# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8026 | 0 | 1.0000 | A comparison of antibiotics, antibiotic resistance genes, and bacterial community in broiler and layer manure following composting. Animal manure is an important source of antibiotics and antibiotic resistance genes (ARGs) in the environment. However, the difference of antibiotic residues and ARG profiles in layer and broiler manure as well as their compost remains unexplored. In this study, we investigated the profiles of twelve antibiotics, seventeen ARGs, and class 1 integrase gene (intI1) in layer and broiler manure, and the corresponding compost at large-scale. Compared with layer manure, broiler manure exhibited approximately six times more residual tetracyclines, especially chlortetracycline. The relative abundances of qnrS and ermA genes in broiler manure were significantly higher than those in layer manure. The concentration of tetracyclines not only had a significantly positive correlation with tetracycline resistance genes (tetA and tetC) but was also positively correlated with quinolone resistance (qepA, qnrB, and qnrS) and macrolide resistance (ermA and ermT). Most ARGs in manure were reduced after composting. However, the relative abundance of sulfonamide resistance gene sul1 increased up to 2.41% after composting, which was significantly higher than that of broiler (0.41%) and layer (0.62%) manure. The associated bacterial community was characterized by high-throughput 16S rRNA gene sequencing. The relative abundances of thermophilic bacteria had significant positive correlations with the abundance of sul1 in compost. The composting has a significant impact on the ARG-associated gut microbes in poultry manure. Variation partitioning analysis indicated that the change of bacterial community compositions and antibiotics contributed partially to the shift in ARG profiles. The results indicate that at industry-scale production broiler manure had more antibiotics and ARGs than layer manure did, and composting decreased most ARG abundances in poultry manure except for sulfonamide resistance genes. | 2021 | 33219508 |
| 7257 | 1 | 0.9999 | Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes. Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems. | 2015 | 26296728 |
| 8025 | 2 | 0.9999 | Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures. Animal manure is a main reservoir of antibiotic residues and antibiotic resistance. Here, the effect of temperature on sulfonamide antibiotics (SAs), sulfonamide-resistant (SR) genes/bacteria was investigated by aerobically incubating swine and chicken manures at different temperatures. In swine manure, the SAs concentration declined with increasing temperature, with a minimum at 60°C. In chicken manure, the greatest degradation of SAs was noted at 30°C. The reduction of relative abundance of antibiotic resistance genes (ARGs) and sul-positive hosts in swine manure was more pronounced during thermophilic than mesospheric incubation; neither temperature conditions effectively reduced these parameters in chicken manure. The relationship between the residual levels/distribution profiles of SAs, ARGs (sul1, sul2 and intI1), cultivable SR bacteria and sul-positive hosts was further established. The antibiotic residual profile, rather than antibiotic concentration, acted as an important factor in the prevalence of ARGs and sul-positive hosts in manure. Corynebacterium and Leucobacter from the phylum Actinobacteria tend to be main carriers of sul1 and intI1; the relative abundance of sul2 was significantly correlated with the relative abundance of cultivable SR bacteria. Overall, differences in resistant bacterial communities also constitute a dominant factor affecting ARG variation. This study contributes to management options for reducing the pollution of antibiotics and antibiotic resistance within manure. | 2017 | 28711002 |
| 6854 | 3 | 0.9999 | Characteristics and driving factors of antibiotic resistance genes in aquaculture products from freshwater ponds in China Yangtze River Delta. Antibiotic resistance genes (ARGs) are widespread in aquaculture and pose a huge threat to aquaculture organisms and human health. In this study, occurrences and relative abundances of ARGs were analysed in the guts of products cultured in freshwater ponds in the Yangtze River Delta region in China. A total of 29 ARGs were found in the gut samples, with detection frequencies ranging from 4.8% to 81%, and the relative abundances (ARGs/16S rRNA) ranging from 10(-7) to 1. In addition, the human dietary intake of ARGs via aquaculture products was assessed, where the daily intake of most ARGs via aquaculture products was higher than those via PM2.5 and drinking water, but lower than that via vegetables. The relative abundances of MGE (IS613, Tp614, tnpA and int1) were significantly correlated with those of multiple ARGs, indicating the horizontal gene transfer (HGT) of ARGs among gut microorganisms. Proteobacteria, Firmicutes and Actinobacteria were the dominated microbial communities found in the guts of aquaculture products. In addition, significant correlations were found between Cyanobacteria and int1, between Nitrospira and tetE, and between sul2 and aadA2, indicating potential same hosts of these genes. In addition, results from co-correlation indicated both HGT (dominated by MGEs) of ARGs and the enrichment of ARGs in bacteria. MGEs, mostly int1, were more effective than bacteria in increasing the ARG abundance. This study could provide a better understanding of the transmission of ARGs in the aquaculture environment and improve the quality of aquaculture products and the ecology. | 2024 | 36756971 |
| 7262 | 4 | 0.9998 | Soil texture-depending effects of doxycycline and streptomycin applied with manure on the bacterial community composition and resistome. Veterinary antibiotics, bacteria carrying antibiotic resistance determinants located on mobile genetic elements and nutrients are spread on agricultural soil using manure as fertilizer. However, systematic quantitative studies linking antibiotic concentrations and antimicrobial resistance genes (ARGs) in manure and the environment are scarce but needed to assess environmental risks. In this microcosm study, a sandy and a loamy soil were mixed with manure spiked with streptomycin or doxycycline at five concentrations. Total-community DNA was extracted on days 28 and 92, and the abundances of ARGs (aadA, strA, tet(A), tet(M), tet(W), tet(Q), sul1, qacE/qacEΔ1) and class 1 and 2 integron integrase genes (intI1 and intI2) were determined by qPCR relative to 16S rRNA genes. Effects on the bacterial community composition were evaluated by denaturing gradient gel electrophoresis of 16S rRNA gene amplicons. Manure application to the soils strongly increased the relative abundance of most tested genes. Antibiotics caused further enrichments which decreased over time and were mostly seen at high concentrations. Strikingly, the effects on relative gene abundances and soil bacterial community composition were more pronounced in sandy soil. The concept of defining antibiotic threshold concentrations for environmental risk assessments remains challenging due to the various influencing factors. | 2018 | 29087461 |
| 7247 | 5 | 0.9998 | Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure. Antibiotics and the corresponding resistant bacteria and resistance genes (ARGs) are generally considered emerging pollutants. To assess the impacts of tetracycline (TC) and sulfonamide (SA) antibiotics that are eliminated with fecaluria as drug prototypes, farmland soil used to research long-term fertilization with chicken manure was collected at four sites in Shandong Province. In this study, the rates of bacterial drug resistance to the same antibiotic decreased with an increase in the concentration of that antibiotic, and the resistance rates to TCs were lower than those to SAs. PCR of ARGs revealed that the ARGs detected at the highest frequency were the TC resistance genes tetW and tetO and the SA resistance genes sul1 and sul2. Real-time qPCR showed that the quantities of ARGs in farmland soil fertilized with chicken manure were significantly greater compared with the control soil. Moreover, significant correlations (R(2)=0.9525, p<0.05) between the number of sul ARGs and the total SA concentration were observed in all of the soil samples. In summary, this study showed that SAs can induce the appearance of ARGs and pollute the soil environment. | 2017 | 28340477 |
| 7256 | 6 | 0.9998 | Impact of direct application of biogas slurry and residue in fields: In situ analysis of antibiotic resistance genes from pig manure to fields. Biogas slurry and residue contaminated with antibiotics are widely used as fertilizers in vegetable crop planting. However, their impact on the spreading of antibiotic resistance genes (ARGs) in vegetable fields is still largely unknown. In the present study, antibiotic resistant bacteria (ARB), ARGs and bacterial communities from pig manure to fields were monitored by using viable plate counts, high-throughput fluorescent quantitative PCR (HT-qPCR) and Illumina MiSeq sequencing. Eighty-three ARGs and 3 transposons genes were detected. Anaerobic digestion reduced relative abundance of tetracycline and Macrolide-Lincosamide-Streptogramin (MLSB) resistance genes. However, the number of ARB and the relative abundance of sulfa, aminoglycoside and florfenicol, chloramphenicol, and amphenicol (FCA) resistance genes, respectively, enriched up to 270 times and 52 times in biogas residue. Long-term application of biogas slurry and residue contaminated with antibiotics in fields increased the rate of ARB as well as relative abundance of ARGs and transposons genes. Additionally, bacterial communities significantly differed between the soil treated with biogas slurry and residue and the control sample, especially the phyla Bacteroidetes and Actinobacteria. Based on network analysis, 19 genera were identified as possible hosts of the detected ARGs. Our results provide an important significance for reasonable application of biogas slurry and residue. | 2018 | 29096257 |
| 6856 | 7 | 0.9998 | Effects of the coexistence of antibiotics and heavy metals on the fate of antibiotic resistance genes in chicken manure and surrounding soils. Both heavy metals and antibiotics exert selection pressure on bacterial resistance, and as they are commonly co-contaminated in the environment, they may play a larger role in bacterial resistance. This study examined how breeding cycles affect antibiotic resistance genes (ARGs) in chicken manure and the surrounding topsoils at 20, 50, 100, 200, and 300 m from twelve typical laying hen farms in the Ningxia Hui Autonomous Region of northwest China. Six antibiotics, seven heavy metals, ten mobile genetic elements (MGEs), and microbial community affected the ARGs profile in chicken dung and soil samples. Tetracycline antibiotic residues were prevalent in chicken manure, as were relatively high content of aureomycin during each culture period. Zinc (Zn) content was highest among the seven heavy metals in chicken feces. Chicken dung also enriched aminoglycosides, MLSB, and tetracycline ARGs, notably during brooding and high production. The farm had a minimal influence on antibiotics in the surrounding soil, but its effect on ARGs and MGEs closer to the farm (50 m) was stronger, and several ARGs and MGEs increased with distance. Manure microbial composition differed dramatically throughout breeding cycles and sampling distances. ARGs were more strongly related with antibiotics and heavy metals in manure than soil, whereas MGEs were the reverse. Antibiotics, heavy metals, MGEs, and bacteria in manure accounted 12.28%, 22.25%, 0.74%, and 0.19% of ARGs composition variance, respectively, according to RDA and VPA. Bacteria (2.89%) and MGEs (2.82%) only affected soil ARGs composition. These findings showed that heavy metals and antibiotics are the main factors affecting faecal ARGs and bacteria and MGEs soil ARGs. This paper includes antibiotic resistance data for large-scale laying hen husbandry in northwest China and a theoretical framework for decreasing antibiotic resistance. | 2023 | 37586197 |
| 7261 | 8 | 0.9998 | Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil. Soil fertilization with animal manure or its digestate may facilitate an important antibiotic resistance dissemination route from anthropogenic sources to the environment. This study examines the effect of mineral fertilizer (NH4NO3), cattle slurry and cattle slurry digestate amendment on the abundance and proportion dynamics of five antibiotic resistance genes (ARGs) and two classes of integron-integrase genes (intI1 and intI2) in agricultural grassland soil. Fertilization was performed thrice throughout one vegetation period. The targeted ARGs (sul1, tetA, blaCTX-M, blaOXA2 and qnrS) encode resistance to several major antibiotic classes used in veterinary medicine such as sulfonamides, tetracycline, cephalosporins, penicillin and fluoroquinolones, respectively. The non-fertilized grassland soil contained a stable background of tetA, blaCTX-M and sul1 genes. The type of applied fertilizer significantly affected ARGs and integron-integrase genes abundances and proportions in the bacterial community (p<0.001 in both cases), explaining 67.04% of the abundance and 42.95% of the proportion variations in the grassland soil. Both cattle slurry and cattle slurry digestate proved to be considerable sources of ARGs, especially sul1, as well as integron-integrases. Sul1, intI1 and intI2 levels in grassland soil were elevated in response to each organic fertilizer's application event, but this increase was followed by a stage of decrease, suggesting that microbes possessing these genes were predominantly entrained into soil via cattle slurry or its digestate application and had somewhat limited survival potential in a soil environment. However, the abundance of these three target genes did not decrease to a background level by the end of the study period. TetA was most abundant in mineral fertilizer treated soil and blaCTX-M in cattle slurry digestate amended soil. Despite significantly different abundances, the abundance dynamics of bacteria possessing these genes were similar (p<0.05 in all cases) in different treatments and resembled the dynamics of the whole bacterial community abundance in each soil treatment. | 2016 | 27115621 |
| 7253 | 9 | 0.9998 | Manure Compost Is a Potential Source of Tetracycline-Resistant Escherichia coli and Tetracycline Resistance Genes in Japanese Farms. Manure compost has been thought of as a potential important route of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) from livestock to humans. To clarify the abundance of ARB and ARGs, ARB and ARGs were quantitatively determined in tetracycline-resistant Escherichia coli (harboring the tetA gene)-spiked feces in simulated composts. In the simulated composts, the concentration of spiked E. coli decreased below the detection limit at day 7. The tetA gene remained in manure compost for 20 days, although the levels of the gene decreased. Next, to clarify the field conditions of manure compost in Japan, the quantities of tetracycline-resistant bacteria, tetracycline resistance genes, and residual tetracyclines were determined using field-manure-matured composts in livestock farms. Tetracycline-resistant bacteria were detected in 54.5% of tested matured compost (6/11 farms). The copy number of the tetA gene and the concentrations of residual tetracyclines in field manure compost were significantly correlated. These results suggest that the use of antimicrobials in livestock constitutes a selective pressure, not only in livestock feces but also in manure compost. The appropriate use of antimicrobials in livestock and treatment of manure compost are important for avoiding the spread of ARB and ARGs. | 2020 | 32054107 |
| 7254 | 10 | 0.9998 | Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. The increasing prevalence of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the soil environment represents a serious threat to public health. In this study, the diversity and abundance of ARGs and mobile genetic elements (MGEs) in different years of manure-amended vegetable soils were investigated. A total of eight genes, including four tetracycline resistance genes: tetW, tetM, tetO and tetT; two sulfonamide resistance genes: sul1 and sul2; and two MGEs: intI1 and intI2; were quantified in ten vegetable soils. The relative abundance of ARGs in soils amended with manure was significantly higher than that in soils without manure application. The relative abundance of the intI1 and intI2 genes had significantly positive correlations with the relative abundance of the tetW, tetO, sul1 and sul2 genes. Under different concentrations of antibiotics, the resistant bacteria rates of manure-amended soil were much higher than the control soil. Bacillus and Chryseobacterium, more likely to be multi-drug-resistant bacteria, were detected in both two antibiotics. Moreover, the significant correlation was found between the concentrations of Cu and Zn and the ARGs. Our findings provide empirical evidence that the dissemination risk of ARGs and ARB in long-term manure-amended vegetable soils, which might promote to the development of effective strategies to reduce the spread of ARGs in agro-ecosystems. | 2019 | 30453260 |
| 8014 | 11 | 0.9998 | Contributions of the microbial community and environmental variables to antibiotic resistance genes during co-composting with swine manure and cotton stalks. Understanding the main drivers that affect the spread of antibiotic resistance genes (ARGs) during the composting process is important for the removal of ARGs. In this study, three levels of tylosin (25, 50, and 75 mg kg(-1) on a dry weight basis) were added to swine manure plus a control, which was composted with cotton stalks. Each treatment was repeated in triplicate and the ARG profiles were determined with different levels of tylosin. The top 35 genera and ARGs profiles were clustered together based on the composting time. Combined composting parameters (temperature, pH, NH(4)(+)-N, NO(3)-N, and moisture content) accounted for 78.4% of the total variation in the changes in the potential host bacteria. In addition, the selected five composting parameters and six phyla (including 25 potential host bacterial genera) explained 46.9% and 30.7% of the variation in the ARG profiles according to redundancy analysis, respectively. The variations in ARGs during the composting process were mainly affected by the dynamics of potential host bacteria rather than integrons and the selective pressure due to bio-Cu and bio-Zn. | 2018 | 29990821 |
| 8013 | 12 | 0.9998 | New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. This study investigated the variations in antibiotic (sulfonamide and tetracycline) resistance genes (ARGs) and resistant bacteria (ARB) during manure anaerobic digestion (AD) at 35 ℃ and 55 ℃, and discussed the mechanisms of variations in ARGs. The AD lasted for 60 days, five ARGs and intI1 each decreased in abundance after AD at the thermophilic temperature, while only half decreased at the mesophilic temperature. On days 10, 30, and 60, sulfonamide and tetracycline ARB were screened on selective media. During thermophilic AD, ARB numbers reduced by 4-log CFUs per gram dry manure, but only by approximately 1-log CFU at the mesophilic temperature. However, ARB composition analysis showed that at either temperature, no significant reduction in identified ARB species was observed. Furthermore, 72 ARB clones were randomly selected to detect the ARGs they harbored, and the results showed that each ARG was harbored by various hosts, and no definitive link existed between ARGs and bacterial species. In addition, by comparison with the identified host by culture method, the host prediction results based on the correlation analysis between ARGs and the bacterial community was proven to be unreliable. Overall, these findings indicated that relationships between ARB and ARGs were intricate. | 2020 | 31685315 |
| 7092 | 13 | 0.9998 | Sulfonamide antibiotics in the Northern Yellow Sea are related to resistant bacteria: implications for antibiotic resistance genes. Antibiotic resistance gene (ARG) residues and the mode of transmission in marine environments remain unclear. The sulfonamide (SAs) concentrations, different genes and total bacterial abundance in seawater and sediment of the Northern Yellow Sea were analyzed. Results showed the genes sul I and sul II were present at relatively high concentrations in all samples, whereas the gene sul III was detected fewer. The ARGs concentrations in the sediment were 10(3) times higher than those in water, which indicated sediment was essential ARG reservoir. Statistical analysis revealed the total antibiotic concentration was positively correlated with the relative abundance of the gene sul I and sul II. The relative abundances of the gene sul I and the gene sul II were also correlated positively with those of the gene int1. This correlation demonstrated that SAs exerted selective pressure on these ARGs, whereas the gene int1 could be implicated in the propagation of the genes sul I and sul II in marine environments. | 2014 | 24928456 |
| 8090 | 14 | 0.9998 | Swine Manure Composting With Compound Microbial Inoculants: Removal of Antibiotic Resistance Genes and Their Associations With Microbial Community. In this study, compound microbial inoculants, including three Bacillus strains and one Yeast strain, were inoculated into swine manure composting to explore the effects on antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), microbial community structure, and pathogenic bacteria. The results indicated that the abundances of the detected ARGs ranged from 3.6 × 10(3) to 1.13 × 10(8) copies/g. The ARGs with the highest abundance was sul2, and the lowest was blaCTX. Composting removes most of the ARGs and MGEs by 22.8-99.7%. These ARGs were significantly reduced during the thermophilic phase of compost. The removal rate of ARGs at the different layers of compost pile was different as follows: middle layer > upper layer > lower layer. But some ARGs proliferated significantly in the maturation phase of compost, especially the sulfonamide resistance genes. Compound microbial inoculants increased the temperature of compost, accelerated water loss, nitrogen fixation, and increased the removal rate of β-lactamase resistance genes, the transposon gene tn916 and part of tetracycline resistance genes by 3.7-23.8% in compost. Compound microbial inoculants changed the community structure and increased the Bacillus abundance in the thermophilic phase of compost. And it was helpful for removing pathogens during composting. The addition of compound microbial inoculants causes the decrease of Firmicutes and the increase of Bacteroidetes, which may be related to the removal and proliferation of ARGs. | 2020 | 33250880 |
| 7246 | 15 | 0.9998 | Tetracycline resistance genes are more prevalent in wet soils than in dry soils. This study aimed to reveal the effects of water content on the spread of tetracycline resistance genes (TRGs) in the soil. Amendments of four samples with different soil water contents, namely 16% (dry soil) and 25% (wet soil), and with or without pig manures (PM) were conducted under laboratory conditions. Quantitative polymerase chain reaction (q-PCR) results showed that the relative abundance of TRGs (tetB, tetC, tetM, tetO, tetT, and tetZ) in the wet soils was significantly higher than that in the dry soils whether under fertilization or non-fertilization conditions. Moreover, PM application enhanced the relative abundance of TRGs. The absolute copies of TRGs did not decline with the decrease in 16S rRNA genes in wet soils, implying that most TRGs were probably located in facultative anaerobic bacteria. However, cultivable tetracycline-resistant bacteria (TRB) in the wet soils were not in line with the q-PCR results, further indicating that aerobes might not account for the increases in the relative abundance of TRGs. Diversities of aerobic TRB were significantly higher in the wet soils than in the dry soils, especially on days 14 and 28. The patterns of community structures of aerobic TRB in the wet soils or dry soils containing PM were different from those in the dry soils. Together, this study showed that the variations in bacterial communities between the wet and dry soils, especially reflected in the diversity of aerobic TRB and/or community structure of facultative anaerobic TRB, might be an important reason behind the changes in the abundance of TRGs. | 2018 | 29573724 |
| 7156 | 16 | 0.9998 | Effect of antibiotics, antibiotic-resistant bacteria, and extracellular antibiotic resistance genes on the fate of ARGs in marine sediments. Surface runoff is a prevalent source via which emerging pollutants (i.e., antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs)) enter marine sediments. However, few studies have investigated the effect of emerging pollutants on the fate of ARGs in marine sediments. Therefore, three systems were established to measure the relative abundances of four common ARGs (i.e., bla(TEM), tetA, tetC, and aphA) and the integron-integrase gene (intI1) after exposure to emerging pollutants in marine sediments from the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea in China. The results revealed that antibiotic exposure could decrease the relative abundance of most ARGs (including bla(TEM), tetA, and tetC) in these marine sediment samples. The exceptions were the relative abundance of bla(TEM) in the Bohai Sea marine sediments under ampicillin exposure and tetC in the Yellow Sea marine sediments under tetracycline exposure, which increased significantly. Among marine sediments challenged with ARB, the relative abundance of aphA in all four marine sediments displayed a decreasing trend, whereas the abundances of bla(TEM) and tetA in the marine sediments from the Bohai Sea and the South China Sea showed an increasing trend. The relative abundance of tetA in the marine sediments from the Yellow Sea and the East China Sea dropped markedly when exposed to extracellular ARG (eARG). Significant changes in bla(TEM) abundance were observed in the four marine sediments under eARG exposure. Gene aphA abundance showed the same trend as the intI1 abundance. IntI1 showed a decreasing trend under the exposure of antibiotic, ARB, or eARG, apart from the East and the South China Sea marine sediments under ampicillin conditions and the South China Sea marine sediments under RP4 plasmid condition. These findings suggest that dosing with emerging pollutants does not increase ARG abundance in marine sediments. | 2023 | 37245825 |
| 7259 | 17 | 0.9998 | Practical survey on antibiotic-resistant bacterial communities in livestock manure and manure-amended soil. Through livestock manure fertilization, antibiotics, antibiotic-resistant bacteria and genes are transferred to agricultural soils, resulting in a high prevalence of antibiotic-resistant bacteria in the soil. It is not clear, however, whether a correlation exists between resistant bacterial populations in manure and manure-amended soil. In this work, we demonstrate that the prevalence of cephalexin-, amoxicillin-, kanamycin- and gentamicin-resistant bacteria as well as bacteria simultaneously resistant to all four antibiotics was much higher in manure-amended soils than in manure-free soil. 454-pyrosequencing indicated that the ARB and multiple antibiotic-resistant bacteria (MARB) in swine or chicken manure and manure-amended soil were mainly distributed among Sphingobacterium, Myroides, Enterococcus, Comamonas and unclassified Flavobacteriaceae. The genus Sphingobacterium was highly prevalent among ARB from swine manure and manure-amended soil, and was also the most dominant genus among MARB from chicken manure and manure-amended soil. Other dominant genera among ARB or MARB populations in manure samples, including Myroides, Enterococcus and Comamonas, could not be detected or were detected at very low relative abundance in manure-amended soil. The present study suggests the possibility of transfer of ARBs from livestock manures to soils and persistence of ARB in these environments. | 2016 | 26513264 |
| 7251 | 18 | 0.9998 | Effects of tetracycline antibiotics in chicken manure on soil microbes and antibiotic resistance genes (ARGs). China is the world's largest livestock and poultry breeding country, but also the largest use of veterinary antibiotics. When a large amount of chicken manure is applied to the soil, it will cause the number of antibiotic residues and resistant bacteria to increase, which will bring about the pollution of antibiotic resistance genes (ARGs) in the soil, and then increase the risk of environmental pollution and human health. Field experiments were conducted to study the changes of soil tetracycline antibiotic residues, resistant bacteria and resistance genes treated with different types and dosage of chicken manure (no chicken manure, (CK), low fresh chicken manure treatment (300 kg·667 m(-2)), high fresh chicken manure treatment (600 kg·667 m(-2)), low decomposed chicken manure treatment (300 kg·667 m(-2)) and high decomposed chicken manure treatment (600 kg·667 m(-2))). After one-year application of chicken manure, content of soil organic matter increased by 1.0%-3.2% compared with the control. The activity of soil catalase significantly increased by 84.3-91.5%, 81.9-102.9% in fresh and decomposed chicken manure treatments compared with the control, respectively. The amount of soil resistant bacteria under the same treatment was in the order of Anti-OTC > Anti-TC > Anti-CTC. After one-year application of chicken manure, the total tetracycline amount in the soil was increased by 168.5-217.9% compared with the control. The amount of antibiotic residue in soil treated with fresh chicken manure was 3.0-9.1% higher than that treated with decomposed chicken manure. The abundance of ARGs in the soil was in the order of that treated with high fresh chicken manure > low fresh chicken manure > high decomposed chicken manure > low decomposed chicken manure. The risk of tetracycline antibiotics to soil ecological environment may be greatly reduced after chicken manure decomposed. | 2022 | 34114159 |
| 7248 | 19 | 0.9998 | Fate and transport of tylosin-resistant bacteria and macrolide resistance genes in artificially drained agricultural fields receiving swine manure. Application of manure from swine treated with antibiotics introduces antibiotics and antibiotic resistance genes to soil with the potential for further movement in drainage water, which may contribute to the increase in antibiotic resistance in non-agricultural settings. We compared losses of antibiotic-resistant Enterococcus and macrolide-resistance (erm and msrA) genes in water draining from plots with or without swine manure application under chisel plow and no till conditions. Concentrations of ermB, ermC and ermF were all >10(9)copies g(-1) in manure from tylosin-treated swine, and application of this manure resulted in short-term increases in the abundance of these genes in soil. Abundances of ermB, ermC and ermF in manured soil returned to levels identified in non-manured control plots by the spring following manure application. Tillage practices yielded no significant differences (p>0.10) in enterococci or erm gene concentrations in drainage water and were therefore combined for further analysis. While enterococci and tylosin-resistant enterococci concentrations in drainage water showed no effects of manure application, ermB and ermF concentrations in drainage water from manured plots were significantly higher (p<0.01) than concentrations coming from non-manured plots. ErmB and ermF were detected in 78% and 44%, respectively, of water samples draining from plots receiving manure. Although ermC had the highest concentrations of the three genes in drainage water, there was no effect of manure application on ermC abundance. MsrA was not detected in manure, soil or water. This study is the first to report significant increases in abundance of resistance genes in waters draining from agricultural land due to manure application. | 2016 | 26874610 |