17) in the initial stage, particularly at low concentrations (10 and 100 μg mL(-1)). The correlation analysis showed a positive correlation between several ARGs and intI1. It is suggested that the abundance of intI1 increased with CES may contribute to the changes of these ARGs, and co-resistance of CES may be the underlying reason for the similar variation pattern of some ARGs. Moreover, the results of qPCR and high-throughput sequencing of 16S rRNA showed that CES had an inhibitory impact on the growth of bacterial communities. High concentrations of CES were found to alter the structure of bacterial communities. Co-occurrence networks showed that bacteria elevated in the high concentration group of CES and might serve as the potential hosts for a variety of ARGs. In general, marine cyanobacteria could play an important role in the global dissemination of ARGs and antibiotic-resistant bacteria (ARBs).202337947439
7247130.9998Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure. Antibiotics and the corresponding resistant bacteria and resistance genes (ARGs) are generally considered emerging pollutants. To assess the impacts of tetracycline (TC) and sulfonamide (SA) antibiotics that are eliminated with fecaluria as drug prototypes, farmland soil used to research long-term fertilization with chicken manure was collected at four sites in Shandong Province. In this study, the rates of bacterial drug resistance to the same antibiotic decreased with an increase in the concentration of that antibiotic, and the resistance rates to TCs were lower than those to SAs. PCR of ARGs revealed that the ARGs detected at the highest frequency were the TC resistance genes tetW and tetO and the SA resistance genes sul1 and sul2. Real-time qPCR showed that the quantities of ARGs in farmland soil fertilized with chicken manure were significantly greater compared with the control soil. Moreover, significant correlations (R(2)=0.9525, p<0.05) between the number of sul ARGs and the total SA concentration were observed in all of the soil samples. In summary, this study showed that SAs can induce the appearance of ARGs and pollute the soil environment.201728340477
7125140.9998Persistence of resistance to erythromycin and tetracycline in swine manure during simulated composting and lagoon treatments. The use of antimicrobials in food animal production leads to the development of antimicrobial resistance (AMR), and animal manure constitutes the largest reservoir of such AMR. In previous studies, composted swine manure was found to contain substantially lower abundance of AMR genes that encode resistance to tetracyclines (tet genes) and macrolide-lincosamide-streptogramin B (MLS(B)) superfamily (erm genes), than manures that were treated by lagoons or biofilters. In this study, temporal changes in AMR carried by both cultivated and uncultivated bacteria present in swine manure during simulated composting and lagoon storage were analyzed. Treatments were designed to simulate the environmental conditions of composting (55°C with modest aeration) and lagoon storage (ambient temperature with modest aeration). As determined by selective plate counting, over a 48-day period, cultivated aerobic heterotrophic erythromycin-resistant bacteria and tetracycline-resistant bacteria decreased by more than 4 and 7 logs, respectively, in the simulated composting treatment while only 1 to 2 logs for both resistant bacterial groups in the simulated lagoon treatment. Among six classes each of erm and tet genes quantified by class-specific real-time PCR assays, the abundance of erm(A), erm(C), erm(F), erm(T), erm(X), tet(G), tet(M), tet(O), tet(T), and tet(W) declined marginally during the first 17 days, but dramatically thereafter within 31 days of the composting treatment. No appreciable reduction of any of the erm or tet genes analyzed was observed during the simulated lagoon treatment. Correlation analysis showed that most of the AMR gene classes had similar persistence pattern over the course of the treatments, though not all AMR genes were destructed at the same rate during the treatments.201221811793
7250150.9998Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. The objective of this research was to investigate the ability of anaerobic and aerobic digesters to reduce the quantity of antibiotic resistant bacteria in wastewater solids. Lab-scale digesters were operated at different temperatures (22 °C, 37 °C, 46 °C, and 55 °C) under both anaerobic and aerobic conditions and fed wastewater solids collected from a full-scale treatment facility. Quantitative PCR was used to track five genes encoding tetracycline resistance (tet(A), tet(L), tet(O), tet(W), and tet(X)) and the gene encoding the integrase (intI1) of class 1 integrons. Statistically significant reductions in the quantities of these genes occurred in the anaerobic reactors at 37 °C, 46 °C, and 55 °C, with the removal rates and removal efficiencies increasing as a function of temperature. The aerobic digesters, in contrast, were generally incapable of significantly decreasing gene quantities, although these digesters were operated at much shorter mean hydraulic residence times. This research suggests that high temperature anaerobic digestion of wastewater solids would be a suitable technology for eliminating various antibiotic resistance genes, an emerging pollutant of concern.201021058743
7246160.9998Tetracycline resistance genes are more prevalent in wet soils than in dry soils. This study aimed to reveal the effects of water content on the spread of tetracycline resistance genes (TRGs) in the soil. Amendments of four samples with different soil water contents, namely 16% (dry soil) and 25% (wet soil), and with or without pig manures (PM) were conducted under laboratory conditions. Quantitative polymerase chain reaction (q-PCR) results showed that the relative abundance of TRGs (tetB, tetC, tetM, tetO, tetT, and tetZ) in the wet soils was significantly higher than that in the dry soils whether under fertilization or non-fertilization conditions. Moreover, PM application enhanced the relative abundance of TRGs. The absolute copies of TRGs did not decline with the decrease in 16S rRNA genes in wet soils, implying that most TRGs were probably located in facultative anaerobic bacteria. However, cultivable tetracycline-resistant bacteria (TRB) in the wet soils were not in line with the q-PCR results, further indicating that aerobes might not account for the increases in the relative abundance of TRGs. Diversities of aerobic TRB were significantly higher in the wet soils than in the dry soils, especially on days 14 and 28. The patterns of community structures of aerobic TRB in the wet soils or dry soils containing PM were different from those in the dry soils. Together, this study showed that the variations in bacterial communities between the wet and dry soils, especially reflected in the diversity of aerobic TRB and/or community structure of facultative anaerobic TRB, might be an important reason behind the changes in the abundance of TRGs.201829573724
7257170.9998Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes. Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems.201526296728
3432180.9998Insights into the amplification of bacterial resistance to erythromycin in activated sludge. Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention.201525957255
7417190.9998Limited impacts of high doses of dietary copper on the gut bacterial metal resistome explain negligible co-selection of antibiotic resistance. High dietary intake of Cu has previously been linked to the selection of Cu resistance and co-selection of antibiotic resistance in specific gut bacteria. Based on a novel HT-qPCR metal resistance gene chip as combined with 16S rRNA gene amplicon sequencing and phenotypic resistance typing of Escherichia coli isolates, we here report the impacts of two contrasting Cu-based feed additives on the swine gut bacterial metal resistome and community assembly. DNA was extracted from fecal samples (n = 80) collected at day 26 and 116 of the experiment from 200 pigs allotted to five dietary treatments: negative control (NC) diet with 20 μg CuSO(4) g(-1) and four diets added 125 or 250 μg CuSO(4) g(-1) feed or 125 or 250 μg Cu(2)O g(-1) feed to the NC diet. Dietary Cu supplementation reduced the relative abundance of Lactobacillus, but it had negligible impacts on bacterial community composition relative to the gut microbiome maturation effect (time). The relative importance of different bacterial community assembly processes was not markedly affected by the dietary Cu treatments, and differences in swine gut metal resistome composition could be explained primarily by differences in bacterial community composition rather than by dietary Cu treatments. High dietary Cu intake (250 μg Cu g(-1)) selected for phenotypic Cu resistance in E. coli isolates, but surprisingly it did not result in increased prevalence of the Cu resistance genes targeted by the HT-qPCR chip. In conclusion, the lacking impacts of dietary Cu on the gut bacterial metal resistome explain results from a previous study showing that even high therapeutic doses of dietary Cu did not cause co-selection of antibiotic resistance genes and mobile genetic elements known to harbor these genes.202337201857