# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8003 | 0 | 1.0000 | Dynamics of antibiotic resistance agents during sludge alkalinization treatment. This study aimed to assess the removal of antimicrobial resistance agents (antibiotics, antibiotic-resistant bacteria - ARB, and antimicrobial resistance genes - ARGs) from aerobic and anaerobic sludges treated with quicklime (chemical alkalinization). Different mixing ratios (25%, 35%, and 45%) and contact times (2 h and 72 h) were evaluated. The findings revealed that anaerobic sludge responded more effectively to alkaline treatment, achieving better removal rates of antibiotics, ARB, and ARGs compared to aerobic sludge. The 45% lime treatment yielded the highest antibiotic removal rates, with average reductions of 19% in aerobic sludge and 28% in anaerobic sludge. The 35% lime treatment was the most effective in reducing ARGs across both types of sludge (average removal of 2 logs). The 25% lime treatment proved most efficient for removing ARB, with average reductions of 4 logs (aerobic) and 5 logs (anaerobic). The contact time between the sludge and quicklime also influenced the removal of resistance agents. An increase in the proportion of antibiotics and the absolute concentration of ARB and ARGs was observed after 72 h compared to the samples analyzed after 2 h of contact. This increase was more pronounced in aerobic sludge samples treated with 35% and 45% lime. Despite the overall reduction, none of the monitored resistant genes or bacteria were completely eradicated in both sludge samples, raising concerns about their potential dissemination into the environment. | 2024 | 39414064 |
| 8005 | 1 | 0.9998 | Deciphering the fate of antibiotic resistance genes in norfloxacin wastewater treated by a bio-electro-Fenton system. The misuse of antibiotics has increased the prevalence of antibiotic resistance genes (ARGs), considered a class of critical environmental contaminants due to their ubiquitous and persistent nature. Previous studies reported the potentiality of bio-electro-Fenton processes for antibiotic removal and ARGs control. However, the production and fate of ARGs in bio-electro-Fenton processes triggered by microbial fuel cells are rare. In this study, the norfloxacin (NFLX) average residual concentrations within two days were 2.02, 6.07 and 14.84 mg/L, and the average removal efficiency of NFLX was 79.8 %, 69.6 % and 62.9 % at the initial antibiotic concentrations of 10, 20 and 40 mg/L, respectively. The most prevalent resistance gene type in all processes was the fluoroquinolone antibiotic gene. Furthermore, Proteobacteria was the dominant ARG-carrying bacteria. Overall, this study can provide theoretical support for the efficient treatment of high antibiotics-contained wastewater by bio-electro-Fenton systems to better control ARGs from the perspective of ecological security. | 2022 | 36252757 |
| 8013 | 2 | 0.9998 | New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. This study investigated the variations in antibiotic (sulfonamide and tetracycline) resistance genes (ARGs) and resistant bacteria (ARB) during manure anaerobic digestion (AD) at 35 ℃ and 55 ℃, and discussed the mechanisms of variations in ARGs. The AD lasted for 60 days, five ARGs and intI1 each decreased in abundance after AD at the thermophilic temperature, while only half decreased at the mesophilic temperature. On days 10, 30, and 60, sulfonamide and tetracycline ARB were screened on selective media. During thermophilic AD, ARB numbers reduced by 4-log CFUs per gram dry manure, but only by approximately 1-log CFU at the mesophilic temperature. However, ARB composition analysis showed that at either temperature, no significant reduction in identified ARB species was observed. Furthermore, 72 ARB clones were randomly selected to detect the ARGs they harbored, and the results showed that each ARG was harbored by various hosts, and no definitive link existed between ARGs and bacterial species. In addition, by comparison with the identified host by culture method, the host prediction results based on the correlation analysis between ARGs and the bacterial community was proven to be unreliable. Overall, these findings indicated that relationships between ARB and ARGs were intricate. | 2020 | 31685315 |
| 7195 | 3 | 0.9998 | Insight into effect of high-level cephalexin on fate and driver mechanism of antibiotics resistance genes in antibiotic wastewater treatment system. In the study, antibiotic resistance genes (ARGs) were examined in wastewater and sludge samples to explore the effect of cephalexin (CFX) on the spreading and removal of ARGs in the Expanded Granular Sludge Bed (EGSB) reactor treating antibiotics wastewater. The result showed that the addition of CFX in the wastewater affected the removal amount of β-lactam ARGs and other types ARGs. Besides, the addition of CFX in the wastewater had no obviously effect on total concentration of targeted ARGs in the sludge, but it was related to the accumulation of some typical ARGs. Based on gene cassette array libraries analysis, the diversity of gene cassettes carried by intI1 gene was increased by the addition of CFX in the wastewater. Furthermore, the co-occurrence patterns between ARGs and bacterial genus were also investigated. The results showed the CFX in the wastewater not only affected the number of potential host bacteria of ARGs, but also changed the types of potential host bacteria of ARGs. The correlation analysis of ARG in influent, effluent and sludge showed that, for blaCTX-M, sul2, qnrS and AmpC genes, their removal amount in EGSB reactor treating antibiotic wastewater system might be enhanced by reducing their concentration in the sludge. | 2020 | 32505047 |
| 8004 | 4 | 0.9998 | Elimination of antibiotic-resistant bacteria and resistance genes by earthworms during vermifiltration treatment of excess sludge. Vermifiltration (VF) and a conventional biofilter (BF, no earthworm) were investigated by metagenomics to evaluate the removal rates of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and class 1 integron-integrase (intI1), as well as the impact mechanism in combination with the microbial community. According to the findings of qPCR and metagenomics, the VF facilitated greater removal rates of ARGs (78.83% ± 17.37%) and ARB (48.23% ± 2.69%) than the BF (56.33% ± 14.93%, 20.21% ± 6.27%). Compared to the control, the higher biological activity of the VF induced an increase of over 60% in the inhibitory effect of earthworm coelomic fluid on ARB. The removal rates of ARGs by earthworm guts also reached over 22%. In addition, earthworms enhanced the decomposition of refractory organics, toxic, and harmful organics, which led to a lower selective pressure on ARGs and ARB. It provides a strategy for reducing resistant pollution in sewage treatment plants and recognizing the harmless stability of sludge. | 2024 | 38170354 |
| 8014 | 5 | 0.9998 | Contributions of the microbial community and environmental variables to antibiotic resistance genes during co-composting with swine manure and cotton stalks. Understanding the main drivers that affect the spread of antibiotic resistance genes (ARGs) during the composting process is important for the removal of ARGs. In this study, three levels of tylosin (25, 50, and 75 mg kg(-1) on a dry weight basis) were added to swine manure plus a control, which was composted with cotton stalks. Each treatment was repeated in triplicate and the ARG profiles were determined with different levels of tylosin. The top 35 genera and ARGs profiles were clustered together based on the composting time. Combined composting parameters (temperature, pH, NH(4)(+)-N, NO(3)-N, and moisture content) accounted for 78.4% of the total variation in the changes in the potential host bacteria. In addition, the selected five composting parameters and six phyla (including 25 potential host bacterial genera) explained 46.9% and 30.7% of the variation in the ARG profiles according to redundancy analysis, respectively. The variations in ARGs during the composting process were mainly affected by the dynamics of potential host bacteria rather than integrons and the selective pressure due to bio-Cu and bio-Zn. | 2018 | 29990821 |
| 7194 | 6 | 0.9998 | Response of antibiotic resistance genes in constructed wetlands during treatment of livestock wastewater with different exogenous inducers: Antibiotic and antibiotic-resistant bacteria. This work aimed to study the behavior of antibiotic resistance genes (ARGs) in constructed wetlands with different exogenous inducers additions (oxytetracycline and its resistant bacteria) by high-throughput quantitative polymerase chain reaction. Results indicated that constructed wetlands have the potential to reduce ARGs relative abundances in wastewater, and the total ARGs removal efficiency could exceed 60%. ARGs profile in the effluent differed from that in the influent, and that did not directly reflect the export of dominant ARGs in wetland biofilms. Meanwhile, the highest levels of detected numbers and relative abundances of ARGs were 43 and 3.35 × 10(-1) for control system and 44 and 6.40 × 10(-1) for treatment system, respectively, which meant that ARGs generation in wetlands were inevitable, and antibiotic and antibiotic-resistant bacteria from wastewater could indeed promote ARGs abundance in the system. Compared to the single roles of inducers, their synergistic role had a more significant influence on ARGs relative abundance. | 2020 | 32652450 |
| 7572 | 7 | 0.9998 | Stormwater runoff treatment through electrocoagulation: antibiotic resistant bacteria removal and its transmission risks. Recently, increasing attention has been paid to antibiotic resistant bacteria (ARB) in stormwater runoff. However, there were little data on ARB removal through electrocoagulation (EC) treatment. In this study, batch experiments were conducted to investigate key designs for ARB removal, role of SS, effects of water matrix, and potential risks after EC treatment under the pre-determined conditions. EC treatment with 5 mA/cm(2) of current density and 4 cm of inter-electrode distance was optimal with the highest ARB removal (3.04 log reduction for 30 min). The presence of SS significantly improved ARB removal during EC treatment, where ARB removal increased with the increase of SS levels when SS less than 300 mg/L. Large ARB removal was found under particles with size lower than 150 μm with low contribution (less than 10%) of the settlement without EC treatment, implying that the enhancement of ARB adsorption onto small particles could be one of the reasonable approaches for ARB removal through EC treatment. ARB removal increased firstly and then decreased with the increase of pH, while had proportional relationship with conductivity. After the optimal condition, there were weak conjugation transfer but high transformation frequency (5.5 × 10(-2) for bla(TEM)) for target antibiotic resistance genes (ARGs), indicating that there could be still a risk of antibiotic resistance transformation after EC treatment. These suggested that the combination of EC and other technologies (like electrochemical disinfection) should be potential ways to control antibiotic resistance transmission through stormwater runoff. | 2024 | 36848218 |
| 8002 | 8 | 0.9998 | Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant. Analyzing the temporal dynamics of antibiotics, antibiotic resistance genes (ARGs) and the functional community could contribute to the regulation and optimization of wastewater treatment plant (WWTP) operation to achieve better antibiotics and ARGs removal performances during different seasons. However, there is little research in this area. Therefore, in this study, samples were collected from the influent, activated sludge (AS), and permeate of the membrane bioreactor (MBR) in a WWTP located in Beijing, China, biweekly over 13 months, and then analyzed systematically. The removal efficiency for all detected antibiotics through biodegradation and adsorption was 59.25 ± 2.79%, with the highest rate of 64.79 ± 4.68% observed in summer, indicating that the higher temperature in summer may promote biodegradation in MBR. In contrast, the elimination of antibiotics through microfiltration was negligible and unfavorable, with negative overall removal rates. However, a positive rejection rate of 9.48 ± 8.92% was only observed in winter, indicating that a colder temperature might lead to better, but still limited, antibiotics rejection. Sulfonamides (SAs) were more likely to impose a selective pressure on their corresponding ARGs. However, due to the degradability of tetracyclines (TCs) and potential selection of ARGs in wastewater before entering WWTP, there were still TC resistances with non-detectable TCs. Significantly negative relationships were observed between the relative abundance of nitrifying bacteria (Nitrosomonas and Nitrospira) and the concentrations of certain antibiotic classes, indicating that nitrifying bacteria could be involved in the co-metabolic biodegradation of certain antibiotics through enzyme catalyzation during nitrification. | 2019 | 30235615 |
| 8009 | 9 | 0.9998 | High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes. Swine wastewater treatment plant has become one of the main sources of antibiotic resistance genes (ARGs). Membrane treatment processes are promising solutions for removal of the emerging contaminants. However, limited studies have investigated the effects of nanofiltration and reverse osmosis treatment in removing ARGs in swine wastewater. In this study, the presence and the fate of common ARGs including sul1, sul2, tetA, tetM and tetW, as well as intI1 and 16S rRNA gene, were investigated in a medium-sized (6500) pig farm wastewater treatment plant (WWTP) equipped with conventional biological treatment and advanced membrane processing system. All of the genes were detected with highly abundance in the raw sewage. The biological treatments of the swine wastewater treatment plant did not reduce the quantity of the ARGs. As expected, nanofiltration and reverse osmosis treatment reduced the absolute gene copy number of ARGs efficiently (4.98-9.52 logs removal compared to raw sewage). Compared to the reverse osmosis effluent, however, the absolute abundance of ARGs in the artificial wetland increased by 1.00-2.06 logs. Meanwhile, the relative abundance of sulfonamide resistant genes were basically unchanged, while tetracycline resistance genes (tetA, tetM and tetW) decreased by 0.88, 3.47, 2.51 log, respectively. The results demonstrated that advanced membrane treatments are capable of removing various kinds of ARGs efficiently, as well as some common nitrogen and phosphorus contaminants. This study suggested a mature alternative method for the removal of ARGs from livestock wastewater. | 2019 | 30368154 |
| 7209 | 10 | 0.9998 | Role of a typical swine liquid manure treatment plant in reducing elements of antibiotic resistance. Biological treatment of swine liquid manure may be a favorable environment for the enrichment of bacteria carrying antibiotic resistance genes (ARGs), raising the alert about this public health problem. The present work sought to investigate the performance of a swine wastewater treatment plant (SWWTP), composed of a covered lagoon biodigester (CLB) followed by three facultative ponds, in the removal of usual pollutants, antibiotics, ARGs (blaTEM, ermB, qnrB, sul1, and tetA), and intI1. The SWWTP promoted a 70% of organic matter removal, mainly by the digester unit. The facultative ponds stood out in the solids' retention carried from the anaerobic stage and contributed to ammonia volatilization. The detected antibiotic in the raw wastewater was norfloxacin (< 0.79 to 60.55 μg L(-1)), and the SWWTP seems to equalize peaks of norfloxacin variation probably due to sludge adsorption. CLB reduced the absolute abundance of ARGs by up to 2.5 log, while the facultative stage does not seem to improve the quality of the final effluent in terms of resistance elements. Considering the relative abundances, the reduction rates of total and ARG-carrying bacteria appear to be similar. Finally, correlation tests also revealed that organic matter and solids control in liquid manure treatment systems could help reduce the spread of ARGs after the waste final disposal. | 2023 | 37477815 |
| 7250 | 11 | 0.9998 | Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. The objective of this research was to investigate the ability of anaerobic and aerobic digesters to reduce the quantity of antibiotic resistant bacteria in wastewater solids. Lab-scale digesters were operated at different temperatures (22 °C, 37 °C, 46 °C, and 55 °C) under both anaerobic and aerobic conditions and fed wastewater solids collected from a full-scale treatment facility. Quantitative PCR was used to track five genes encoding tetracycline resistance (tet(A), tet(L), tet(O), tet(W), and tet(X)) and the gene encoding the integrase (intI1) of class 1 integrons. Statistically significant reductions in the quantities of these genes occurred in the anaerobic reactors at 37 °C, 46 °C, and 55 °C, with the removal rates and removal efficiencies increasing as a function of temperature. The aerobic digesters, in contrast, were generally incapable of significantly decreasing gene quantities, although these digesters were operated at much shorter mean hydraulic residence times. This research suggests that high temperature anaerobic digestion of wastewater solids would be a suitable technology for eliminating various antibiotic resistance genes, an emerging pollutant of concern. | 2010 | 21058743 |
| 7208 | 12 | 0.9998 | Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment. In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites. | 2016 | 26658782 |
| 8035 | 13 | 0.9998 | Effects of hydrothermal treatment on the reduction of antibiotic-resistant Escherichia coli and antibiotic resistance genes and the fertilizer potential of liquid product from cattle manure. In this study, the reduction in the abundance of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) and the fertilizer potential of liquid products from hydrothermally treated cattle manure were investigated. Hydrothermal treatment (HTT) was conducted under different reaction temperatures (125, 150, 175 and 200 °C) and retention times (60, 90 and 120 min). The total organic carbon (TOC) and total nitrogen (TN) of the liquid product increased with increasing reaction temperature. The germination index (GI), a measure of the percentage of germination, exceeded 90 % at 125, 150, and 175 °C in diluted samples, while it decreased to 18 % at 200 °C. Although a longer retention time contributed to an increase in TOC of liquid products, it did not increase the GI values. The liquid product should be diluted or adjusted before use as fertilizer to prevent phytotoxicity. In our analysis of ARB and ARGs, E. coli and antibiotic-resistant E. coli were completely reduced after HTT, except for the operating conditions of 125 °C and 60 min. Although both a higher reaction temperature and longer retention time tended to be better for the reduction of ARGs and intI1, it was found that the longer retention time is much more effective than the higher reaction temperature. The reduction of target ARGs and intI1 was 2.9-log under175 °C and 120 min. Comprehensively considering the fertilizer potential of liquid product and the reduction of ARB and ARGs, 175 °C of reaction temperature and 120 min of retention time of operating conditions for HTT were recommended. | 2024 | 38744164 |
| 8006 | 14 | 0.9998 | Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. The emerging antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are increasingly appreciated to be as important as microbial contaminants. This paper focused on UV-activated persulfate (UV/PS), an advanced oxidation process, in removing ARB and ARGs from secondary wastewater effluent. Results showed that the inactivation efficiency of macrolides-resistant bacteria (MRB), sulfonamides-resistant bacteria (SRB), tetracyclines-resistant bacteria (TRB) and quinolones-resistant bacteria (QRB) by UV/PS reached 96.6 %, 94.7 %, 98.0 % and 99.9 % in 10 min, respectively. UV/PS also showed significant removal efficiency on ARGs. The reduction of total ARGs reached 3.84 orders of magnitude in UV/PS which is more than that in UV by 0.56 log. Particularly, the removal of mobile genetic elements (MGE) which might favor the horizontal gene transfer of ARGs among different microbial achieved 76.09 % by UV/PS. High-throughput sequencing revealed that UV/PS changed the microbial community. The proportions of Proteobacteria and Actinobacteria that pose human health risks were 4.25 % and 1.6 % less than UV, respectively. Co-occurrence analyzes indicated that ARGs were differentially contributed by bacterial taxa. In UV/PS system, hydroxyl radical and sulfate radical contributed to the removal of bacteria and ARGs. Our study provided a new method of UV/PS to remove ARGs and ARB for wastewater treatment. | 2020 | 31954307 |
| 7571 | 15 | 0.9998 | Ancient Oriental Wisdom still Works: Removing ARGs in Drinking Water by Boiling as compared to Chlorination. Antibiotic resistance genes (ARGs) in municipal drinking water may not be effectively removed during centralized treatment. To reduce potential health risks, water disinfection at the point-of-use scale is warranted. This study investigated the performance of boiling, a prevalent household water disinfection means, in response to ARGs contamination. We found that boiling was more efficient in inactivating both Escherichia coli and environmental bacteria compared to chlorination and pasteurization. Boiling of environmental bacteria suspension removed a much broader spectrum of ARGs and mobile genetic elements (up to 141 genes) than chlorination (up to 13 genes), such better performance was largely attributed to a stronger inactivation of chlorine-tolerant bacteria including Acinetobacter and Bacillus. Accumulation of extracellular ARGs was found during low-temperature heating (≤ 80°C) and in the initial stage of chlorination (first 3 min when initial chlorine was 5 mg/L and first 12 min when initial chlorine was 1 mg/L). These extracellular ARGs as well as the intracellular ARGs got removed as the heating temperature increased or the chlorination time prolonged. Under the same treatment time (30 min), high-temperature heating (≥ 90.1°C) damaged the DNA structure more thoroughly than chlorination (5 mg/L). Taking into account the low transferability of ARGs after DNA melting, boiling may provide an effective point-of-use approach to attenuating bacterial ARGs in drinking water and is still worth promoting in the future. | 2022 | 34910990 |
| 7817 | 16 | 0.9998 | Effect of alkaline treatment on pathogens, bacterial community and antibiotic resistance genes in different sewage sludges for potential agriculture use. Alkaline treatment is widely used to reduce pathogens in sewage sludge in developing countries and guarantee that it is safe for use in agriculture. The aim of this study was to investigate the effect of alkaline treatment applied to waste-activated (WAS) and Upflow Anaerobic Sludge Blanket (UASB)-sludge on the bacterial community, pathogens (viable helminths eggs and Salmonella spp), and antibiotic resistance genes (ARG). The bacterial community structure was examined through denaturing gel gradient electrophoresis (DGGE), targeting 16S rRNA genes. Polymerase chain reaction (PCR) was applied to evaluate the presence of several ARGs. The conducted alkaline experiment consisted of adding hydrated lime (Ca(OH)(2)) to sewage sludges. Samples were taken before and after 2, 24, 48, and 72 hours of treatment. Alkaline treatment changed considerably the bacterial community structure and after 24 hours, shifts in bacterial profiles were more pronounced in the UASB sludge sample than in WAS. Some bacteria remained under extreme pH conditions (pH > 12), such as Azospira oryzae and Dechloromonas denitrificans in the WAS samples, and Geothrix and Geobacter in the UASB sludge samples. The values of pathogens and indicators in the sludge after 24 hours of alkaline treatment meet sanitary law regulations and thus the sludges could have the potential to agricultural distribution. It is important to highlight that ARG, which are not currently present in sanitary regulations, were detected in the sludge samples after the alkaline treatment, which could be a concern for human health. | 2020 | 30051768 |
| 7192 | 17 | 0.9998 | Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors. The abundant microbial community in biological treatment processes in wastewater treatment plants (WWTPs) may potentially enhance the horizontal gene transfer of antibiotic resistance genes with the presence of antibiotics. A lab-scale sequencing batch reactor was designed to investigate response of sulfonamide resistance genes (sulI, sulII) and bacterial communities to various concentrations of sulfamethoxazole (SMX) and chemical oxygen demand (COD) of wastewater. The SMX concentrations (0.001 mg/L, 0.1 mg/L and 10 mg/L) decreased with treatment time and higher SMX level was more difficult to remove. The presence of SMX also significantly reduced the removal efficiency of ammonia nitrogen, affecting the normal function of WWTPs. All three concentrations of SMX raised both sulI and sulII genes with higher concentrations exhibiting greater increases. The abundance of sul genes was positive correlated with treatment time and followed the second-order reaction kinetic model. Interestingly, these two genes have rather similar activity. SulI and sulII gene abundance also performed similar response to COD. Simpson index and Shannon-Weiner index did not show changes in the microbial community diversity. However, the 16S rRNA gene cloning and sequencing results showed the bacterial community structures varied during different stages. The results demonstrated that influent antibiotics into WWTPs may facilitate selection of ARGs and affect the wastewater conventional treatment as well as the bacteria community structures. | 2017 | 28211331 |
| 7184 | 18 | 0.9998 | Effects of activated sludge and UV disinfection processes on the bacterial community and antibiotic resistance profile in a municipal wastewater treatment plant. Wastewater tertiary treatment has been pointed out as an effective alternative for reducing the concentration of antibiotic resistant bacteria and genes (ARB and ARGs) in wastewaters. The present work aimed to build on the current knowledge about the effects of activated sludge and UV irradiation on antibiotic resistance determinants in biologically treated wastewaters. For that, the microbial community and ARGs' composition of samples collected after preliminary (APT), secondary (AST), and tertiary (ATT) treatments in a full-scale wastewater treatment plant using a modified activated sludge (MAS) system followed by an UV stage (16 mJ/cm(2)) were investigated through culture-dependent and independent approaches (including metagenomics). A total of 24 phyla and 460 genera were identified, with predominance of Gammaproteobacteria in all samples. Pathogenic genera corresponded to 8.6% of all sequences on average, mainly Acinetobacter and Streptococcus. Significant differences (p < 0.05) in the proportion of pathogens were observed between APT and the other samples, suggesting that the secondary treatment reduced its abundance. The MAS achieved 64.0-99.7% average removal efficiency for total (THB) and resistant heterotrophic bacteria, although the proportions of ARB/THB have increased for sulfamethoxazole, cephalexin, ciprofloxacin, and tetracycline. A total of 10(7) copies/mL of intI1 gene remained in the final effluent, suggesting that the treatment did not significantly remove this gene and possibly other ARGs. In accordance, metagenomic results suggested that number of reads recruited to plasmid-associated ARGs became more abundant in the pool throughout the treatment, suggesting that it affected more the bacteria without these ARGs than those with it. In conclusion, disinfected effluents are still a potential source for ARB and ARGs, which highlights the importance to investigate ways to mitigate their release into the environment. | 2022 | 35060061 |
| 7818 | 19 | 0.9998 | Ozonation and UV(254)(nm) radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. Conventional wastewater treatment has a limited capacity to reduce antibiotic resistant bacteria and genes (ARB&ARG). Tertiary treatment processes are promising solutions, although the transitory inactivation of bacteria may select ARB&ARG. This study aimed at assessing the potential of ozonation and UV(254nm) radiation to inactivate cultivable fungal and bacterial populations, and the selected genes 16S rRNA (common to all bacteria), intI1 (common in Gram-negative bacteria) and the ARG vanA, bla(TEM), sul1 and qnrS. The abundance of the different microbiological parameters per volume of wastewater was reduced by ∼2 log units for cultivable fungi and 16S rRNA and intI1 genes, by∼3-4 log units, for total heterotrophs, enterobacteria and enterococci, and to values close or below the limits of quantification for ARG, for both processes, after a contact time of 30min. Yet, most of the cultivable populations, the 16S rRNA and intI1 genes as well as the ARG, except qnrS after ozonation, reached pre-treatment levels after 3days storage, suggesting a transitory rather than permanent microbial inactivation. Noticeably, normalization per 16S rRNA gene evidenced an increase of the ARG and intI1 prevalence, mainly after UV(254)(nm) treatment. The results suggest that these tertiary treatments may be selecting for ARB&ARG populations. | 2017 | 27072309 |