# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8014 | 0 | 1.0000 | Contributions of the microbial community and environmental variables to antibiotic resistance genes during co-composting with swine manure and cotton stalks. Understanding the main drivers that affect the spread of antibiotic resistance genes (ARGs) during the composting process is important for the removal of ARGs. In this study, three levels of tylosin (25, 50, and 75 mg kg(-1) on a dry weight basis) were added to swine manure plus a control, which was composted with cotton stalks. Each treatment was repeated in triplicate and the ARG profiles were determined with different levels of tylosin. The top 35 genera and ARGs profiles were clustered together based on the composting time. Combined composting parameters (temperature, pH, NH(4)(+)-N, NO(3)-N, and moisture content) accounted for 78.4% of the total variation in the changes in the potential host bacteria. In addition, the selected five composting parameters and six phyla (including 25 potential host bacterial genera) explained 46.9% and 30.7% of the variation in the ARG profiles according to redundancy analysis, respectively. The variations in ARGs during the composting process were mainly affected by the dynamics of potential host bacteria rather than integrons and the selective pressure due to bio-Cu and bio-Zn. | 2018 | 29990821 |
| 8013 | 1 | 0.9999 | New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. This study investigated the variations in antibiotic (sulfonamide and tetracycline) resistance genes (ARGs) and resistant bacteria (ARB) during manure anaerobic digestion (AD) at 35 ℃ and 55 ℃, and discussed the mechanisms of variations in ARGs. The AD lasted for 60 days, five ARGs and intI1 each decreased in abundance after AD at the thermophilic temperature, while only half decreased at the mesophilic temperature. On days 10, 30, and 60, sulfonamide and tetracycline ARB were screened on selective media. During thermophilic AD, ARB numbers reduced by 4-log CFUs per gram dry manure, but only by approximately 1-log CFU at the mesophilic temperature. However, ARB composition analysis showed that at either temperature, no significant reduction in identified ARB species was observed. Furthermore, 72 ARB clones were randomly selected to detect the ARGs they harbored, and the results showed that each ARG was harbored by various hosts, and no definitive link existed between ARGs and bacterial species. In addition, by comparison with the identified host by culture method, the host prediction results based on the correlation analysis between ARGs and the bacterial community was proven to be unreliable. Overall, these findings indicated that relationships between ARB and ARGs were intricate. | 2020 | 31685315 |
| 8090 | 2 | 0.9999 | Swine Manure Composting With Compound Microbial Inoculants: Removal of Antibiotic Resistance Genes and Their Associations With Microbial Community. In this study, compound microbial inoculants, including three Bacillus strains and one Yeast strain, were inoculated into swine manure composting to explore the effects on antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), microbial community structure, and pathogenic bacteria. The results indicated that the abundances of the detected ARGs ranged from 3.6 × 10(3) to 1.13 × 10(8) copies/g. The ARGs with the highest abundance was sul2, and the lowest was blaCTX. Composting removes most of the ARGs and MGEs by 22.8-99.7%. These ARGs were significantly reduced during the thermophilic phase of compost. The removal rate of ARGs at the different layers of compost pile was different as follows: middle layer > upper layer > lower layer. But some ARGs proliferated significantly in the maturation phase of compost, especially the sulfonamide resistance genes. Compound microbial inoculants increased the temperature of compost, accelerated water loss, nitrogen fixation, and increased the removal rate of β-lactamase resistance genes, the transposon gene tn916 and part of tetracycline resistance genes by 3.7-23.8% in compost. Compound microbial inoculants changed the community structure and increased the Bacillus abundance in the thermophilic phase of compost. And it was helpful for removing pathogens during composting. The addition of compound microbial inoculants causes the decrease of Firmicutes and the increase of Bacteroidetes, which may be related to the removal and proliferation of ARGs. | 2020 | 33250880 |
| 8081 | 3 | 0.9999 | Potential threat of antibiotics resistance genes in bioleaching of heavy metals from sediment. Bioleaching is considered a promising technology for remediating heavy metals pollution in sediments. During bioleaching, the pressure from the metals bioleached is more likely to cause the spread of antibiotic resistance genes (ARGs). The changes in abundance of ARGs in two typical heavy metal bioleaching treatments using indigenous bacteria or functional bacteria agent were compared in this study. Results showed that both treatments successfully bioleached heavy metals, with a higher removal ratio of Cu with functional bacteria agent. The absolute abundances of most ARGs decreased by one log unit after bioleaching, particularly tetR (p = 0.02) and tetX (p = 0.04), and intI1 decreased from 10(6) to 10(4) copies/g. As for the relative abundance, ARGs in the non-agent treatment increased from 3.90 × 10(-4) to 1.67 × 10(-3) copies/16S rRNA gene copies (p = 0.01), and in the treatment with agent, it reached 6.65 × 10(-2) copies/16S rRNA gene copies, and intI1 relative abundance was maintained at 10(-3) copies/16S rRNA gene copies. The relative abundance of ARGs associated with efflux pump mechanism and ribosomal protection mechanism increased the most. The co-occurrence network indicated that Cu bioleached was the environmental factor determining the distribution of ARGs, Firmicutes might be the potential hosts of ARGs. Compared to bioleaching with indigenous bacteria, the addition of functional bacteria agent engendered a decrease in microbial alpha diversity and an increase in the amount of Cu bioleached, resulting in a higher relative abundance of ARGs. Heavy metal pollution can be effectively removed from sediments using the two bioleaching treatments, however, the risk of ARGs propagation posed by those procedures should be considered, especially the treatment with functional bacteria agents. In the future, an economical and efficient green technology that simultaneously reduces both the absolute abundance and relative abundance of ARGs should be developed. | 2022 | 34979232 |
| 8012 | 4 | 0.9999 | Sensitive response mechanism of ARGs and MGEs to initial designed temperature during swine manure and food waste co-composting. The rapid aerobic composting process has been used to reduce organic wastes, but the associated risks of antibiotic resistance genes (ARGs) need to evaluate in an efficient way. The primary objective of this work was to explore the underlying mechanism of initial adjustment in composting temperature on the variation of ARGs, mobile genetic elements (MGEs), and microbial composition during co-composting. The co-composting was initially externally heated (T2) for 5 days. The results showed that ARGs abundance in conventional composting (T1) was reduced by 49.36%, while multidrug was enriched by 86.16% after a period of 30 days. While in T2 ARGs were removed by 79.46% particularly the fraction of sulfonamide, multidrug, and vancomycin resistance genes were >90% without rebounding of any ARGs. Whereas, MGEs were reduced by 68.12% and 93.62% in T1 and T2, while the half-lives of ARGs and MGEs were lower in T2 compared to T1 (86.3%,86.7%). T2 also affected the metabolism function by regulating carbohydrate metabolism (9.62-10.39%) and amino acid metabolism (9.92-10.93%). Apart from this, the potential human pathogenic bacteria Pseudomonas was reduced by 90.6% in T2 and only 32.9% in T1 respectively. Network analysis showed that Ureibacillus, Weissella, Corynebacterium, Escherichia-Shigella, Acinetobacter were the main host of multiple genes. Structural equation models exhibited that bacterial communities were mainly responsible for the enrichment of ARGs in T1, whereas, it was directly affected by MGEs in T2. Similarly, ARGs variation was directly related to composting temperature. With this simple strategy, ARGs associated risk can be significantly reduced in composting. | 2023 | 36208781 |
| 7189 | 5 | 0.9999 | Comparative effects of different antibiotics on antibiotic resistance during swine manure composting. This study explored commonly-used antibiotics (lincomycin, chlorotetracycline, sulfamethoxazole, and ciprofloxacin) and their collective effects on antibiotic resistance during composting. In the first 7 days, ciprofloxacin showed the greatest influence on the physicochemical factors among the studied antibiotics; the removal of antibiotic resistance genes (ARGs) in the multiple-antibiotic treatment was significantly less than single-antibiotic treatments; especially, the largest removal of ribosomal protection genes (tetW and tetO) occurred in single ciprofloxacin treatment. In the end of composting, similar removal ratio (29.71-99.79%) of ARGs was achieved in different treatments (p greater than 0.05); Chloroflexi became the main phylum and it was closely associated with ARGs removal based on the network analysis. Potential host bacteria of ARGs varied with different antibiotics; in particular, the presence of multiple antibiotics increased potential host bacteria of ermA, sul1 and tetO. Above all, collective effects of different antibiotics led to the enrichment of antibiotic resistance in the composting. | 2020 | 32712514 |
| 8018 | 6 | 0.9999 | Analysis for microbial denitrification and antibiotic resistance during anaerobic digestion of cattle manure containing antibiotic. This study investigated the effects of tylosin (0, 10, and 100 mg/kg dry weight) on the denitrification genes and microbial community during the anaerobic digestion of cattle manure. N(2) emissions were reduced and N(2)O emissions were increased by 10 mg/kg tylosin. Adding 100 mg/kg tylosin increased the emission of both N(2)O and N(2). The different responses of denitrifying bacteria and genes to tylosin may have been due to the presence of antibiotic resistance genes (ARGs). Network analysis indicated that denitrification genes and ARGs had the same potential host bacteria. intI1 was more important for the horizontal transfer of denitrification genes and ARGs during anaerobic digestion than intI2. The anaerobic digestion of manure containing tylosin may increase nitrogen losses and the associated ecological risk. | 2019 | 31326686 |
| 8091 | 7 | 0.9999 | Changes in antibiotic resistance genes and mobile genetic elements during cattle manure composting after inoculation with Bacillus subtilis. This study explored the effects of Bacillus subtilis at four levels (0, 0.5%, 1%, and 2% w/w compost) on the variations in ARGs, mobile genetic elements (MGEs), and the bacterial community during composting. The composting process had a greater impact on ARGs than Bacillus subtilis. The main ARG detected was sul1. The addition of Bacillus subtilis at 0.5% reduced the relative abundances of ARGs, MGEs, and human pathogenic bacteria (by 2-3 logs) in the mature products. Network and redundancy analyses suggested that intI1, Firmicutes, and pH were mainly responsible for the changes in ARGs, thus controlling these factors might help to inhibit the spread of ARGs. | 2019 | 31442833 |
| 8025 | 8 | 0.9998 | Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures. Animal manure is a main reservoir of antibiotic residues and antibiotic resistance. Here, the effect of temperature on sulfonamide antibiotics (SAs), sulfonamide-resistant (SR) genes/bacteria was investigated by aerobically incubating swine and chicken manures at different temperatures. In swine manure, the SAs concentration declined with increasing temperature, with a minimum at 60°C. In chicken manure, the greatest degradation of SAs was noted at 30°C. The reduction of relative abundance of antibiotic resistance genes (ARGs) and sul-positive hosts in swine manure was more pronounced during thermophilic than mesospheric incubation; neither temperature conditions effectively reduced these parameters in chicken manure. The relationship between the residual levels/distribution profiles of SAs, ARGs (sul1, sul2 and intI1), cultivable SR bacteria and sul-positive hosts was further established. The antibiotic residual profile, rather than antibiotic concentration, acted as an important factor in the prevalence of ARGs and sul-positive hosts in manure. Corynebacterium and Leucobacter from the phylum Actinobacteria tend to be main carriers of sul1 and intI1; the relative abundance of sul2 was significantly correlated with the relative abundance of cultivable SR bacteria. Overall, differences in resistant bacterial communities also constitute a dominant factor affecting ARG variation. This study contributes to management options for reducing the pollution of antibiotics and antibiotic resistance within manure. | 2017 | 28711002 |
| 8079 | 9 | 0.9998 | Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting. Heavy metals driven co-selection of antibiotic resistance in soil and water bodies has been widely concerned, but the response of antibiotic resistance to co-existence of antibiotics and heavy metals in composting system is still unknown. Commonly used sulfamethoxazole and copper were individually and jointly added into four reactors to explore their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), heavy metal resistance genes (MRGs) and bacterial community structure. The abundance of total ARGs and MGEs were notably decreased by 68.64%-84.95% and 91.27-97.38%, respectively, after the composting. Individual addition of sulfamethoxazole, individual addition of copper, simultaneously addition of sulfamethoxazole and copper increased the abundance of ARGs and MGEs throughout the composting period. Co-exposure of sulfamethoxazole and copper elevated the total abundance of ARGs by 1.17-1.51 times by the end of the composting compared to individual addition of sulfamethoxazole or copper. Network analysis indicated that the shifts in potential host bacteria determined the ARGs variation. Additionally, MGEs and MRGs had significant effects on ARGs, revealing that horizontal gene transfer and heavy metals induced co-resistance could promote ARGs dissemination. | 2022 | 34537705 |
| 7247 | 10 | 0.9998 | Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure. Antibiotics and the corresponding resistant bacteria and resistance genes (ARGs) are generally considered emerging pollutants. To assess the impacts of tetracycline (TC) and sulfonamide (SA) antibiotics that are eliminated with fecaluria as drug prototypes, farmland soil used to research long-term fertilization with chicken manure was collected at four sites in Shandong Province. In this study, the rates of bacterial drug resistance to the same antibiotic decreased with an increase in the concentration of that antibiotic, and the resistance rates to TCs were lower than those to SAs. PCR of ARGs revealed that the ARGs detected at the highest frequency were the TC resistance genes tetW and tetO and the SA resistance genes sul1 and sul2. Real-time qPCR showed that the quantities of ARGs in farmland soil fertilized with chicken manure were significantly greater compared with the control soil. Moreover, significant correlations (R(2)=0.9525, p<0.05) between the number of sul ARGs and the total SA concentration were observed in all of the soil samples. In summary, this study showed that SAs can induce the appearance of ARGs and pollute the soil environment. | 2017 | 28340477 |
| 7257 | 11 | 0.9998 | Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes. Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems. | 2015 | 26296728 |
| 7265 | 12 | 0.9998 | Airborne bacterial communities and antibiotic resistance gene dynamics in PM(2.5) during rainfall. The biotoxicity and public health effects of airborne bacteria and antibiotic resistance genes (ARGs) in fine particulate matter (PM(2.5)) are being increasingly recognized. The characteristics of bacterial community composition and ARGs in PM(2.5) under different rainfall conditions were studied based on the on-site synchronous measurements in downtown Beijing. Marked differences were evident in the bacterial community characteristics of PM(2.5) before, during, and after rain events (p < 0.05). The rain intensities affected the bacterial community abundance in PM(2.5) and heavy rain had greater washing effects. The Proteobacteria (phylum level), α-Proteobacteria (class level), Pseudomonadales (order level), Pseudomonadaceae (family level), and Cyanobacteria (genus level) were the dominant bacterial taxa associated with PM(2.5) in Beijing during rain events. However, the bacteria at each level that displayed the biggest percentage variance was not the dominant type under different rain intensities. The ermB, tetW, and mphE genes were the primary ARGs, with abundances of 18 to 30 copies/m(3), which was a relatively smaller value than other observations. Real-time monitoring of the meteorological condition of rain events and physicochemical properties of PM(2.5) were used to identify the main factors during rainfall. The bacterial community was sensitive to the ionic and metal element components of PM(2.5) during rainfall. The abundance of ARGs was closely correlated with some groups of the bacterial community, which were also close to the initial value before the rain. Statistical analysis demonstrated that temperature, relative humidity, and duration of rain were the primary meteorological factors for the biological characteristics. The ionic species, rather than metal elements, in PM(2.5) were the sensitive factors for the bacteria community and ARGs, which varied at the phylum, class, order, family, and genus levels. The observations provide insights for the biological risk assessment in an urban rainfall water and the potential health impact on citizens. | 2020 | 31726367 |
| 8011 | 13 | 0.9998 | Co-selective Pressure of Cadmium and Doxycycline on the Antibiotic and Heavy Metal Resistance Genes in Ditch Wetlands. Abuse of heavy metals and antibiotics results in the dissemination of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs). Ditch wetlands are important sinks for heavy metals and antibiotics. The relationships between bacterial communities and MRG/ARG dissemination under dual stresses of heavy metals and antibiotics remain unclear. The responses of MRGs and ARGs to the co-selective pressure of cadmium (Cd) and doxycycline (DC) in ditch wetlands were investigated after 7-day and 84-day exposures. In ecological ditches, residual rates of Cd and DC varied from 0.4 to -5.73% and 0 to -0.61%, respectively. The greatest total relative abundance of ARGs was observed in the Cd 5 mg L(-1) + DC 50 mg L(-1) group. A significant level of DC (50 mg L(-1)) significantly reduced the total relative abundances of MRGs at a concentration of 5 mg L(-1) Cd stress. Redundancy analysis indicated that Cd and DC had strong positive effects on most ARGs and MRGs after a 7-day exposure. Meanwhile, the class 1 integron gene (intI1) exhibited strong positive correlations with most ARGs and cadmium resistance genes (czcA) after an 84-day exposure. Network analysis showed that Acinetobacter and Pseudomonas were the potential dominant host genera for ARGs and MRGs, and tetracycline resistance genes (tetA), czcA, and intI1 shared the same potential host bacteria Trichococcus after an 84-day exposure. | 2022 | 35250936 |
| 6949 | 14 | 0.9998 | Tracing the transfer characteristics of antibiotic resistance genes from swine manure to biogas residue and then to soil. Based on laboratory simulation experiments and metagenomic analysis, this study tracked the transmission of antibiotic resistance genes (ARGs) from swine manure (SM) to biogas residue and then to soil (biogas residue as organic fertilizer (OF) application). ARGs were abundant in SM and they were assigned to 11 categories of antibiotics. Among the 383 ARG subtypes in SM, 43 % ARG subtypes were absent after anaerobic digestion (AD), which avoided the transfer of these ARGs from SM to soil. Furthermore, 9 % of the ARG subtypes in SM were introduced into soil after amendment with OF. Moreover, 43 % of the ARG subtypes in SM were present in OF and soil, and their abundances increased slightly in the soil amended with OF. The bacterial community in the soil treated with OF was restored to its original state within 60 to 90 days, probably because the abundances of ARGs were elevated but not significantly in the soil. Network analysis identified 31 potential co-host bacteria of ARGs based on the relationships between the bacteria community members, where they mainly belonged to Firmicutes, followed by Bacteroidetes, Actinobacteria, and Proteobacteria. This study provides a basis for objectively evaluating pollution by ARGs in livestock manure for agricultural use. | 2024 | 38072280 |
| 8026 | 15 | 0.9998 | A comparison of antibiotics, antibiotic resistance genes, and bacterial community in broiler and layer manure following composting. Animal manure is an important source of antibiotics and antibiotic resistance genes (ARGs) in the environment. However, the difference of antibiotic residues and ARG profiles in layer and broiler manure as well as their compost remains unexplored. In this study, we investigated the profiles of twelve antibiotics, seventeen ARGs, and class 1 integrase gene (intI1) in layer and broiler manure, and the corresponding compost at large-scale. Compared with layer manure, broiler manure exhibited approximately six times more residual tetracyclines, especially chlortetracycline. The relative abundances of qnrS and ermA genes in broiler manure were significantly higher than those in layer manure. The concentration of tetracyclines not only had a significantly positive correlation with tetracycline resistance genes (tetA and tetC) but was also positively correlated with quinolone resistance (qepA, qnrB, and qnrS) and macrolide resistance (ermA and ermT). Most ARGs in manure were reduced after composting. However, the relative abundance of sulfonamide resistance gene sul1 increased up to 2.41% after composting, which was significantly higher than that of broiler (0.41%) and layer (0.62%) manure. The associated bacterial community was characterized by high-throughput 16S rRNA gene sequencing. The relative abundances of thermophilic bacteria had significant positive correlations with the abundance of sul1 in compost. The composting has a significant impact on the ARG-associated gut microbes in poultry manure. Variation partitioning analysis indicated that the change of bacterial community compositions and antibiotics contributed partially to the shift in ARG profiles. The results indicate that at industry-scale production broiler manure had more antibiotics and ARGs than layer manure did, and composting decreased most ARG abundances in poultry manure except for sulfonamide resistance genes. | 2021 | 33219508 |
| 7194 | 16 | 0.9998 | Response of antibiotic resistance genes in constructed wetlands during treatment of livestock wastewater with different exogenous inducers: Antibiotic and antibiotic-resistant bacteria. This work aimed to study the behavior of antibiotic resistance genes (ARGs) in constructed wetlands with different exogenous inducers additions (oxytetracycline and its resistant bacteria) by high-throughput quantitative polymerase chain reaction. Results indicated that constructed wetlands have the potential to reduce ARGs relative abundances in wastewater, and the total ARGs removal efficiency could exceed 60%. ARGs profile in the effluent differed from that in the influent, and that did not directly reflect the export of dominant ARGs in wetland biofilms. Meanwhile, the highest levels of detected numbers and relative abundances of ARGs were 43 and 3.35 × 10(-1) for control system and 44 and 6.40 × 10(-1) for treatment system, respectively, which meant that ARGs generation in wetlands were inevitable, and antibiotic and antibiotic-resistant bacteria from wastewater could indeed promote ARGs abundance in the system. Compared to the single roles of inducers, their synergistic role had a more significant influence on ARGs relative abundance. | 2020 | 32652450 |
| 7252 | 17 | 0.9998 | Aerobic Composting and Anaerobic Digestion Decrease the Copy Numbers of Antibiotic-Resistant Genes and the Levels of Lactose-Degrading Enterobacteriaceae in Dairy Farms in Hokkaido, Japan. Efficient methods for decreasing the spread of antimicrobial resistance genes (ARGs) and transfer of antimicrobial-resistant bacteria (ARB) from livestock manure to humans are urgently needed. Aerobic composting (AC) or anaerobic digestion (AD) are widely used for manure treatment in Japanese dairy farms. To clarify the effects of AC and AD on antimicrobial resistance, the abundances of antimicrobial (tetracycline and cefazolin)-resistant lactose-degrading Enterobacteriaceae as indicator bacteria, copy numbers of ARGs (tetracycline resistance genes and β-lactamase coding genes), and concentrations of residual antimicrobials in dairy cow manure were determined before and after treatment. The concentration of tetracycline/cefazolin-resistant lactose-degrading Enterobacteriaceae was decreased over 1,000-fold by both AC and AD. ARGs such as tetA, tetB, and bla (TEM) were frequently detected and their copy numbers were significantly reduced by ∼1,000-fold by AD but not by AC. However, several ARG copies remained even after AD treatment. Although concentrations of the majority of residual antimicrobials were decreased by both AC and AD, oxytetracycline level was not decreased after treatment in most cases. In addition, 16S rRNA gene amplicon-based metagenomic analysis revealed that both treatments changed the bacterial community structure. These results suggest that both AC and AD could suppress the transmission of ARB, and AD could reduce ARG copy numbers in dairy cow manure. | 2021 | 34659165 |
| 6948 | 18 | 0.9998 | Fate of antibiotic resistance genes and metal resistance genes during the thermophilic fermentation of solid and liquid swine manures in an ectopic fermentation system. Environmental pollution due to resistance genes from livestock manure has become a serious issue that needs to be resolved. However, little studies focused on the removal of resistance genes in simultaneous processing of livestock feces and urine. This study investigated the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and class 1 integron-integrase gene (intI1) during thermophilic fermentation of swine manure in an ectopic fermentation system (EFS), which has been regarded as a novel system for efficiently treating both feces and urine. The abundances of MRGs and tetracycline resistance genes were 34.44-97.71% lower in the EFS. The supplementation of heavy metals significantly increased the abundance of intI1, with the enhancement effect of copper being more prominent than that of zinc. The highest abundances of resistance genes and intI1 were observed at high Cu levels (A2), indicating that Cu can increase the spreading of resistance genes through integrons. Network analysis revealed the co-occurrence of ARGs, MRGs, and intI1, and these genes potentially shared the same host bacteria. Redundancy analysis showed that the bacterial community explained most of the variations in ARGs, and environmental factors had influences on ARGs abundances by modulating the bacterial community composition. The decreased Sphingomonas, Comamonas, Acinetobacter, Lactobacillus, Bartonella, Rhizobium, and Bacteroides were mainly responsible for the reduced resistance genes. These results demonstrate that EFS can reduce resistance genes in simultaneous processing of livestock feces and urine. | 2021 | 33592372 |
| 8078 | 19 | 0.9998 | Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment. In present study, copper (Cu), zinc (Zn), tetracycline (TC) and ampicillin (AMP) were selected to study the individual and synergistic effects of antibiotics and heavy metals on the microbial communities and resistance genes on polyvinyl chloride microplastics (PVC MPs) and surrounding sewage after 28 and 84 days. The results indicated that PVC MPs enriched many microorganisms from surrounding sewage, especially pathogenic bacteria such as Mycobacterium and Aquabacterium. The resistance gene with the highest abundance enriched on PVC MPs was tnpA (average abundance of 1.0 × 10(7) copies/mL sewage). The single presence of Zn, TC and AMP inhibited these enrichments for a short period of time (28 days). But the single presence of Cu and the co-existence of antibiotics and heavy metals inhibited these enrichments for a long period of time (84 days), resulting in relatively low microbial diversities and resistance genes abundances. Transpose tnpA had significantly positive correlations (p < 0.05) with all other genes. Pathogenic bacteria Mycobacterium and Legionella were potential hosts harboring 5 and 1 resistance genes, respectively. Overall, PVC MPs played important roles in the distribution and transfer of pathogenic bacteria and resistance genes in sewage with the presence of antibiotics or (and) heavy metals. | 2021 | 33254740 |